Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.428
Filtrar
1.
Wiley Interdiscip Rev RNA ; 15(4): e1864, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39087253

RESUMEN

A considerable proportion of the eukaryotic genome undergoes transcription, leading to the generation of noncoding RNA molecules that lack protein-coding information and are not subjected to translation. These noncoding RNAs (ncRNAs) are well recognized to have essential roles in several biological processes. Long noncoding RNAs (lncRNAs) represent the most extensive category of ncRNAs found in the human genome. Much research has focused on investigating the roles of cis-acting lncRNAs in the regulation of specific target gene expression. In the majority of instances, the regulation of sense gene expression by its corresponding antisense pair occurs in a negative (discordant) manner, resulting in the suppression of the target genes. The notion that a negative correlation exists between sense and antisense pairings is, however, not universally valid. In fact, several recent studies have reported a positive relationship between corresponding cis antisense pairs within plants, budding yeast, and mammalian cancer cells. The positive (concordant) correlation between anti-sense and sense transcripts leads to an increase in the level of the sense transcript within the same genomic loci. In addition, mechanisms such as altering chromatin structure, the formation of R loops, and the recruitment of transcription factors can either enhance transcription or stabilize sense transcripts through their antisense pairs. The primary objective of this work is to provide a comprehensive understanding of both aspects of antisense regulation, specifically focusing on the positive correlation between sense and antisense transcripts in the context of eukaryotic gene expression, including its implications towards cancer progression. This article is categorized under: RNA Processing > 3' End Processing Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.


Asunto(s)
Regulación de la Expresión Génica , Humanos , Animales , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
2.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39126066

RESUMEN

Pathogenic variations in the fused in sarcoma (FUS) gene are associated with rare and aggressive forms of amyotrophic lateral sclerosis (ALS). As FUS-ALS is a dominant disease, a targeted, allele-selective approach to FUS knockdown is most suitable. Antisense oligonucleotides (AOs) are a promising therapeutic platform for treating such diseases. In this study, we have explored the potential for allele-selective knockdown of FUS. Gapmer-type AOs targeted to two common neutral polymorphisms in FUS were designed and evaluated in human fibroblasts. AOs had either methoxyethyl (MOE) or thiomorpholino (TMO) modifications. We found that the TMO modification improved allele selectivity and efficacy for the lead sequences when compared to the MOE counterparts. After TMO-modified gapmer knockdown of the target allele, up to 93% of FUS transcripts detected were from the non-target allele. Compared to MOE-modified AOs, the TMO-modified AOs also demonstrated reduced formation of structured nuclear inclusions and SFPQ aggregation that can be triggered by phosphorothioate-containing AOs. How overall length and gap length of the TMO-modified AOs affected allele selectivity, efficiency and off-target gene knockdown was also evaluated. We have shown that allele-selective knockdown of FUS may be a viable therapeutic strategy for treating FUS-ALS and demonstrated the benefits of the TMO modification for allele-selective applications.


Asunto(s)
Alelos , Esclerosis Amiotrófica Lateral , Oligonucleótidos Antisentido , Proteína FUS de Unión a ARN , Humanos , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos Antisentido/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/terapia , Proteína FUS de Unión a ARN/genética , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Morfolinos/uso terapéutico , Morfolinos/genética
3.
Clin Mol Hepatol ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39098817

RESUMEN

Background/Aims: Potassium channel tetramerization domain containing 17 (KCTD17) protein, an adaptor for the cullin3 (Cul3) ubiquitin ligase complex, has been implicated in various human diseases; however, its role in hepatocellular carcinoma (HCC) remains elusive. Here, we aimed to elucidate the clinical features of KCTD17, and investigate the mechanisms by which KCTD17 affects HCC progression. Methods: We analyzed transcriptomic data from patients with HCC. Hepatocyte-specific KCTD17 deficient mice were treated with diethylnitrosamine (DEN) to assess its effect on HCC progression. Additionally, we tested KCTD17-directed antisense oligonucleotides for their therapeutic potential in vivo. Results: Our investigation revealed the upregulation of KCTD17 expression in both tumors from patients with HCC and mouse models of HCC, in comparison to non-tumor controls. We identified the leucine zipper-like transcriptional regulator 1 (Lztr1) protein, a previously identified Ras destabilizer, as a substrate for KCTD17-Cul3 complex. KCTD17-mediated Lztr1 degradation led to Ras stabilization, resulting in increased proliferation, migration, and wound healing in liver cancer cells. Hepatocyte-specific KCTD17 deficient mice or liver cancer xenograft models were less susceptible to carcinogenesis or tumor growth. Similarly, treatment with KCTD17-directed antisense oligonucleotides (ASO) in a mouse model of HCC markedly lowered tumor volume as well as Ras protein levels, compared to those in control ASO-treated mice. Conclusions: KCTD17 induces the stabilization of Ras and downstream signaling pathways and HCC progression and may represent a novel therapeutic target for HCC.

4.
BMC Vet Res ; 20(1): 344, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097704

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) induces a poor innate immune response following infection. This study evaluates the effects of transforming growth factor beta 1 (TGFß1) up-regulated by PRRSV on gene expressions of co-stimulatory molecules, type I interferon (IFN), type I IFN-regulated genes (IRGs), pattern recognition receptors, and pro-inflammatory cytokines in PRRSV-inoculated monocyte-derived macrophages (MDMs). Phosphorothioate-modified antisense oligodeoxynucleotides (AS ODNs) specific to various regions of porcine TGFß1 mRNA were synthesized, and those specific to the AUG region efficiently knockdown TGFß1 mRNA expression and protein translation. Transfection of TGFßAS ODNs in MDMs inoculated with either classical PRRSV-2 (cPRRSV-2) or highly pathogenic PRRSV-2 (HP-PRRSV-2) significantly reduced TGFß1 mRNA expression and significantly increased mRNA expressions of CD80, CD86, IFNß, IRGs (i.e. IFN regulatory factor 3 (IRF3), IRF7, myxovirus resistance 1, osteopontin, and stimulator of IFN genes), Toll-like receptor 3, and tumor necrosis factor-alpha. Transfection of TGFßAS ODNs in MDMs inoculated with HP-PRRSV-2 also significantly increased mRNA expressions of IFNα, IFNγ, and 2'-5'-oligoadenylate synthetase 1. The quantity of PRRSV-2 RNA copy numbers was significantly reduced in MDMs transfected with TGFßAS ODNs as compared to untransfected MDMs. Recombinant porcine TGFß1 (rTGFß1) and recombinant porcine IFNα (rIFNα) sustained and reduced the yields of PRRSV-2 RNA copy numbers in PRRSV-2 inoculated MDMs, respectively. These findings demonstrate a strategy of PRRSV for innate immune suppression via an induction of TGFß expression. These findings also suggest TGFß as a potential parameter that future PRRSV vaccine and vaccine adjuvant candidates should take into consideration.


Asunto(s)
Citocinas , Interferón Tipo I , Macrófagos , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Porcinos , Interferón Tipo I/metabolismo , Citocinas/genética , Citocinas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/virología , Macrófagos/inmunología , Macrófagos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Regulación de la Expresión Génica/efectos de los fármacos , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Técnicas de Silenciamiento del Gen , Inmunidad Innata
5.
Transl Androl Urol ; 13(7): 1188-1205, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39100837

RESUMEN

Background: Adrenocortical carcinoma (ACC) is a rare and highly aggressive malignant tumor. Currently, there is a lack of reliable prognostic markers in clinical practice. Extensive research has shown that long non-coding RNA (lncRNA) are critical factors in the initiation and progression of cancer, closely associated with early diagnosis and prognosis. Previous studies have identified that ZFHX4 antisense RNA 1 (ZFHX4-AS1) is aberrantly expressed in various cancers and is associated with poor outcomes. This study investigates whether ZFHX4-AS1 affects the prognosis of ACC patients and, if so, the potential mechanisms involved. Methods: In this study, utilizing four multi-center cohorts from The Cancer Genome Atlas (TCGA) program and Gene Expression Omnibus (GEO), we validated the prognostic capability of ZFHX4-AS1 in ACC patients through Kaplan-Meier survival analysis, cox regression models, and nomograms. Then, we explored the biological functions of ZFHX4-AS1 using gene set enrichment analysis (GSEA), competing endogenous RNA (ceRNA) networks, and analyses of somatic mutations and copy number variation (CNV). Finally, in vitro experiments were conducted to further validate the impact of ZFHX4-AS1 on proliferation and migration capabilities of ACC cell lines. Results: Survival analysis indicated that patients in the high ZFHX4-AS1 expression group of ACC had worse prognosis. Cox regression analyses suggested that ZFHX4-AS1 levels were independent risk factors for prognosis. Subsequently, we constructed nomograms based on clinical features and ZFHX4-AS1 levels, demonstrating good predictive performance under the time-dependent receiver operating characteristic (ROC) curve. Analysis based on somatic mutations and CNV revealed that CTNNB1 and 9p21.3-Del drove the expression of ZFHX4-AS1. Cell Counting Kit-8 (CCK-8), colony formation, and Transwell assays confirmed that knockdown of ZFHX4-AS1 inhibited proliferation and migration of ACC cells. Conclusions: This study demonstrates that ZFHX4-AS1 has a reliable predictive value for the prognosis of ACC patients and is a promising biomarker.

6.
Int J Biol Macromol ; 277(Pt 4): 134515, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39106627

RESUMEN

Spherical nucleic acids (SNAs) are nanostructures with the DNA arranged radially on the surface, thus allowing specific binding with cancer cells expressing high levels of scavenger receptor-A to enhance cellular uptake. However, conventional carriers for SNAs are cytotoxic, not degradable and difficult to deliver multiple payloads. In this study, we developed charge-reversible coordination-crosslinked SNAs to deliver dual anti-cancer genes and ferroptosis payload for anti-cancer purposes. To this end, we modified poly(lactic acid) (PLA) with functionalized side chains to allow its binding with antisense oligonucleotides (ASOs) and siRNA, annealed two single-stranded RNAs to obtain double-stranded RNA, and introduced a polyethylene glycol (PEG) shell to enhance the circulation time. Additionally, the ferroptosis payload imidazole was coordinated with iron ions as a core-crosslinked group to enhance the stability of SNAs and efficiency to kill cancer cells. We demonstrated that this novel nanocomplex efficiently internalized and killed CT-26 cells in vitro. In vivo data confirmed that the dual gene delivery system successfully targeted CT-26 tumors in tumor-bearing BALB/c mice, and exhibited strong tumor suppression ability, without inducing adverse toxic effects. Taken together, our dual gene therapy system offered an enhanced anti-tumor solution by simultaneously delivering dual anti-cancer genes and ferroptosis payload in tumor microenvironment.

7.
Mol Ther Nucleic Acids ; 35(2): 102161, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38978695

RESUMEN

An increasing number of antisense oligonucleotides (ASOs) have been approved for clinical use. However, improvements of both efficacy and safety in the central nervous system (CNS) are crucial for the treatment with CNS diseases. We aimed to overcome the crucial issues by our development of various gapmer ASOs with a novel nucleoside derivative including a 2',4'-BNA/LNA with 9-(aminoethoxy)phenoxazine (BNAP-AEO). The various gapmer ASOs with BNAP-AEO were evaluated for thermal stability, in vitro and in vivo efficacy, and acute CNS toxicity. Thermal stability analysis of the duplexes with their complementary RNAs showed that ASOs with BNAP-AEO had a higher binding affinity than those without BNAP-AEO. In vitro assays, when transfected into neuroblastoma cell lines, demonstrated that ASOs with BNAP-AEO, had a more efficient gene silencing effect than those without BNAP-AEO. In vivo assays, involving intracerebroventricular injections into mice, revealed ASOs with BNAP-AEO potently suppressed gene expression in the brain. Surprisingly, the acute CNS toxicity in mice, as assessed through open field tests and scoring systems, was significantly lower for ASOs with BNAP-AEO than for those without BNAP-AEO. This study underscores the efficient gene-silencing effect and low acute CNS toxicity of ASOs incorporating BNAP-AEO, indicating the potential for future therapeutic applications.

8.
Transl Cancer Res ; 13(6): 3142-3155, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988912

RESUMEN

Background and Objective: Long noncoding RNAs (lncRNAs) are involved in a wide variety of physiological and pathological processes in organisms. LncRNAs play a significant role as oncogenic or tumour-suppressing factors in various biological processes associated with malignant tumours and are closely linked to the occurrence and development of malignancies. Lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1) is a recently discovered lncRNA. It is upregulated in various malignant tumours and is associated with pathological characteristics such as tumour size, tumour node metastasis (TNM) staging, lymph node metastasis, and tumour prognosis. LOXL1-AS1 exerts its oncogenic role by competitively binding with multiple microRNAs (miRs), thereby regulating the expression of downstream target genes and controlling relevant signalling pathways. This article aims to explore the structure and the function of LOXL1-AS1, and the relationship between LOXL1-AS1 and the occurrence and development of human malignant tumours to provide a reference for further clinical research. Methods: English literature on LOXL1-AS1 in the occurrence and development of various malignant tumours was searched in PubMed. The main search terms were "LOXL1-AS1", "tumour". Key Content and Findings: This article mainly summarizes the biological processes in which LOXL1-AS1 is involved in various human malignant tumours and the ways in which this lncRNA affects malignant biological behaviours such as proliferation, metastasis, invasion, and apoptosis of tumour cells through different molecular regulatory mechanisms. This article also explores the potential clinical significance and application prospects of LOXL1-AS1, aiming to provide a theoretical basis and reference for the clinical diagnosis, treatment, and screening of prognostic markers for malignant tumours. Conclusions: LOXL1-AS1 acts as a competing endogenous RNA (ceRNA), binding to miRs to regulate downstream target genes and exert its oncogenic effects. LOXL1-AS1 may become a novel molecular biomarker for cancer diagnosis and treatment in humans, and it may also serve as an independent prognostic indicator.

9.
Oncol Lett ; 28(2): 394, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38966577

RESUMEN

Long non-coding RNAs, such as homeobox A cluster antisense RNA2 (HOXA-AS2) are understood to be involved in tumor growth and development of numerous cancers. However, the role of HOXA-AS2 in the progression of human epithelial ovarian cancer (EOC) remains unclear. In the present study, the expression of HOXA-AS2 was found to be upregulated in EOC tissues compared with noncancerous tissues, and to be strongly correlated to an advanced Federation International of Gynecology and Obstetrics grade and poor prognosis. Knockdown of HOXA-AS2 in the EOC cells inhibited cell proliferation, invasion and migration, as well as inducing cell apoptosis. The ENCORI database was used to screen the microRNAs (miRNAs/miRs) that bound to HOXA-AS2, and one was tested using RNA pull-down and luciferase reporter assays. It was demonstrated that HOXA-AS2 functioned through the competing endogenous RNA mechanism to regulate miR-372. It was also demonstrated that the downregulation of miR-372 reversed the inhibitory effects of the knockdown of HOXA-AS2 in EOC cells. These results indicated that HOXA-AS2 promoted EOC progression by regulating the miR-372, which suggests that HOXA-AS2 may be a therapy target for EOC.

10.
Bioorg Med Chem ; 110: 117814, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38981217

RESUMEN

Oligonucleotide therapeutics, particularly antisense oligonucleotides (ASOs), have emerged as promising candidates in drug discovery. However, their effective delivery to the target tissues and cells remains a challenge, necessitating the development of suitable drug delivery technologies for ASOs to enable their practical application. In this study, we synthesized a library of chemically modified dipeptide-ASO conjugates using a recent synthetic method based on the Ugi reaction. We then conducted in vitro screening of this library using luciferase-expressing cell lines to identify ligands capable of enhancing ASO activity. Our findings suggest that N-(4-nitrophenoxycarbonyl)glycine may interact with the thiophosphate moiety of the phosphorothioate-modification in ASO. Through our screening efforts, we identified two ligands that modestly reduced luciferase luminescence in a cell type-selective manner. Furthermore, quantification of luciferase mRNA levels revealed that one of these promising dipeptide-ASO conjugates markedly suppressed luciferase RNA levels through its antisense effect in prostate-derived DU-145 cells compared to the ASOs without ligand modification.


Asunto(s)
Dipéptidos , Oligonucleótidos Antisentido , Dipéptidos/química , Dipéptidos/síntesis química , Dipéptidos/farmacología , Humanos , Ligandos , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/síntesis química , Oligonucleótidos Antisentido/farmacología , Línea Celular Tumoral , Estructura Molecular , Relación Estructura-Actividad , Luciferasas/metabolismo , Luciferasas/genética , Relación Dosis-Respuesta a Droga
11.
Bioorg Chem ; 150: 107595, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38968904

RESUMEN

Combined therapies play a key role in the fight against complex pathologies, such as cancer and related drug-resistance issues. This is particularly relevant in targeted therapies where inhibition of the drug target can be overcome by cross-activating complementary pathways. Unfortunately, the drug combinations approved to date -mostly based on small molecules- face several problems such as toxicity effects, which limit their clinical use. To address these issues, we have designed a new class of RNase H-sensitive construct (3ASO) that can be disassembled intracellularly upon cell entry, leading to the simultaneous release of three different therapeutic oligonucleotides (ONs), tackling each of them the mRNA of a different protein. Here, we used Escherichia coli RNase H1 as a model to study an unprecedented mode of recognition and cleavage, that is mainly dictated by the topology of our RNA·DNA-based hybrid construct. As a model system for our technology we have created 3ASO constructs designed to specifically inhibit the expression of HER2, Akt and Hsp27 in HER2+ breast cancer cells. These trifunctional ON tools displayed very low toxicity and good levels of antiproliferative activity in HER2+ breast cancer cells. The present study will be of great potential in the fight against complex pathologies involving multiple mRNA targets, as the proposed cleavable designs will allow the efficient single-dose administration of different ON drugs simultaneously.


Asunto(s)
Proliferación Celular , Oligonucleótidos Antisentido , Ribonucleasa H , Ribonucleasa H/metabolismo , Ribonucleasa H/antagonistas & inhibidores , Humanos , Proliferación Celular/efectos de los fármacos , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Relación Estructura-Actividad , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Línea Celular Tumoral , Escherichia coli/efectos de los fármacos
12.
World J Surg Oncol ; 22(1): 201, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080678

RESUMEN

BACKGROUND: Cross-species horizontal gene transfer (HGT) involves the transfer of genetic material between different species of organisms. In recent years, mounting evidence has emerged that cross-species HGT does take place and may play a role in the development and progression of diseases. METHODS: Transcriptomic data obtained from patients with gallbladder cancer (GBC) was assessed for the differential expression of antisense RNAs (asRNAs). The Basic Local Alignment Search Tool (BLAST) was used for cross-species analysis with viral, bacterial, fungal, and ancient human genomes to elucidate the evolutionary cross species origins of these differential asRNAs. Functional enrichment analysis and text mining were conducted and a network of asRNAs targeting mRNAs was constructed to understand the function of differential asRNAs better. RESULTS: A total of 17 differentially expressed antisense RNAs (asRNAs) were identified in gallbladder cancer tissue compared to that of normal gallbladder. BLAST analysis of 15 of these asRNAs (AFAP1-AS1, HMGA2-AS1, MNX1-AS1, SLC2A1-AS1, BBOX1-AS1, ELFN1-AS1, TRPM2-AS, DNAH17-AS1, DCST1-AS1, VPS9D1-AS1, MIR1-1HG-AS1, HAND2-AS1, PGM5P4-AS1, PGM5P3-AS1, and MAGI2-AS) showed varying degree of similarities with bacterial and viral genomes, except for UNC5B-AS1 and SOX21-AS1, which were conserved during evolution. Two of these 15 asRNAs, (VPS9D1-AS1 and SLC2A1-AS1) exhibited a high degree of similarity with viral genomes (Chikungunya virus, Human immunodeficiency virus 1, Stealth virus 1, and Zika virus) and bacterial genomes including (Staphylococcus sp., Bradyrhizobium sp., Pasteurella multocida sp., and, Klebsiella pneumoniae sp.), indicating potential HGT during evolution. CONCLUSION: The results provide novel evidence supporting the hypothesis that differentially expressed asRNAs in GBC exhibit varying sequence similarity with bacterial, viral, and ancient human genomes, indicating a potential shared evolutionary origin. These non-coding genes are enriched with methylation and were found to be associated with cancer-related pathways, including the P53 and PI3K-AKT signaling pathways, suggesting their possible involvement in tumor development.


Asunto(s)
Neoplasias de la Vesícula Biliar , Transferencia de Gen Horizontal , Humanos , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/patología , Neoplasias de la Vesícula Biliar/virología , Carcinogénesis/genética , ARN sin Sentido/genética , Regulación Neoplásica de la Expresión Génica , Transcriptoma
13.
Life Sci ; 352: 122850, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901687

RESUMEN

AIMS: Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Nicotinamide phosphoribosyl-transferase (NAMPT) was found to be over-expressed in several cancers including CRC. NAMPT-Antisense (NAMPT-AS) is a novel long non-coding RNA (lncRNA) recently reported to be associated with triple negative breast cancer. However, its role in CRC has not been investigated. This study was designed to explore the role of lncRNA NAMPT-AS in CRC, and to investigate its circulating serum exosomal levels in subjects with/without CRC. MAIN METHODS: We analyzed CRC patients' data in The Cancer Genome Atlas (TCGA). LncRNA NAMPT-AS and NAMPT mRNA levels were measured in serum exosomes isolated from CRC patients and healthy control subjects and were also measured in CRC-tissues using qRT-PCR. Serum NAMPT protein levels were measured by ELISA, and immunohistochemical analyses were done for NAMPT and Ki67 in CRC tissues. KEY FINDINGS: Serum exosomal NAMPT-AS levels were found to be significantly higher in CRC patients compared to control subjects and significantly positively correlated with serum exosomal NAMPT mRNA and circulating NAMPT protein. Tissue NAMPT-AS was found to be significantly positively associated with tissue and serum exosomal NAMPT levels. Higher serum exosomal NAMPT-AS levels were found to be associated with higher susceptibility for CRC. Gene-ontology results and survival analysis of TCGA-data showed a potential classification of CRC samples based on NAMPT-AS levels and association of NAMPT-AS upregulation with poor CRC prognosis and survival. SIGNIFICANCE: These results portray NAMPT-AS as a novel potential diagnostic/prognostic biomarker and key molecular mediator in CRC.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Citocinas , Exosomas , Nicotinamida Fosforribosiltransferasa , ARN Largo no Codificante , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/diagnóstico , Nicotinamida Fosforribosiltransferasa/sangre , Nicotinamida Fosforribosiltransferasa/genética , ARN Largo no Codificante/sangre , ARN Largo no Codificante/genética , Femenino , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Masculino , Pronóstico , Exosomas/genética , Exosomas/metabolismo , Persona de Mediana Edad , Citocinas/sangre , Citocinas/genética , Anciano , Regulación Neoplásica de la Expresión Génica
14.
Heart Fail Clin ; 20(3): 343-352, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38844305

RESUMEN

Transthyretin amyloid cardiomyopathy (ATTR-CM) is a relatively prevalent cause of morbidity and mortality. Over the recent years, development of disease-modifying treatments has enabled stabilization of the circulating transthyretin tetramer and suppression of its hepatic production, resulting in a remarkable improvement in survival of patients with ATTR-CM. Second-generation drugs for silencing are currently under investigation in randomized clinical trials. In vivo gene editing of transthyretin has been achieving unanticipated suppression of hepatic production in ATTR-CM. Trials of antibodies inducing the active removal of transthyretin amyloid deposits in the heart are ongoing, and evidence has gathered for exceptional spontaneous regression of ATTR-CM.


Asunto(s)
Neuropatías Amiloides Familiares , Benzoxazoles , Cardiomiopatías , Prealbúmina , Humanos , Neuropatías Amiloides Familiares/tratamiento farmacológico , Neuropatías Amiloides Familiares/metabolismo , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/metabolismo , Benzoxazoles/uso terapéutico , Prealbúmina/metabolismo , Prealbúmina/genética
15.
Adv Biol (Weinh) ; : e2400042, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38880848

RESUMEN

Angiogenesis is the determining factor during dental pulp regeneration. Six-twelve leukemia (STL) is identified as a key regulatory factor on the biological function of dental pulp stem cells (DPSCs) under hypoxic conditions, but its effect on angiogenesis is unclear. Co-culture of DPSCs and human umbilical vein endothelial cells (HUVECs) is used to detect tubule formation ability in vitro and the angiogenesis ability in vivo. RNA-seq and bioinformatic analyses are performed to screen differentially expressed genes. Seahorse Cell Mito Stress Test is proceeded to exam mitochondrial respiration. STL decreased tubule formation and mitochondrial respiration of DPSCs in vitro and restrained the number of blood vessels and the expression of VEGF in new formed tissue in vivo. Furthermore, pretreating STL-depleted DPSCs with rotenone, a mitochondrial respiration inhibitor, counteracted the promoting effect of STL knockdown on tubule formation. Then, RNA-seq and bioinformatic analyses identified some angiogenesis relevant genes and pathways in STL-depleted DPSCs. And STL enhanced expression of mRNA-ring finger protein 217 (RNF217), which inhibited the tubule formation and mitochondrial respiration of DPSCs. STL inhibited the angiogenesis of DPSCs through depressing mitochondrial respiration by enhancing RNF217, indicating that STL is a potential target for angiogenesis of DPSCs.

16.
Dev Cell ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38878774

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing, highly heterogeneous neurodegenerative disease, underscoring the importance of obtaining information to personalize clinical decisions quickly after diagnosis. Here, we investigated whether ALS-relevant signatures can be detected directly from biopsied patient fibroblasts. We profiled familial ALS (fALS) fibroblasts, representing a range of mutations in the fused in sarcoma (FUS) gene and ages of onset. To differentiate FUS fALS and healthy control fibroblasts, machine-learning classifiers were trained separately on high-content imaging and transcriptional profiles. "Molecular ALS phenotype" scores, derived from these classifiers, captured a spectrum from disease to health. Interestingly, these scores negatively correlated with age of onset, identified several pre-symptomatic individuals and sporadic ALS (sALS) patients with FUS-like fibroblasts, and quantified "movement" of FUS fALS and "FUS-like" sALS toward health upon FUS ASO treatment. Taken together, these findings provide evidence that non-neuronal patient fibroblasts can be used for rapid, personalized assessment in ALS.

17.
Int J Biol Macromol ; 272(Pt 2): 132890, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38848829

RESUMEN

The lack of more effective therapies for breast cancer has enhanced mortality among breast cancer patients. Recent efforts have established efficient treatments to reduce breast cancer-related deaths. The ever-increasing attraction to employing biocompatible polysaccharide-based nanostructures as delivery systems has created interest in various disease therapies, especially breast cancer treatment. A wide range of therapeutic cargo comprising bioactive or chemical drugs, oligonucleotides, peptides, and targeted biomarkers have been considered to comprehend their anti-cancer effects against breast cancer. Some limitations of naked agents or undesired constructs, such as no or low bioavailability, enzymatic digestion, short-range stability, low-cellular uptake, poor solubility, and low surface area, have lessened their effectiveness. However, nanoscale formulations of therapeutic ingredients have provided a promising platform to address the mentioned concerns. For instance, some capable polysaccharides, including cellulose, pectin, chitosan, alginate, and dextran, were developed as breast cancer therapeutics with great nanoparticle structures. This review carefully examines the characteristics of beneficial polysaccharides that are utilized in the formation of nanoparticles (NPs). It also highlights the applications of antisense oligonucleotides (ASOs), and NPs made from polysaccharides in the treatment of breast cancer and suggests ways to enhance these particles for future research.


Asunto(s)
Neoplasias de la Mama , Nanoestructuras , Oligonucleótidos Antisentido , Polisacáridos , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/terapia , Polisacáridos/química , Femenino , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/uso terapéutico , Nanoestructuras/química , Sistemas de Liberación de Medicamentos , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Portadores de Fármacos/química , Nanopartículas/química
18.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891760

RESUMEN

Dysferlin is a large transmembrane protein involved in critical cellular processes including membrane repair and vesicle fusion. Mutations in the dysferlin gene (DYSF) can result in rare forms of muscular dystrophy; Miyoshi myopathy; limb girdle muscular dystrophy type 2B (LGMD2B); and distal myopathy. These conditions are collectively known as dysferlinopathies and are caused by more than 600 mutations that have been identified across the DYSF gene to date. In this review, we discuss the key molecular and clinical features of LGMD2B, the causative gene DYSF, and the associated dysferlin protein structure. We also provide an update on current approaches to LGMD2B diagnosis and advances in drug development, including splice switching antisense oligonucleotides. We give a brief update on clinical trials involving adeno-associated viral gene therapy and the current progress on CRISPR/Cas9 mediated therapy for LGMD2B, and then conclude by discussing the prospects of antisense oligomer-based intervention to treat selected mutations causing dysferlinopathies.


Asunto(s)
Disferlina , Terapia Genética , Distrofia Muscular de Cinturas , Mutación , Humanos , Distrofia Muscular de Cinturas/terapia , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/diagnóstico , Disferlina/genética , Disferlina/metabolismo , Terapia Genética/métodos , Oligonucleótidos Antisentido/uso terapéutico , Animales
19.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892231

RESUMEN

Aristolochia contorta Bunge is an academically and medicinally important plant species. It belongs to the magnoliids, with an uncertain phylogenetic position, and is one of the few plant species lacking a whole-genome duplication (WGD) event after the angiosperm-wide WGD. A. contorta has been an important traditional Chinese medicine material. Since it contains aristolochic acids (AAs), chemical compounds with nephrotoxity and carcinogenicity, the utilization of this plant has attracted widespread attention. Great efforts are being made to increase its bioactive compounds and reduce or completely remove toxic compounds. MicroRNAs (miRNAs) and natural antisense transcripts (NATs) are two classes of regulators potentially involved in metabolism regulation. Here, we report the identification and characterization of 223 miRNAs and 363 miRNA targets. The identified miRNAs include 51 known miRNAs belonging to 20 families and 172 novel miRNAs belonging to 107 families. A negative correlation between the expression of miRNAs and their targets was observed. In addition, we identified 441 A. contorta NATs and 560 NAT-sense transcript (ST) pairs, of which 12 NATs were targets of 13 miRNAs, forming 18 miRNA-NAT-ST modules. Various miRNAs and NATs potentially regulated secondary metabolism through the modes of miRNA-target gene-enzyme genes, NAT-STs, and NAT-miRNA-target gene-enzyme genes, suggesting the complexity of gene regulatory networks in A. contorta. The results lay a solid foundation for further manipulating the production of its bioactive and toxic compounds.


Asunto(s)
Aristolochia , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , MicroARNs , Metabolismo Secundario , MicroARNs/genética , MicroARNs/metabolismo , Aristolochia/genética , Metabolismo Secundario/genética , ARN sin Sentido/genética , Genoma de Planta , ARN de Planta/genética
20.
Bioorg Chem ; 148: 107475, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772293

RESUMEN

The applications of antisense oligonucleotides (ASOs) in rare or common diseases treatment have garnered great attention in recent years. Nevertheless, challenges associated with stability and bioavailability still persist, hampering the efficiency of ASOs. This work presents an ASO prodrug with parallel G-quadruplex assembly and lysosome escape capabilities for oncotherapy. Our findings revealed that the end-assembled quadruplex structure effectively shielded the ASO from enzymatic degradation. Meanwhile, the conjugation of maleimide within the quadruplex enhanced cellular uptake, potentially offering an alternative cell entry mechanism that circumvents lysosome involvement. Notably, an optimized molecule, Mal2-G4-ASO, exhibited remarkable therapeutic effects both in vitro and in vivo. This work presents a promising avenue for enhancing the activity of nucleic acid drugs in oncotherapy and potentially other disease contexts.


Asunto(s)
G-Cuádruplex , Lisosomas , Oligonucleótidos Antisentido , Profármacos , Profármacos/química , Profármacos/farmacología , Profármacos/síntesis química , G-Cuádruplex/efectos de los fármacos , Humanos , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/síntesis química , Lisosomas/metabolismo , Animales , Estructura Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ratones , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Línea Celular Tumoral , Ratones Desnudos , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA