Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cardiovasc Ultrasound ; 19(1): 3, 2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33388071

RESUMEN

BACKGROUND: In patients undergoing left atrial appendage (LAA) closure, an accurate sizing of the LAA is key to optimize device sizing, procedural success and reduce complications. Previous studies have shown that intraprocedural volume loading increases LAA dimensions and improves device sizing. However, the safety and effects on LAA and device sizing of administering a fluid bolus during pre-procedural transesophageal echocardiography (TEE) are unknown. The aim of this study was to determine the safety and impact on LAA dimensions and device sizing of an intravenous (IV) fluid bolus administered during TEE in the setting of the pre-procedural work-up for LAA closure. METHODS: The study included a total of 72 patients who underwent TEE to assess suitability for LAAC and received a 500 ml IV bolus of normal saline. The LAA landing zone (LZ) and depth were measured by TEE before and after volume loading, and these measurements were used to predict the device size implanted during a subsequent percutaneous LAAC procedure. RESULTS: There were no complications associated with volume loading. The baseline mean LZ was 19.6 ± 3.6 mm at 90o, and 20.2 ± 4.1 mm at 135o. Following fluid bolus, the maximum diameter increased 1.5 ± 1.0 mm at 90o (p<0.001), and 1.3 ± 1.0 mm at 135o (p<0.001). The baseline mean depth of the LAA was 26.5 ± 5.5 mm at 90o, and 23.9 ± 5.8 mm at 135o. After fluid bolus, the mean depth increased by 1.5 ± 1.8 mm (p<0.001) and 1.6 ± 2.0 (p<0.001), at 90o and 135o, respectively. Sizing based on post-bolus measurements of the LZ significantly improved the agreement with the final device size selection during the procedure in 71.0% of cases (vs. 42.0% with pre-bolus measurements). CONCLUSIONS: Volume loading during ambulatory TEE as part of the pre-procedural work-up of LAAC is safe and significantly increases LAA dimensions. This strategy may become the new standard, particularly in centers performing LAAC with no TEE guidance, as it improves LAA sizing and more accurately predicts the final device size.


Asunto(s)
Apéndice Atrial/cirugía , Fibrilación Atrial/cirugía , Procedimientos Quirúrgicos Cardíacos/métodos , Ecocardiografía Transesofágica/métodos , Anciano , Apéndice Atrial/diagnóstico por imagen , Fibrilación Atrial/diagnóstico , Femenino , Humanos , Masculino , Periodo Preoperatorio , Reproducibilidad de los Resultados , Estudios Retrospectivos
2.
J Am Soc Echocardiogr ; 34(5): 537-550.e3, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33383122

RESUMEN

BACKGROUND: Right ventricular (RV) pressure loading from pulmonary hypertension (PH) and volume loading from pulmonary regurgitation (PR) lead to RV dysfunction, a critical determinant of clinical outcomes, but their impact on regional RV mechanics and fibrosis is poorly characterized. The aim of this study was to test the hypothesis that regional myocardial mechanics and efficiency in RV pressure and volume loading are associated with RV fibrosis and dysfunction. METHODS: Eight PH, six PR, and five sham-control rats were studied. The PH rat model was induced using Sugen5416, a vascular endothelial growth factor receptor 2 inhibitor, combined with chronic hypoxia. PR rats were established by surgical laceration of the pulmonary valve leaflets. Six (n = 4) or 9 (n = 4) weeks after Sugen5416 and hypoxia and 12 weeks after PR surgery, myocardial strain and RV pressure were measured and RV pressure-strain loops generated. We further studied RV regional mechanics in 11 patients with PH. Regional myocardial work was calculated as the pressure-strain loop area (mm Hg ∙ %). Regional myocardial work efficiency was quantified through wasted work (ratio of systolic lengthening to shortening work). The relation of regional myocardial work to RV fibrosis and dysfunction was analyzed. RESULTS: In rats, PH and PR induced similar RV dilatation, but fractional area change (%) was lower in PH than in PR. RV lateral wall work was asymmetrically higher in PH compared with sham, while septal work was similar to sham. In PR, lateral and septal work were symmetrically higher versus sham. Myocardial wasted work ratio was asymmetrically increased in the PH septum versus sham. Fibrosis in the RV lateral wall, but not septum, was higher in PH than PR. RV fibrosis burden was linearly related to regional work and to measures of RV systolic and diastolic function but not to wasted myocardial work ratio. Patients with PH demonstrated similar asymmetric and inefficient regional myocardial mechanics. CONCLUSIONS: Asymmetric RV work and increased wasted septal work in experimental PH are associated with RV fibrosis and dysfunction. Future investigation should examine whether assessment of asymmetric regional RV work and efficiency can predict clinical RV failure and influence patient management.


Asunto(s)
Hipertensión Pulmonar , Disfunción Ventricular Derecha , Animales , Fibrosis , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/patología , Humanos , Ratas , Factor A de Crecimiento Endotelial Vascular , Disfunción Ventricular Derecha/etiología , Función Ventricular Derecha
3.
Anesth Essays Res ; 13(2): 248-253, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31198239

RESUMEN

INTRODUCTION: Functional hemodynamic monitoring using dynamic parameters such as stroke volume variations (SVVs) based on pulse contour analysis is considered more accurate than central venous pressure and mean arterial pressure (MAP) in predicting fluid responsiveness. New device, i.e., Vigileo system, allows automatic and continuous monitoring of cardiac output (CO) based on pulse contour analysis and respiratory stroke volume. AIM: The study aims to test the above hypothesis using graded volume loading step (VLS) to assess the accuracy of SVV as a predictor of fluid responsiveness in patients undergoing intracranial surgery. MATERIALS AND METHODS: After taking ethical committee approval and informed consent, 60 patients aged between 18 and 55 years belonging to the American Society of Anesthesiologists physical status Class I and II, of either sex, scheduled for brain surgery were included in the study. In this study, 5 min after intubation, with stable hemodynamics, patients received volume loading in successive steps (VLS) of 200 ml of lactated Ringer's solution until the stroke volume increased to <10%. Blood pressure (BP), heart rate (HR), stroke volume (SV), and SVV were measured before and after each VLS. Optimal preload augmentation required by each patient was measured by the number of VLS after which an increase in SV was <10%. RESULTS: There was a significant decrease in the baseline BP and SV in responsive and nonresponsive groups for the first VLS, but there is no change in HR statistically. There was a significant change in SV after first VLS. Receiver operating characteristic analysis showed a larger area under the curve of 0.758 for SVV compared to other measured variables. The median number of VLS administered were 2 per patient equating to a mean ± SD requirement of 368 ± 176 ml of crystalloid per patient as the optimal preoperative infusion volume. CONCLUSION: SVV is a better predictor of preload responsiveness measured with third-generation Vigileo device when compared to BP and HR.

4.
Mol Pharm ; 16(7): 2858-2871, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31136710

RESUMEN

Liposomes are widely used for systemic delivery of chemotherapeutic agents to reduce their nonspecific side effects. Gemcitabine (Gem) makes a great candidate for liposomal encapsulation due to the short half-life and nonspecific side effects; however, it has been difficult to achieve liposomal Gem with high drug loading capacity. Remote loading, which uses a transmembrane pH gradient to induce an influx of drug and locks the drug in the core as a sulfate complex, does not serve Gem as efficiently as doxorubicin (Dox) due to the low p Ka value of Gem. Existing studies have attempted to improve Gem loading capacity in liposomes by employing lipophilic Gem derivatives or creating a high-concentration gradient for active loading into the hydrophilic cores (small volume loading). In this study, we combine the remote loading approach and small volume loading or hypertonic loading, a new approach to induce the influx of Gem into the preformed liposomes by high osmotic pressure, to achieve a Gem loading capacity of 9.4-10.3 wt % in contrast to 0.14-3.8 wt % of the conventional methods. Liposomal Gem showed a good stability during storage, sustained-release over 120 h in vitro, enhanced cellular uptake, and improved cytotoxicity as compared to free Gem. Liposomal Gem showed a synergistic effect with liposomal Dox on Huh7 hepatocellular carcinoma cells. A mixture of liposomal Gem and liposomal Dox delivered both drugs to the tumor more efficiently than a free drug mixture and showed a relatively good anti-tumor effect in a xenograft model of hepatocellular carcinoma. This study shows that bioactive liposomal Gem with high drug loading capacity can be produced by remote loading combined with additional approaches to increase drug influx into the liposomes.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Desoxicitidina/análogos & derivados , Sistemas de Liberación de Medicamentos/métodos , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Desoxicitidina/administración & dosificación , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Doxorrubicina/administración & dosificación , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Composición de Medicamentos , Liberación de Fármacos , Quimioterapia Combinada , Humanos , Liposomas , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Desnudos , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
5.
J Extra Corpor Technol ; 49(3): 174-181, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28979041

RESUMEN

On the outer surface of a human cell there is a dense layer of complex carbohydrates called glycocalyx, also referred to as glycans or the sugar coating on the cell surface, which is composed of a complex array of oligosaccharide and polysaccharide glucose chains that are covalently bonded to proteoglycans and lipids bound to the cell membrane surface. Studies of an intact endothelial glycocalyx layer (EGL) have revealed a number of critical functions that relate the importance of this protective layer to vascular integrity and permeability. These functions include the following: stabilization and maintenance of the vascular endothelium, an active reservoir of essential plasma proteins (i.e., albumin, antithrombin, heparan sulfate, and antioxidants), a buffer zone between the blood (formed elements) and the surface of the endothelium, and a mechanotransducer to detect changes in shear stress that facilitate vascular tone. There have been numerous review articles about the structure and function of endothelial glycocalyx over the past two decades, yet there still remains a significant knowledge gap in the perfusion literature around the importance of EGL. Perioperative fluid management and gaseous microemboli can both contribute to the damage/degradation of endothelial glycocalyx. A damaged EGL can result in systemic and myocardial edema, platelet and leukocyte adhesion, fluid extravasation, and contributes to microvascular perfusion heterogeneity. Knowledge of the importance of endothelial glycocalyx will enable clinicians to have a better understanding of the impact of gaseous microbubbles, hyperoxia, and ischemic reperfusion injury during cardiac surgery. The purpose of this article is to provide an in depth review of the EGL and how this protective barrier impacts the microcirculation, fluid homeostasis, inflammation, and edema during cardiac surgery.


Asunto(s)
Puente Cardiopulmonar , Endotelio Vascular/metabolismo , Glicocálix/metabolismo , Animales , Puente Cardiopulmonar/métodos , Humanos , Mecanotransducción Celular/fisiología , Resistencia al Corte/fisiología , Estrés Mecánico
6.
Int J Gen Med ; 3: 287-95, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21042567

RESUMEN

OBJECTIVES: Restoration of circulation is crucial in the surgical patient management. Colloids and crystalloids are widely used for blood volume therapy. We reviewed recent trials to evaluate efficacy and safety of hydroxyethyl starch (HES) 130/0.4 during surgery. MATERIAL AND METHODS: A subjective, not systematic, review of literature was performed. Papers were searched to answer questions about efficacy of HES, its impact on coagulation and inflammation and its effects on pulmonary mechanics and renal function. CONCLUSIONS: HES 130/0.4 is effective for volume therapy and is less expensive than human albumin. Its effects on coagulation and renal function are manageable; it may ameliorate pulmonary permeability and reduce inflammation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA