Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Cell Commun Signal ; 22(1): 491, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394612

RESUMEN

Disulfidptosis is a novel discovered form of programmed cell death (PCD) that diverges from apoptosis, necroptosis, ferroptosis, and cuproptosis, stemming from disulfide stress-induced cytoskeletal collapse. In cancer cells exhibiting heightened expression of the solute carrier family 7 member 11 (SLC7A11), excessive cystine importation and reduction will deplete nicotinamide adenine dinucleotide phosphate (NADPH) under glucose deprivation, followed by an increase in intracellular disulfide stress and aberrant disulfide bond formation within actin networks, ultimately culminating in cytoskeletal collapse and disulfidptosis. Disulfidptosis involves crucial physiological processes in eukaryotic cells, such as cystine and glucose uptake, NADPH metabolism, and actin dynamics. The Rac1-WRC pathway-mediated actin polymerization is also implicated in this cell death due to its contribution to disulfide bond formation. However, the precise mechanisms underlying disulfidptosis and its role in tumors are not well understood. This is probably due to the multifaceted functionalities of SLC7A11 within cells and the complexities of the downstream pathways driving disulfidptosis. This review describes the critical roles of SLC7A11 in cells and summarizes recent research advancements in the potential pathways of disulfidptosis. Moreover, the less-studied aspects of this newly discovered cell death process are highlighted to stimulate further investigations in this field.


Asunto(s)
Citoesqueleto de Actina , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Citoesqueleto de Actina/metabolismo , Muerte Celular , Animales , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética
2.
Int J Mol Sci ; 25(16)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39201643

RESUMEN

An association between high CD47 expression and poor cancer survival has been attributed to its function on malignant cells to inhibit phagocytic clearance. However, CD47 mRNA expression in some cancers lacks correlation or correlates with improved survival. IFT57 encodes an essential primary cilium component and is colinear with CD47 across amniote genomes, suggesting coregulation of these genes. Analysis of The Cancer Genome Atlas datasets identified IFT57 as a top coexpressed gene with CD47 among 1156 human cancer cell lines and in most tumor types. The primary cilium also regulates cancer pathogenesis, and correlations between IFT57 mRNA and survival paralleled those for CD47 in thyroid and lung carcinomas, melanoma, and glioma. CD47 ranked first for coexpression with IFT57 mRNA in papillary thyroid carcinomas, and higher expression of both genes correlated with significantly improved overall survival. CD47 and IFT57 mRNAs were coordinately regulated in thyroid carcinoma cell lines. Transcriptome analysis following knockdown of CD47 or IFT57 in thyroid carcinoma cells identified the cytoskeletal regulator CRACD as a specific target of IFT57. CRACD mRNA expression inversely correlated with IFT57 mRNA and with survival in low-grade gliomas, lung adenocarcinomas, and papillary thyroid carcinomas, suggesting that IFT57 rather than CD47 regulates survival in these cancers.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Antígeno CD47 , Regulación Neoplásica de la Expresión Génica , Humanos , Antígeno CD47/genética , Antígeno CD47/metabolismo , Línea Celular Tumoral , Perfilación de la Expresión Génica , Neoplasias/genética , Neoplasias/mortalidad , Neoplasias/patología , Neoplasias/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/mortalidad , Neoplasias de la Tiroides/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo
3.
Int J Biol Sci ; 20(7): 2356-2369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725858

RESUMEN

Dysregulation of cancer cell motility is a key driver of invasion and metastasis. High dysadherin expression in cancer cells is correlated with invasion and metastasis. Here, we found the molecular mechanism by which dysadherin regulates the migration and invasion of colon cancer (CC). Comprehensive analysis using single-cell RNA sequencing data from CC patients revealed that high dysadherin expression in cells is linked to cell migration-related gene signatures. We confirmed that the deletion of dysadherin in tumor cells hindered local invasion and distant migration using in vivo tumor models. In this context, by performing cell morphological analysis, we found that aberrant cell migration resulted from impaired actin dynamics, focal adhesion turnover and protrusive structure formation upon dysadherin expression. Mechanistically, the activation of focal adhesion kinase (FAK) was observed in dysadherin-enriched cells. The dysadherin/FAK axis enhanced cell migration and invasion by activating the FAK downstream cascade, which includes the Rho family of small GTPases. Overall, this study illuminates the role of dysadherin in modulating cancer cell migration by forcing actin dynamics and protrusive structure formation via FAK signaling, indicating that targeting dysadherin may be a potential therapeutic strategy for CC patients.


Asunto(s)
Movimiento Celular , Neoplasias del Colon , Proteína-Tirosina Quinasas de Adhesión Focal , Canales Iónicos , Proteínas de Microfilamentos , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Neoplasias del Colon/genética , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Canales Iónicos/metabolismo , Canales Iónicos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Transducción de Señal
4.
Am J Respir Cell Mol Biol ; 70(6): 507-518, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38512807

RESUMEN

Airway remodeling is a cardinal feature of asthma, associated with increased airway smooth muscle (ASM) cell mass and upregulation of extracellular matrix deposition. Exaggerated ASM cell migration contributes to excessive ASM mass. Previously, we demonstrated the alleviating role of Kp (kisspeptin) receptor (KISS1R) activation by Kp-10 in mitogen (PDGF [platelet-derived growth factor])-induced human ASM cell proliferation in vitro and airway remodeling in vivo in a mouse model of asthma. Here, we examined the mechanisms by which KISS1R activation regulates mitogen-induced ASM cell migration. KISS1R activation using Kp-10 significantly inhibited PDGF-induced ASM cell migration, further confirmed using KISS1R shRNA. Furthermore, KISS1R activation modulated F/G actin dynamics and the expression of promigration proteins like CDC42 (cell division control protein 42) and cofilin. Mechanistically, we observed reduced ASM RhoA-GTPAse with KISS1R activation. The antimigratory effect of KISS1R was abolished by PKA (protein kinase A)-inhibitory peptide. Conversely, KISS1R activation significantly increased cAMP and phosphorylation of CREB (cAMP-response element binding protein) in PDGF-exposed ASM cells. Overall, these results highlight the alleviating properties of Kp-10 in the context of airway remodeling.


Asunto(s)
Movimiento Celular , Kisspeptinas , Miocitos del Músculo Liso , Receptores de Kisspeptina-1 , Transducción de Señal , Humanos , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , Proteína de Unión al GTP cdc42/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Kisspeptinas/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Proteína de Unión al GTP rhoA/metabolismo
5.
Cell Oncol (Dordr) ; 47(4): 1071-1089, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38324230

RESUMEN

BACKGROUND: Metastasis accounts for the majority of cancer-related deaths. Actin dynamics and actin-based cell migration and invasion are important factors in cancer metastasis. Metastasis is characterized by actin polymerization and depolymerization, which are precisely regulated by molecular changes involving a plethora of actin regulators, including actin-binding proteins (ABPs) and signalling pathways, that enable cancer cell dissemination from the primary tumour. Research on deubiquitinating enzymes (DUBs) has revealed their vital roles in actin dynamics and actin-based migration and invasion during cancer metastasis. CONCLUSION: Here, we review how DUBs drive tumour metastasis by participating in actin rearrangement and actin-based migration and invasion. We summarize the well-characterized and essential actin cytoskeleton signalling molecules related to DUBs, including Rho GTPases, Src kinases, and ABPs such as cofilin and cortactin. Other DUBs that modulate actin-based migration signalling pathways are also discussed. Finally, we discuss and address therapeutic opportunities and ongoing challenges related to DUBs with respect to actin dynamics.


Asunto(s)
Citoesqueleto de Actina , Enzimas Desubicuitinizantes , Metástasis de la Neoplasia , Humanos , Citoesqueleto de Actina/metabolismo , Animales , Enzimas Desubicuitinizantes/metabolismo , Movimiento Celular , Transducción de Señal , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/enzimología , Actinas/metabolismo
6.
Food Sci Nutr ; 12(2): 881-889, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370084

RESUMEN

Cucurbitacins have high economic value as they are a major source of food and have pharmacological properties. Cucurbitacin I (CuI) is a plant-derived natural tetracyclic triterpenoid compound that shows an anticancer effect via inhibiting the JAK2-STAT3 signaling pathway. The actin cytoskeleton is the most abundant protein in cells and regulates critical events through reorganization in cells. In this study, it is aimed at determining the direct effect of CuI on actin dynamics. The fluorescence profile of G-actin in the presence of CuI (1-200 nM) shifted to a higher temperature, suggesting that G-actin binds CuI and that G-actin-CuI is more thermally stable than the ligand-free form. CuI dose-dependently inhibited the polymerization of F-actin in vitro and disrupted actin filaments in endothelial cells. Docking and MD simulations suggested that CuI binds to the binding site formed by residues I136, I175, D154, and A138 that are at the interface of monomers in F-actin. The migration ability of cells treated with CuI for 24 h was significantly lower than the control group (p < .001). This study reveals the molecular mechanisms of CuI in the regulation of actin dynamics by binding G-actin. More importantly, this study indicates a novel role of CuI as an actin-targeting drug by binding directly to G-actin and may contribute to the mode of action of CuI on anticancer activities.

7.
Mol Cell Endocrinol ; 579: 112087, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37827228

RESUMEN

Sex-steroid signaling, especially estrogen, has a paradoxical impact on regulating airway remodeling. In our previous studies, we demonstrated differential effects of 17ß-estradiol (E2) towards estrogen receptors (ERs: α and ß) in regulating airway smooth muscle (ASM) cell proliferation and extracellular matrix (ECM) production. However, the role of ERs and their signaling on ASM migration is still unexplored. In this study, we examined how ERα versus ERß affects the mitogen (Platelet-derived growth factor, PDGF)-induced human ASM cell migration as well as the underlying mechanisms involved. We used Lionheart-FX automated microscopy and transwell assays to measure cell migration and found that activating specific ERs had differential effects on PDGF-induced ASM cell migration. Pharmacological activation of ERß or shRNA mediated knockdown of ERα and specific activation of ERß blunted PDGF-induced cell migration. Furthermore, specific ERß activation showed inhibition of actin polymerization by reducing the F/G-actin ratio. Using Zeiss confocal microscopy coupled with three-dimensional algorithmic ZEN-image analysis showed an ERß-mediated reduction in PDGF-induced expressions of neural Wiskott-Aldrich syndrome protein (N-WASP) and actin-related proteins-2/3 (Arp2/3) complex, thereby inhibiting actin-branching and lamellipodia. In addition, ERß activation also reduces the clustering of actin-binding proteins (vinculin and paxillin) at the leading edge of ASM cells. However, cells treated with E2 or ERα agonists do not show significant changes in actin/lamellipodial dynamics. Overall, these findings unveil the significance of ERß activation in regulating lamellipodial and focal adhesion dynamics to regulate ASM cell migration and could be a novel target to blunt airway remodeling.


Asunto(s)
Receptor alfa de Estrógeno , Receptores de Estrógenos , Humanos , Receptores de Estrógenos/metabolismo , Receptor alfa de Estrógeno/metabolismo , Actinas/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Adhesiones Focales/metabolismo , Seudópodos/metabolismo , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Movimiento Celular , Miocitos del Músculo Liso/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología
8.
mBio ; : e0282223, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38014993

RESUMEN

IMPORTANCE: Mitochondria constitute major sources of H2O2 and other reactive oxygen species in eukaryotic cells. The division of these organelles is crucial for multiple processes in cell biology and relies on highly regulated mechano-GTPases that are oligomerization dependent and belong to the dynamin-related protein family, like A. nidulans DnmA. Our previous work demonstrated that H2O2 induces mitochondrial constriction, division, and remodeling of the outer membrane. Here, we show that H2O2 also induces a DnmA aggregation consistent with higher-order oligomerization and its recruitment to mitochondria. The study of this response uncovered that H2O2 induces the depolymerization and reorganization of actin as well as the critical role that cysteines 450 and 776 play in DnmA function. Our results provide new insights into the mechanisms of reactive oxygen species cell signaling and how they can regulate the dynamics of the actin cytoskeleton and the division of mitochondria and peroxisomes.

9.
Cancer Lett ; 565: 216207, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37141984

RESUMEN

LIMK2, a serine-specific kinase, was discovered as an actin dynamics regulating kinase. Emerging studies have shown its pivotal role in numerous human malignancies and neurodevelopmental disorder. Inducible knockdown of LIMK2 fully reverses tumorigenesis, underscoring its potential as a clinical target. However, the molecular mechanisms leading to its upregulation and its deregulated activity in various diseases largely remain unknown. Similarly, LIMK2's peptide substrate specificity has not been analyzed. This is particularly important for LIMK2, a kinase almost three decades old, as only a handful of its substrates are known to date. As a result, most of LIMK2's physiological and pathological roles have been assigned to its regulation of actin dynamics via cofilin. This review focuses on LIMK2's unique catalytic mechanism, substrate specificity and its upstream regulators at transcriptional, post-transcriptional and post-translational stages. Moreover, emerging studies have unveiled a few tumor suppressors and oncogenes as LIMK2's direct substrates, which in turn have uncovered novel molecular mechanisms by which it plays pleiotropic roles in human physiology and pathologies independent of actin dynamics.


Asunto(s)
Actinas , Proteínas Serina-Treonina Quinasas , Humanos , Actinas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/fisiología , Factores Despolimerizantes de la Actina/metabolismo , Procesamiento Proteico-Postraduccional , Quinasas Lim/genética
10.
Cytoskeleton (Hoboken) ; 80(9-10): 330-355, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37066976

RESUMEN

Actin is an abundant and multifaceted protein in eukaryotic cells that has been detected in the cytoplasm as well as in the nucleus. In cooperation with numerous interacting accessory-proteins, monomeric actin (G-actin) polymerizes into microfilaments (F-actin) which constitute ubiquitous subcellular higher order structures. Considering the extensive spatial dimensions and multifunctionality of actin superarrays, the present study analyses the issue if and to what extent environmental stress factors, specifically ionizing radiation (IR) and reactive oxygen species (ROS), affect the cellular actin-entity. In that context, this review particularly surveys IR-response of fungi and plants. It examines in detail which actin-related cellular constituents and molecular pathways are influenced by IR and related ROS. This comprehensive survey concludes that the general integrity of the total cellular actin cytoskeleton is a requirement for IR-tolerance. Actin's functions in genome organization and nuclear events like chromatin remodeling, DNA-repair, and transcription play a key role. Beyond that, it is highly significant that the macromolecular cytoplasmic and cortical actin-frameworks are affected by IR as well. In response to IR, actin-filament bundling proteins (fimbrins) are required to stabilize cables or patches. In addition, the actin-associated factors mediating cellular polarity are essential for IR-survivability. Moreover, it is concluded that a cellular homeostasis system comprising ROS, ROS-scavengers, NADPH-oxidases, and the actin cytoskeleton plays an essential role here. Consequently, besides the actin-fraction which controls crucial genome-integrity, also the portion which facilitates orderly cellular transport and polarized growth has to be maintained in order to survive IR.

11.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36986453

RESUMEN

Over the years, carbazoles have been largely studied for their numerous biological properties, including antibacterial, antimalarial, antioxidant, antidiabetic, neuroprotective, anticancer, and many more. Some of them have gained great interest for their anticancer activity in breast cancer due to their capability in inhibiting essential DNA-dependent enzymes, namely topoisomerases I and II. With this in mind, we studied the anticancer activity of a series of carbazole derivatives against two breast cancer cell lines, namely the triple negative MDA-MB-231 and MCF-7 cells. Compounds 3 and 4 were found to be the most active towards the MDA-MB-231 cell line without interfering with the normal counterpart. Using docking simulations, we assessed the ability of these carbazole derivatives to bind human topoisomerases I and II and actin. In vitro specific assays confirmed that the lead compounds selectively inhibited the human topoisomerase I and interfered with the normal organization of the actin system, triggering apoptosis as a final effect. Thus, compounds 3 and 4 are strong candidates for further drug development in multi-targeted therapy for the treatment of triple negative breast cancer, for which safe therapeutic regimens are not yet available.

12.
Cells ; 12(5)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36899941

RESUMEN

LIM kinase 1 (LIMK1) and LIM kinase 2 (LIMK2) are serine/threonine and tyrosine kinases and the only two members of the LIM kinase family. They play a crucial role in the regulation of cytoskeleton dynamics by controlling actin filaments and microtubule turnover, especially through the phosphorylation of cofilin, an actin depolymerising factor. Thus, they are involved in many biological processes, such as cell cycle, cell migration, and neuronal differentiation. Consequently, they are also part of numerous pathological mechanisms, especially in cancer, where their involvement has been reported for a few years and has led to the development of a wide range of inhibitors. LIMK1 and LIMK2 are known to be part of the Rho family GTPase signal transduction pathways, but many more partners have been discovered over the decades, and both LIMKs are suspected to be part of an extended and various range of regulation pathways. In this review, we propose to consider the different molecular mechanisms involving LIM kinases and their associated signalling pathways, and to offer a better understanding of their variety of actions within the physiology and physiopathology of the cell.


Asunto(s)
Citoesqueleto , Quinasas Lim , Quinasas Lim/metabolismo , Fosforilación , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Diferenciación Celular
13.
Development ; 150(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36897576

RESUMEN

Actin dynamics play an important role in tissue morphogenesis, yet the control of actin filament growth takes place at the molecular level. A challenge in the field is to link the molecular function of actin regulators with their physiological function. Here, we report an in vivo role of the actin-capping protein CAP-1 in the Caenorhabditis elegans germline. We show that CAP-1 is associated with actomyosin structures in the cortex and rachis, and its depletion or overexpression led to severe structural defects in the syncytial germline and oocytes. A 60% reduction in the level of CAP-1 caused a twofold increase in F-actin and non-muscle myosin II activity, and laser incision experiments revealed an increase in rachis contractility. Cytosim simulations pointed to increased myosin as the main driver of increased contractility following loss of actin-capping protein. Double depletion of CAP-1 and myosin or Rho kinase demonstrated that the rachis architecture defects associated with CAP-1 depletion require contractility of the rachis actomyosin corset. Thus, we uncovered a physiological role for actin-capping protein in regulating actomyosin contractility to maintain reproductive tissue architecture.


Asunto(s)
Actomiosina , Caenorhabditis elegans , Animales , Actomiosina/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Actinas/metabolismo , Proteínas de Capping de la Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , Células Germinativas/metabolismo
14.
Mol Med Rep ; 27(3)2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36734265

RESUMEN

Receptor­binding cancer antigen expressed on SiSo cells (RCAS1) is a tumor­associated antigen that is expressed in a number of human malignancies. RCAS1 acts as a ligand for a putative RCAS1 receptor that is present on various human cells including T and B lymphocytes and natural killer cells, in which it induces cell growth inhibition and apoptosis. It has been suggested that RCAS1 might serve an important role in tumor cell evasion from the host immune system. In fact, RCAS1 expression is related to malignant characteristics including tumor size, invasion depth, clinical stage and poor overall survival. The authors previously established doxycycline­induced RCAS1 overexpression murine fibroblast L cells to analyze the biological functions of RCAS1 and reported that its expression inhibited cell cycle progression via the downregulation of cyclin D3, which subsequently induced apoptosis. Additionally, it was found that RCAS1 expression induced cell morphological changes prior to caspase­mediated apoptosis. Thus, the present study examined signaling pathways associated with changes in cell morphology that were induced by RCAS1 expression. The data showed that increased RCAS1 expression caused a reduction in actin stress fibers and decreased cofilin phosphorylation. Recent studies have shown that p38 signaling regulates actin polymerization. The data the present study showed that increased RCAS1 expression significantly decreased p38 phosphorylation.


Asunto(s)
Actinas , Antígenos de Neoplasias , Neoplasias , Animales , Ratones , Actinas/metabolismo , Antígenos de Neoplasias/metabolismo , Fibroblastos/metabolismo , Fosforilación
15.
Microbiol Spectr ; : e0518922, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36779726

RESUMEN

The actin rearrangement-inducing factor 1 (Arif-1) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an early viral protein that manipulates the actin cytoskeleton of host insect cells. Arif-1 is conserved among alphabaculoviruses and is responsible for the accumulation of F-actin at the plasma membrane during the early phase of infection. However, the molecular mechanism underlying Arif-1-induced cortical actin accumulation is still open. Recent studies have demonstrated the formation of invadosome-like structures induced by Arif-1, suggesting a function in systemic virus spread. Here, we addressed whether Arif-1 is able to manipulate the actin cytoskeleton of mammalian cells comparably to insect cells. Strikingly, transient overexpression of Arif-1 in B16-F1 mouse melanoma cells revealed pronounced F-actin remodeling. Actin assembly was increased, and intense membrane ruffling occurred at the expense of substrate-associated lamellipodia. Deletion mutagenesis studies of Arif-1 confirmed that the C-terminal cytoplasmic region was not sufficient to induce F-actin remodeling, supporting that the transmembrane region for Arif-1 function is also required in mammalian cells. The similarities between Arif-1-induced actin remodeling in insect and mammalian cells indicate that Arif-1 function relies on conserved cellular interaction partners and signal transduction pathways, thus providing an experimental tool to elucidate the underlying mechanism. IMPORTANCE Virus-induced changes of the host cell cytoskeleton play a pivotal role in the pathogenesis of viral infections. The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is known for intervening with the regulation of the host actin cytoskeleton in a wide manner throughout the infection cycle. The actin rearrangement-inducing factor 1 (Arif-1) is a viral protein that causes actin rearrangement during the early phase of AcMNPV infection. Here, we performed overexpression studies of Arif-1 in mammalian cells to establish an experimental tool that allows elucidation of the mechanism underlying the Arif-1-induced remodeling of actin dynamics in a well-characterized and genetically accessible system.

16.
Adv Sci (Weinh) ; 10(9): e2204896, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36691769

RESUMEN

Vesicle trafficking has emerged as an important process driving tumor progression through various mechanisms. Transforming growth factor beta (TGFß)-mediated secretion of Angiopoietin-like 4 (ANGPTL4) is important for cancer development. Here, Formin-like 2 (FMNL2) is identified to be necessary for ANGPTL4 trafficking and secretion in response to TGFß. Protein kinase C (PKC)-dependent phosphorylation of FMNL2 downstream of TGFß stimulation is required for cancer cell invasion as well as ANGPTL4 vesicle trafficking and secretion. Moreover, using super resolution microscopy, ANGPTL4 trafficking is actin-dependent with FMNL2 directly polymerizing actin at ANGPTL4-containing vesicles, which are associated with Rab8a and myosin Vb. This work uncovers a formin-controlled mechanism that transiently polymerizes actin directly at intracellular vesicles to facilitate their mobility. This mechanism may be important for the regulation of cancer cell metastasis and tumor progression.


Asunto(s)
Actinas , Factor de Crecimiento Transformador beta , Actinas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Forminas , Proteína 4 Similar a la Angiopoyetina
17.
Front Oncol ; 12: 1059513, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36568222

RESUMEN

The finely tuned integration of intra- and extracellular cues by components of the mitogen-activated protein kinase (MAPK) signaling pathways controls the mutually exclusive phenotypic manifestations of uncontrolled growth and tumor cell dissemination. The Ser/Thr kinase MAP4K4 is an upstream integrator of extracellular cues involved in both proliferation and cell motility control. Initially identified as an activator of the c-Jun N-terminal kinase (JNK), the discovery of diverse functions and additional effectors of MAP4K4 beyond JNK signaling has considerably broadened our understanding of this complex kinase. The implication of MAP4K4 in the regulation of cytoskeleton dynamics and cell motility provided essential insights into its role as a pro-metastatic kinase in cancer. However, the more recently revealed role of MAP4K4 as an activator of the Hippo tumor suppressor pathway has complicated the understanding of MAP4K4 as an oncogenic driver kinase. To develop a better understanding of the diverse functions of MAP4K4 and their potential significance in oncogenesis and tumor progression, we have collected and assessed the current evidence of MAP4K4 implication in molecular mechanisms that control proliferation and promote cell motility. A better understanding of these mechanisms is particularly relevant in the brain, where MAP4K4 is highly expressed and under pathological conditions either drives neuronal cell death in neurodegenerative diseases or cell dissemination in malignant tumors. We review established effectors and present novel interactors of MAP4K4, which offer mechanistic insights into MAP4K4 function and may inspire novel intervention strategies. We discuss possible implications of novel interactors in tumor growth and dissemination and evaluate potential therapeutic strategies to selectively repress pro-oncogenic functions of MAP4K4.

18.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35806028

RESUMEN

Due to its essential role in cellular processes, actin is a common target for bacterial toxins. One such toxin, TccC3, is an effector domain of the ABC-toxin produced by entomopathogenic bacteria of Photorhabdus spp. Unlike other actin-targeting toxins, TccC3 uniquely ADP-ribosylates actin at Thr-148, resulting in the formation of actin aggregates and inhibition of phagocytosis. It has been shown that the fully modified F-actin is resistant to depolymerization by cofilin and gelsolin, but their effects on partially modified actin were not explored. We found that only F-actin unprotected by tropomyosin is the physiological TccC3 substrate. Yet, ADP-ribosylated G-actin can be produced upon cofilin-accelerated F-actin depolymerization, which was only mildly inhibited in partially modified actin. The affinity of TccC3-ADP-ribosylated G-actin for profilin and thymosin-ß4 was weakened moderately but sufficiently to potentiate spontaneous polymerization in their presence. Interestingly, the Arp2/3-mediated nucleation was also potentiated by T148-ADP-ribosylation. Notably, even partially modified actin showed reduced bundling by plastins and α-actinin. In agreement with the role of these and other tandem calponin-homology domain actin organizers in the assembly of the cortical actin network, TccC3 induced intense membrane blebbing in cultured cells. Overall, our data suggest that TccC3 imposes a complex action on the cytoskeleton by affecting F-actin nucleation, recycling, and interaction with actin-binding proteins involved in the integration of actin filaments with each other and cellular elements.


Asunto(s)
Photorhabdus , ADP Ribosa Transferasas/química , Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Adenosina Difosfato/metabolismo
19.
Cancers (Basel) ; 14(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35454871

RESUMEN

The RHO GTPases comprise a subfamily within the RAS superfamily of small GTP-hydrolyzing enzymes and have primarily been ascribed roles in regulation of cytoskeletal dynamics in eukaryotic cells. An oncogenic role for the RHO GTPases has been disregarded, as no activating point mutations were found for genes encoding RHO GTPases. Instead, dysregulated expression of RHO GTPases and their regulators have been identified in cancer, often in the context of increased tumor cell migration and invasion. In the new landscape of cancer genomics, activating point mutations in members of the RHO GTPases have been identified, in particular in RAC1, RHOA, and CDC42, which has suggested that RHO GTPases can indeed serve as oncogenes in certain cancer types. This review describes the current knowledge of these cancer-associated mutant RHO GTPases, with a focus on how their altered kinetics can contribute to cancer progression.

20.
Am J Med Genet A ; 188(3): 970-977, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862840

RESUMEN

Nemaline Myopathy (NM) is a disorder of skeletal muscles caused by mutations in sarcomere proteins and characterized by accumulation of microscopic rod or thread-like structures (nemaline bodies) in skeletal muscles. Patients diagnosed with both NM and infantile cardiomyopathy are very rare. A male infant presented, within the first few hours of life, with severe dilated cardiomyopathy, biventricular dysfunction and left ventricular noncompaction. A muscle biopsy on the 8th day of life from the right sternocleidomastoid muscle identified nemaline rods. Whole exome sequencing identified a c.1288 delT (homozygous pathogenic variant) in the CAP2 gene (NM_006366), yielding a CAP2 protein (NP_006357.1) with a p.C430fs. Both parents were heterozygous for the same variant but have no history of heart or muscle disease. Analysis of patient derived fibroblasts and cardiomyocytes derived from induced pluripotent stem cells confirmed the p.C430fs mutation (pathogenic variant), which appears to cause loss of both CAP2 protein and mRNA. The CAP2 gene encodes cyclase associated protein 2, an actin monomer binding and filament depolymerizing protein and CAP2 knockout mice develop severe dilated cardiomyopathy and muscle weakness. The patient underwent a heart transplant at 1 year of age. Heart tissue explanted at that time also showed nemaline rods and additionally disintegration of the myofibrillar structure. Other extra cardiac concerns include mild hypotonia, atrophic and widened scarring. This is the first description of a patient presenting with nemaline myopathy associated with a pathogenic variant of CAP2.


Asunto(s)
Cardiomiopatía Dilatada , Miopatías Nemalínicas , Proteínas Adaptadoras Transductoras de Señales/genética , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , Homocigoto , Humanos , Recién Nacido , Masculino , Proteínas de la Membrana/genética , Músculo Esquelético/patología , Mutación , Miopatías Nemalínicas/diagnóstico , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA