Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Heliyon ; 10(18): e38267, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39364241

RESUMEN

Compressive strength and calcium ion release are integral properties of Biodentine for its enhanced efficiency. The present study evaluated the effects of Dual Rinse HEDP (DR HEDP), ethylenediaminetetraacetic acid (EDTA) and sodium hypochlorite (NaOCl) on the calcium ion release and compressive strength of Biodentine. Eighty Biodentine specimens were moulded and randomly divided into four groups (n = 20). Samples in group 1 were treated with 17 % EDTA; group 2 with DR HEDP; group 3 with 2.5 % NaOCl; and group 4 with distilled water. Samples were immersed in 10 mL of the test solutions for 1 min. The mean concentration of the calcium ion released was measured using atomic absorption spectrophotometry. The remaining 40 samples were tested for their compressive strength. Significant differences were determined among all the irrigants tested for calcium ion release and compressive strength. Samples treated with NaOCl had the lowest calcium ion release, while samples treated with 17 % EDTA had the largest calcium ions. No significant differences were measured between DR HEDP or distilled water. For compressive strength, samples treated with 2.5 % NaOCl had the lowest strength, while the highest values were obtained with distilled water. There was a significant difference between DR HEDP and EDTA, in which EDTA reduced the compressive strength significantly more than DR HEDP. DR HEDP had less detrimental effect on the calcium ion release and compressive strength of Biodentine.

2.
Fungal Biol ; 128(7): 2190-2196, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39384288

RESUMEN

Heavy metal Cd2+ can easily be accumulated by fungi, causing significant stress, with the fungal cell membrane being one of the primary targets. However, the understanding of the mechanisms behind this stress remains limited. This study investigated the changes in membrane lipid molecules of Pleurotus ostreatus mycelia under Cd2+ stress and the antagonistic effect of Ca2+ on this stress. Cd2+ in the growth media significantly inhibited mycelial growth, with increasing intensity at higher concentrations. The addition of Ca2+ mitigated this Cd2+-induced growth inhibition. Lipidomic analysis showed that Cd2+ reduced membrane lipid content and altered lipid composition, while Ca2+ counteracted these changes. The effects of both Cd2+ and Ca2+ on lipids are dose dependent and phosphatidylethanolamine appeared most affected. Cd2+ also caused a phosphatidylcholine/phosphatidylethanolamine ratio increase at high concentrations, but Ca2+ helped maintain normal levels. The acyl chain length and unsaturation of lipids remained unaffected, suggesting Cd2+ doesn't alter acyl chain structure of lipids. These findings suggest that Cd2+ may affect the growth of mycelia by inhibiting the synthesis of membrane lipids, particular the synthesis of phosphatidylethanolamine, providing novel insights into the mechanisms of Cd2+ stress in fungi and the role of Ca2+ in mitigating the stress.


Asunto(s)
Cadmio , Calcio , Micelio , Fosfatidiletanolaminas , Pleurotus , Pleurotus/crecimiento & desarrollo , Pleurotus/metabolismo , Pleurotus/efectos de los fármacos , Fosfatidiletanolaminas/metabolismo , Cadmio/metabolismo , Cadmio/farmacología , Micelio/crecimiento & desarrollo , Micelio/efectos de los fármacos , Micelio/metabolismo , Calcio/metabolismo , Lípidos de la Membrana/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/química , Medios de Cultivo/química
3.
Br J Pharmacol ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39402010

RESUMEN

PIEZO1 is a eukaryotic membrane protein that assembles as trimers to form calcium-permeable, non-selective cation channels with exquisite capabilities for mechanical force sensing and transduction of force into effect in diverse cell types that include blood cells, endothelial cells, epithelial cells, fibroblasts and stem cells and diverse systems that include bone, lymphatics and muscle. The channel has wide-ranging roles and is considered as a target for novel therapeutics in ailments spanning cancers and cardiovascular, dental, gastrointestinal, hepatobiliary, infectious, musculoskeletal, nervous system, ocular, pregnancy, renal, respiratory and urological disorders. The identification of PIEZO1 modulators is in its infancy but useful experimental tools emerged for activating, and to a lesser extent inhibiting, the channels. Elementary structure-activity relationships are known for the Yoda series of small molecule agonists, which show the potential for diverse physicochemical and pharmacological properties. Intriguing effects of Yoda1 include the stimulated removal of excess cerebrospinal fluid. Despite PIEZO1's broad expression, opportunities are suggested for selective positive or negative modulation without intolerable adverse effects. Here we provide a focused, non-systematic, narrative review of progress with this pharmacology and discuss potential future directions for research in the area.

4.
J Mol Histol ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39317829

RESUMEN

Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice. Halofuginone (HF) exerts beneficial effects on organ fibrosis, periodontitis, and cancer. However, the effect of HF against AF remains unknown. During the induction of AF, the rats were intragastrically administered HF (5 mg/kg and 10 mg/kg) daily for 7 consecutive days. Cardiac function was evaluated through echocardiographic analysis. The presence of pathological changes and interstitial fibrosis in the left atrial tissues were investigated. Intracellular Ca2+ homeostasis and mitochondrial function in atrial tissues were evaluated. The activation of the PI3K/Akt signaling pathway was examined, and an allosteric Akt inhibitor, MK-2206, was applied to confirm the involvement of the PI3K/Akt signaling pathway in the protection against AF by HF. The administration of HF resulted in a prolongation of the atrial effective refractory period (AERP), a reduction in both the duration and inducibility of AF, and a decrease in atrial weight, heart weight, atrial weight/body weight ratio, and heart weight/body weight ratio in rats with AF. In addition, the administration of HF resulted in a reduction in left atrial diameter (LAD) and an increase in left ventricular internal diameter diastolic (LVIDd), ejection fraction (EF), and fractional shortening (FS), while having no effect on left ventricular internal diameter systolic (LVIDs). The pathological changes and cardiac fibrosis observed in rats with AF were mitigated by HF. Moreover, HF enhanced mitochondrial function, suppressed cardiomyocyte apoptosis, and activated the PI3K/Akt pathway in AF rats. Furthermore, the protective effect against AF was also observed in an in vitro model. The effects of HF on fibrosis markers, intracellular Ca2+ homeostasis, mitochondrial function, and cardiac apoptosis were blocked by MK-2206. HF alleviated the susceptibility to AF in vivo and in vitro via the activation of the PI3K/Akt signaling pathway.

5.
ACS Appl Mater Interfaces ; 16(39): 52059-52067, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39307971

RESUMEN

The spatiotemporal regulation of ion transport in living cell membrane channels has immense potential for providing novel therapeutic approaches for the treatment of currently intractable diseases. So far, most strategies suffer from uncontrolled ion transport and limited tumor therapy effects. On the premise of low toxicity to healthy tissues, enhancing the degree of ion overloading and the effect of tumor treatment still remains a challenging concern. Herein, an innovative strategy for synergistic ion channel therapy and hypoxic microenvironment activated chemotherapy is proposed. Biocompatible AQ4N/black phosphorus quantum dot clusters@liposomes (AQ4N/BPCs@Lip) nanocomplexes are site-specifically immobilized on the living cell membrane by a metabolic labeling strategy, eliminating the need for modifying or genetically encoding channel structures. Ascribing to the localized temperature increase of BPCs under NIR light irradiation, Ca2+ overinflux can be remotely controlled and the overloading degree was increased; moreover, the local released AQ4N can only be activated in the tumor cell, while it has no toxicity to normal cells. Compared with single intracellular Ca2+ overloading, the tumor cell viabilities decrease 2-fold with synergetic Ca2+ overloading-induced ion channel therapy and hypoxic microenvironment activated chemotherapeutics. Our study demonstrates the example of a remote-controlled ion influx and drug delivery system for tumor therapy.


Asunto(s)
Fósforo , Puntos Cuánticos , Microambiente Tumoral , Puntos Cuánticos/química , Humanos , Fósforo/química , Microambiente Tumoral/efectos de los fármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Liposomas/química , Calcio/metabolismo , Calcio/química , Línea Celular Tumoral , Canales Iónicos/metabolismo , Canales Iónicos/química , Supervivencia Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo
6.
Curr Drug Targets ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39323343

RESUMEN

SERCA2, a P-type ATPase located on the endoplasmic reticulum of cells, plays an important role in maintaining calcium balance within cells by transporting calcium from the cytoplasm to the endoplasmic reticulum against its concentration gradient. A multitude of studies have demonstrated that the expression of SERCA2 is abnormal in a wide variety of tumor cells. Consequently, research exploring compounds that target SERCA2 may offer a promising avenue for the development of novel anti-tumor drugs. This review has summarized the anti-tumor compounds targeting SERCA2, including thapsigargin, dihydroartemisinin, curcumin, galangin, etc. These compounds interact with SERCA2 on the endoplasmic reticulum membrane, disrupting intracellular calcium ion homeostasis, leading to tumor cell apoptosis, autophagy and cell cycle arrest, ultimately producing anti-tumor effects. Additionally, several potential research directions for compounds targeting SERCA2 as clinical anti-cancer drugs have been proposed in the review. In summary, SERCA2 is a promising anti-tumor target for drug discovery and development.

7.
Food Res Int ; 195: 114947, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277225

RESUMEN

Mung beans were pretreated with a combination of ultrasonic and calcium ion to enhance the polyphenol content and antioxidant capacity during germination. Changes in polyphenol content and antioxidant capacity during germination, along with underlying mechanisms, were investigated. Both single ultrasound and combined ultrasound-Ca2+ pretreatments significantly increased the polyphenol content and enhanced the antioxidant capacity (p < 0.05) of mung beans depending on germination period. Among 74 polyphenolic metabolites identified in germinated mung beans, 50 were differential. Notably, 23 of these metabolites showed a significant positive correlation with antioxidant activity. Ultrasound pretreatment promoted flavonoid biosynthesis, whereas ultrasound-Ca2+ pretreatment favored the tyrosine synthesis pathway. Polyphenol composition and accumulation changes were mainly influenced by metabolic pathways like flavonoid, isoflavonoid, anthocyanin, and flavone/flavonol biosynthesis. The results suggest that ultrasound alone or combined with calcium ion pretreatments effectively enhance mung bean polyphenol content and antioxidant capacity during germination.


Asunto(s)
Antioxidantes , Calcio , Germinación , Polifenoles , Semillas , Vigna , Germinación/efectos de los fármacos , Polifenoles/metabolismo , Vigna/crecimiento & desarrollo , Vigna/metabolismo , Calcio/metabolismo , Antioxidantes/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Flavonoides/metabolismo , Flavonoides/análisis , Antocianinas/metabolismo
8.
Int J Nanomedicine ; 19: 7709-7727, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099788

RESUMEN

Introduction: Dysregulated calcium homeostasis and consequentially aberrant Ca2+ signalling could enhance survival, proliferation and metastasis in various cancers. Despite rapid development in exploring the ion channel functions in relation to cancer, most of the mechanisms accounting for the impact of ion channel modulators have yet to be fully clarified. Although harnessing small interfering RNA (siRNA) to specifically silence gene expression has the potential to be a pivotal approach, its success in therapeutic intervention is dependent on an efficient delivery system. Nanoparticles have the capacity to strongly bind siRNAs. They remain in the circulation and eventually deliver the siRNA payload to the target organ. Afterward, they interact with the cell surface and enter the cell via endocytosis. Finally, they help escape the endo-lysosomal degradation system prior to unload the siRNAs into cytosol. Carbonate apatite (CA) nanocrystals primarily is composed of Ca2+, carbonate and phosphate. CA possesses both anion and cation binding domains to target negatively charged siRNA molecules. Methods: Hybrid CA was synthesized by complexing CA NPs with a hydrophilic polysaccharide - hyaluronic acid (HA). The average diameter of the composite particles was determined using Zetasizer and FE-SEM and their zeta potential values were also measured. Results and Discussion: The stronger binding affinity and cellular uptake of a fluorescent siRNA were observed for HA-CA NPs as compared to plain CA NPs. Hybrid CA was electrostatically bound individually and combined with three different siRNAs to silence expression of calcium ion channel and transporter genes, TRPC6, TRPM8 and SLC41A1 in a human breast cancer cell line (MCF-7) and evaluate their potential for treating breast cancer. Hybrid NPs carrying TRPC6, TRPM8 and SLC41A1 siRNAs could significantly enhance cytotoxicity both in vitro and in vivo. The resultant composite CA influenced biodistribution of the delivered siRNA, facilitating reduced off target distribution and enhanced breast tumor targetability.


Asunto(s)
Apatitas , Neoplasias de la Mama , Ácido Hialurónico , Nanopartículas , ARN Interferente Pequeño , Humanos , Apatitas/química , Apatitas/farmacología , ARN Interferente Pequeño/química , ARN Interferente Pequeño/farmacocinética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/genética , Ácido Hialurónico/química , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Nanopartículas/química , Femenino , Animales , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral , Células MCF-7 , Proliferación Celular/efectos de los fármacos , Ratones
9.
ACS Appl Mater Interfaces ; 16(33): 43244-43256, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39136271

RESUMEN

The development of efficient hemostatic materials is crucial for achieving rapid hemorrhage control and effective wound healing. Inorganic polyphosphate (polyP) is recognized as an effective modulator of the blood coagulation process. However, the specific effect of polyP chain length on coagulation is not yet fully understood. Furthermore, calcium ions (Ca2+) are essential for the coagulation process, promoting multiple enzyme-catalyzed reactions within the coagulation cascade. Hence, calcium ion-coupled polyphosphate powders with three different degrees of polymerization (CaPP-n, n = 20, 50, and 1500) are synthesized by an ion-exchange reaction. CaPP exhibits a crystalline phase at a low polymerization degree and transitions to an amorphous phase as the polymerization degree increases. Notably, the addition of Ca2+ enhances the wettability of polyP, and CaPP promotes hemostasis, with varying degrees of effectiveness related to chain length. CaPP-50 exhibits the most promising hemostatic performance, with the lowest blood clotting index (BCI, 12.1 ± 0.7%) and the shortest clotting time (302.0 ± 10.5 s). By combining Ca2+ with polyP of medium-chain length, CaPP-50 demonstrates an enhanced ability to accelerate the adhesion and activation of blood cells, initiate the intrinsic coagulation cascade, and form a stable blood clot, outperforming both CaPP-20 and CaPP-1500. The hemostatic efficacy of CaPP-50 is further validated using rat liver bleeding and femoral artery puncture models. CaPP-50 is proven to possess hemostatic properties comparable to those of commercial calcium-based zeolite hemostatic powder and superior to kaolin. In addition, CaPP-50 exhibits excellent biocompatibility and long-term storage stability. These results suggest that CaPP-50 has significant clinical and commercial potential as an active inorganic hemostatic agent for rapid control of bleeding.


Asunto(s)
Calcio , Hemorragia , Polimerizacion , Polifosfatos , Animales , Polifosfatos/química , Polifosfatos/farmacología , Calcio/química , Ratas , Hemorragia/prevención & control , Hemorragia/tratamiento farmacológico , Hemostáticos/química , Hemostáticos/farmacología , Coagulación Sanguínea/efectos de los fármacos , Ratas Sprague-Dawley , Masculino , Hemostasis/efectos de los fármacos , Iones/química
10.
Curr Res Microb Sci ; 7: 100265, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211836

RESUMEN

Anginosus group streptococci (AGS) are opportunistic pathogens that reside in the human oral cavity. The ß-hemolytic strains of Streptococcus anginosus subsp. anginosus (SAA) produce streptolysin S (SLS), a streptococcal peptide hemolysin. In recent clinical scenarios, AGS, including this species, have frequently been isolated from infections and disorders beyond those in the oral cavity. Consequently, investigating this situation will reveal the potential pathogenicity of AGS to ectopic infections in humans. However, the precise mechanism underlying the cellular response induced by secreted SLS and its relevance to the pathogenicity of AGS strains remain largely unknown. This study aims to elucidate the mechanism underlying the host cellular response of the human acute monocytic leukemia cell line THP-1 to secreted SLS. In THP-1 cells incubated with the culture supernatant of ß-hemolytic SAA containing SLS as the sole cytotoxic factor, increased Ca2+ influx and elevated expression of proinflammatory cytokines were observed. Significantly reduced expression of SLS-dependent upregulated cytokine genes under Ca2+-chelating conditions suggests that Ca2+ influx triggers SLS-dependent cellular responses. Furthermore, SLS-dependent enhanced expression of IL-8 was also implicated in the activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) signaling pathways. The findings presented in this study are crucial for a comprehensive understanding of the real pathogenicity of SLS-producing ß-hemolytic AGS in the latest clinical situations.

11.
Chin J Integr Med ; 30(9): 826-834, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38990479

RESUMEN

OBJECTIVE: To explore the potential mechanism of lysionotin in treating glioma. METHODS: First, target prediction based on Bernoulli Naïve Bayes profiling and pathway enrichment was used to predict the biological activity of lysionotin. The binding between 5-lipoxygenase (5-LO) and lysionotin was detected by surface plasmon resonance (SPR) and molecular docking, and the inhibitory effects of lysionotin on 5-LO and proliferation of glioma were determined using enzyme inhibition assay in vitro and cell viability analysis, respectively. Furthermore, the pharmaceutical effect of lysionotin was explored by cell survival rate analysis and liquid chromatography with tandem mass spectrometry (LC-MS/MS). The protein expression, intracellular calcium ion concentration and cytoskeleton detection were revealed by Western blot, flow cytometry and fluorescence labeling, respectively. RESULTS: Target prediction and pathway enrichment revealed that lysionotin inhibited 5-LO, a key enzyme involved in the arachidonic acid metabolism pathway, to inhibit the proliferation of glioma. Molecular docking results demonstrated that 5-LO can be binding to lysionotin through hydrogen bonds, forming bonds with His600, Gln557, Asn554, and His372. SPR analysis further confirmed the interaction between 5-LO and lysionotin. Furthermore, enzyme inhibition assay in vitro and cell survival rate analysis revealed that 50% inhibition concentration of lysionotin and the median effective concentration of lysionotin were 90 and 16.58 µmol/L, respectively, and the results of LC-MS/MS showed that lysionotin inhibited the production of 5S-hydroperoxy-eicosatetraenoic acid (P<0.05), and moreover, the LC-MS/MS results indicated that lysionotin can enter glioma cells well (P<0.01) and inhibit their proliferation. Western blot analysis demonstrated that lysionotin can inhibit the expression of 5-LO (P<0.05) and downstream leukotriene B4 receptor (P<0.01). In addition, the results showed that lysionotin affected intracellular calcium ion concentration by inhibiting 5-LO to affect the cytoskeleton, as determined by flow cytometry and fluorescence labeling. CONCLUSION: Lysionotin binds to 5-LO could suppress glioma by inhibiting arachiodonic acid metabolism pathway.


Asunto(s)
Araquidonato 5-Lipooxigenasa , Proliferación Celular , Glioma , Inhibidores de la Lipooxigenasa , Simulación del Acoplamiento Molecular , Glioma/tratamiento farmacológico , Glioma/patología , Glioma/metabolismo , Glioma/enzimología , Araquidonato 5-Lipooxigenasa/metabolismo , Humanos , Inhibidores de la Lipooxigenasa/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Calcio/metabolismo , Espectrometría de Masas en Tándem
12.
Antioxidants (Basel) ; 13(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38929108

RESUMEN

Prostate cancer remains a significant global health concern, posing a substantial threat to men's well-being. Despite advancements in treatment modalities, the progression of prostate cancer still presents challenges, warranting further exploration of novel therapeutic strategies. In this study, osthole, a natural coumarin derivative, inhibited cell viability in cancer cells but not in the normal prostate cell line. Moreover, osthole disrupted cell cycle progression. Furthermore, osthole reduces mitochondrial respiration with mitochondrial membrane potential (ΔΨm) depolarization and reactive oxygen species (ROS) generation, indicating mitochondrial dysfunction. In particular, osthole-induced ROS generation was reduced by N-acetyl-L-cysteine (NAC) in prostate cancer. In addition, using calcium inhibitors (2-APB and ruthenium red) and endoplasmic reticulum (ER) stress inhibitor (4-PBA), we confirmed that ER stress-induced calcium overload by osthole causes mitochondrial dysfunction. Moreover, we verified that the osthole-induced upregulation of tiRNAHisGTG expression is related to mechanisms that induce permeabilization of the mitochondrial membrane and calcium accumulation. Regarding intracellular signaling, osthole inactivated the PI3K and ERK pathways while activating the expression of the P38, JNK, ER stress, and autophagy-related proteins. In conclusion, the results suggest that osthole can be used as a therapeutic or adjuvant treatment for the management of prostate cancer.

13.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 794-798, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38926969

RESUMEN

OBJECTIVE: To investigate the value of serum free light chain (sFLC) and serum calcium ion in the diagnosis and prognosis of multiple myeloma (MM). METHODS: Forty patients with MM treated in Henan Provincial People's Hospital from January 2018 to January 2022 were selected as the observation group, and 40 healthy volunteers were selected as the control group. The differences of sFLC-κ、sFLC-λ、sFLC-κ/λ, serum calcium ions, etc between the two groups were compared. Meanwhile, the differences of sFLC-κ、sFLC-λ、sFLC-κ/λ, serum calcium ions, etc in different international staging systems (ISS), chemotherapy efficacy and prognosis patients were analyzed. RESULTS: The levels of sFLC-κï¼»(98.39±21.19) vs (12.01±4.45) mg/Lï¼½, sFLC-λï¼»(210.20±45.54) vs (14.10±5.11) mg/Lï¼½ and proportions of hypocalcemia (65% vs 0) in the observation group were significantly higher than those in the control group (P < 0.05), while sFLC-κ/ λ ratio[(0.44±0.10) vs (0.87±0.12)ï¼½ and serum calcium ions [(1.98±0.46) vs (2.42±0.40)mmol/Lï¼½ were significantly lower than those in the control group (P < 0.05). The sFLC-κ, sFLC-λ, the proportion of hypocalcemia and the course of hypocalcemia in ISS stage III patients in the observation group were significantly higher than those in stage I and II patients (P < 0.05), while sFLC-κ/λ ratio, and serum calcium ions were significantly lower than those in stage I and II patients (P < 0.05). The levels of sFLC-κ [(107.76±21.22) vs (94.67±20.11)mg/Lï¼½, sFLC- λ[(245.54±41.12) vs (205.54±50.22)mg/Lï¼½ of patients with hypocalcemia in the observation group was significantly higher than those without hypocalcemia (P < 0.05), while the sFLC-κ/λ ratio was significantly lower than those without hypocalcemia [(0.42±0.04) vs (0.47±0.06);P < 0.05ï¼½. The levels of sFLC-κ ï¼»(107.29±20.14) vs ( 91.11±18.92)mg/Lï¼½, sFLC-λ[(247.98±42.26) vs (179.29±39.32)mg/Lï¼½ in patients with ineffective chemotherapy were significantly higher than those in patients with effective chemotherapy (P < 0.05), while the sFLC-κ/λ ratio was significantly lower than those in patients with effective chemotherapy ï¼»(0.43±0.10) vs (0.50±0.09);P < 0.05)]. The area under the ROC curve for sFLC-κ, sFLC-λ, sFLC-κ/λ predicting ineffective chemotherapy was 0.803, 0.793 and 0.699 respectively, P < 0.05. There was no significant difference in sFLC-κ, sFLC-λ, sFLC-κ/λ ratio, serum calcium ion, hypocalcemia ratio and hypocalcemia course between survival and death patients (P >0.05). CONCLUSION: sFLC and serum calcium are related to ISS stage of MM patients. sFLC level has a certain value to predict the curative effect of chemotherapy in MM patients. However, the prognostic values of sFLC and serum calcium are not yet confirmed for MM patients.


Asunto(s)
Calcio , Mieloma Múltiple , Humanos , Mieloma Múltiple/sangre , Mieloma Múltiple/diagnóstico , Calcio/sangre , Pronóstico , Cadenas kappa de Inmunoglobulina/sangre , Cadenas Ligeras de Inmunoglobulina/sangre , Hipocalcemia/sangre , Estudios de Casos y Controles , Femenino , Cadenas lambda de Inmunoglobulina/sangre , Masculino , Persona de Mediana Edad
14.
J Bioenerg Biomembr ; 56(4): 389-404, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38771496

RESUMEN

Calcium serves as a widespread second messenger in almost every human and animal cell. The regulation of various cellular processes, such as transcriptional control and the kinetics of membrane channels, is significantly influenced by intracellular calcium ions (Ca 2 + ), and linkages between Ca 2 + and other second messengers should activate signaling networks. The passage of ions across the cell membrane regulates Ca 2 + levels in pancreatic ß -cells and requires the coordinated interaction of various ion transport mechanisms and organelles. The signaling of Ca 2 + in ß -cells and its interactions with the intracellular dynamics of cyclic adenosine monophosphate (cAMP) is poorly understood. Therefore, the current investigation proposes a mathematical model to illustrate the spatiotemporal dynamical interaction between Ca 2 + and cAMP. In order to construct a one-dimensional mathematical model, the fundamental initial and boundary conditions derived from the physiological characteristics of the ß -cell are incorporated. The numerical results were obtained by MATLAB simulations using the finite element method and the Crank-Nicolson method. The current study aims to offer an update on regulation between Ca 2 + and cAMP signaling circuits, with a focus on interactions that occur in localized areas of the ß -cell. The model gives the individual effect of each parameter on the regulation of Ca 2 + and cAMP profiles in a ß -cell. Evidently, impairments in the regulation of messenger pathways contribute to the pathological conditions, as demonstrated by the results obtained.


Asunto(s)
Calcio , AMP Cíclico , Células Secretoras de Insulina , Sistemas de Mensajero Secundario , AMP Cíclico/metabolismo , Células Secretoras de Insulina/metabolismo , Humanos , Calcio/metabolismo , Sistemas de Mensajero Secundario/fisiología , Modelos Biológicos , Animales , Señalización del Calcio/fisiología
15.
Anal Chim Acta ; 1306: 342615, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692795

RESUMEN

The Caco-2 cells were used as intestinal epithelial cell model to illustrate the hyperuricemia (HUA) mechanism under the co-culture of the imbalanced intestinal microbiome in this work. The uric acid (UA) concentration in the HUA process was monitored, and could be up to 425 µmol/L at 8 h co-cultured with the imbalanced intestinal microbiome. Single-cell potentiometry based on ion-selective microelectrode was used to study extracellular calcium change, which is hypothesized to play an important role in the UA excretion. The potential signal of the calcium in the extremely limited microenvironment around single Caco-2 cell was recorded through the single-cell analysis platform. The potential signal of sharp decrease and slow increase followed within a few seconds indicates the sudden uptake and gradually excretion process of calcium through the cell membrane. Moreover, the value of the potential decrease increases with the increase of the time co-cultured with the imbalanced intestinal microbiome ranging from 0 to 8 h. The Ca2+ concentration around the cell membrane could decrease from 1.3 mM to 0.4 mM according to the potential decrease of 27.0 mV at the co-culture time of 8 h. The apoptosis ratio of the Caco-2 cells also exhibits time dependent with the co-culture of the imbalanced intestinal microbiome, and was 39.1 ± 3.6 % at the co-culture time of 8 h, which is much higher than the Caco-2 cells without any treatment (3.9 ± 2.9 %). These results firstly provide the links between the UA excretion with the apoptosis of the intestinal epithelial cell under the interaction of the imbalanced intestinal microbiome. Moreover, the apoptosis could be triggered by the calcium signaling.


Asunto(s)
Microbioma Gastrointestinal , Análisis de la Célula Individual , Análisis de la Célula Individual/instrumentación , Análisis de la Célula Individual/métodos , Células CACO-2 , Humanos , Microelectrodos , Técnicas de Cocultivo/instrumentación , Técnicas de Cocultivo/métodos , Calcio/análisis , Fibra de Carbono , Intestinos/microbiología , Potenciometría/instrumentación , Adenosina/análisis , Apoptosis
16.
ACS Chem Neurosci ; 15(10): 1951-1966, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38696478

RESUMEN

Aims: the study aimed to (i) use adeno-associated virus technology to modulate parvalbumin (PV) gene expression, both through overexpression and silencing, within the hippocampus of male mice and (ii) assess the impact of PV on the metabolic pathway of glutamate and γ-aminobutyric acid (GABA). Methods: a status epilepticus (SE) mouse model was established by injecting kainic acid into the hippocampus of transgenic mice. When the seizures of mice reached SE, the mice were killed at that time point and 30 min after the onset of SE. Hippocampal tissues were extracted and the mRNA and protein levels of PV and the 65 kDa (GAD65) and 67 kDa (GAD67) isoforms of glutamate decarboxylase were assessed using real-time quantitative polymerase chain reaction and Western blot, respectively. The concentrations of glutamate and GABA were detected with high-performance liquid chromatography (HPLC), and the intracellular calcium concentration was detected using flow cytometry. Results: we demonstrate that the expression of PV is associated with GAD65 and GAD67 and that PV regulates the levels of GAD65 and GAD67. PV was correlated with calcium concentration and GAD expression. Interestingly, PV overexpression resulted in a reduction in calcium ion concentration, upregulation of GAD65 and GAD67, elevation of GABA concentration, reduction in glutamate concentration, and an extension of seizure latency. Conversely, PV silencing induced the opposite effects. Conclusion: parvalbumin may affect the expression of GAD65 and GAD67 by regulating calcium ion concentration, thereby affecting the metabolic pathways associated with glutamate and GABA. In turn, this contributes to the regulation of seizure activity.


Asunto(s)
Calcio , Ácido Glutámico , Ácido Kaínico , Parvalbúminas , Estado Epiléptico , Ácido gamma-Aminobutírico , Animales , Masculino , Ratones , Calcio/metabolismo , Modelos Animales de Enfermedad , Ácido gamma-Aminobutírico/metabolismo , Glutamato Descarboxilasa/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Ratones Transgénicos , Parvalbúminas/metabolismo , Estado Epiléptico/metabolismo , Estado Epiléptico/inducido químicamente
17.
J Obstet Gynaecol ; 44(1): 2345276, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38685831

RESUMEN

BACKGROUND: In order to contribute new insights for future prevention and treatment of intrahepatic cholestasis of pregnancy (ICP), and to promote positive pregnancy outcomes, we evaluated serum Ca2+ levels and inositol 1,4,5-trisphosphate receptor (InsP3R) expression in the liver tissue of a rat ICP model. METHODS: After establishing the model by injection of oestradiol benzoate and progesterone into pregnant rats, animals were divided into normal control (n = 5) and ICP model groups (n = 5). The expression of InsP3R protein in the liver, and serum levels of Ca2+, glycocholic acid and bile acid were detected. RESULTS: InsP3R mRNA and protein were significantly lower in the ICP model group compared to the normal group, as determined by qPCR and immunohistochemistry, respectively. Serum enzyme-linked immunosorbent assay results revealed significantly higher levels of glycocholic acid and bile acid in the ICP model group compared to the normal group, while Ca2+ levels were significantly lower. The levers of Ca2+ were significantly and negatively correlated with the levels of glycocholic acid. The observed decrease in Ca2+ was associated with an increase in total bile acids, but there was no significant correlation. CONCLUSIONS: Our results revealed that the expression of InsP3R and serum Ca2+ levels was significantly decreased in the liver tissue of ICP model rats. Additionally, Ca2+ levels were found to be negatively correlated with the level of glycocholic acid.


This study investigated the relationship between serum Ca2+ levels, inositol 1,4,5-trisphosphate receptor (InsP3R) expression and intrahepatic cholestasis of pregnancy (ICP) in a rat model. The results indicated a significant decrease in InsP3R expression and Ca2+ in the disease group compared to the control group, alongside elevated levels of glycocholic acid and bile acid. The levels of Ca2+ exhibited a negative correlation with the levels of glycocholic acid. These findings indicated that the decrease of InsP3R expression and Ca2+ levels may be related to the pathogenesis of ICP. The study provides further insight into the treatment of this disease.


Asunto(s)
Ácidos y Sales Biliares , Calcio , Colestasis Intrahepática , Modelos Animales de Enfermedad , Estradiol , Receptores de Inositol 1,4,5-Trifosfato , Hígado , Complicaciones del Embarazo , Animales , Femenino , Embarazo , Ratas , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/sangre , Calcio/metabolismo , Calcio/sangre , Señalización del Calcio , Colestasis Intrahepática/metabolismo , Colestasis Intrahepática/sangre , Estradiol/sangre , Estradiol/análogos & derivados , Ácido Glicocólico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Hígado/metabolismo , Complicaciones del Embarazo/metabolismo , Progesterona/sangre , Ratas Sprague-Dawley , Masculino
18.
Funct Integr Genomics ; 24(3): 77, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38632140

RESUMEN

BACKGROUND: Gastric cancer (GC) remains a leading cause of cancer mortality globally. Synaptotagmin-4 (SYT4), a calcium-sensing synaptic vesicle protein, has been implicated in the oncogenesis of diverse malignancies. PURPOSE: This study delineates the role of SYT4 in modulating clinical outcomes and biological behaviors in GC. METHODS: We evaluated SYT4 expression in GC specimens using bioinformatics analyses and immunohistochemistry. Functional assays included CCK8 proliferation tests, apoptosis assays via flow cytometry, confocal calcium imaging, and xenograft models. Western blotting elucidated MAPK pathway involvement. Additionally, we investigated the impact of the calcium channel blocker amlodipine on cellular dynamics and MAPK pathway activity. RESULTS: SYT4 was higher in GC tissues, and the elevated SYT4 was significantly correlated with adverse prognosis. Both univariate and multivariate analyses confirmed SYT4 as an independent prognostic indicator for GC. Functionally, SYT4 promoted tumorigenesis by fostering cellular proliferation, inhibiting apoptosis, and enhancing intracellular Ca2+ influx, predominantly via MAPK pathway activation. Amlodipine pre-treatment attenuated SYT4-driven cell growth and potentiated apoptosis, corroborated by in vivo xenograft assessments. These effects were attributed to MAPK pathway suppression by amlodipine. CONCLUSION: SYT4 emerges as a potential prognostic biomarker and a pro-oncogenic mediator in GC through a Ca2+-dependent MAPK mechanism. Amlodipine demonstrates significant antitumor effects against SYT4-driven GC, positing its therapeutic promise. This study underscores the imperative of targeting calcium signaling in GC treatment strategies.


Asunto(s)
Amlodipino , Señalización del Calcio , Neoplasias Gástricas , Sinaptotagminas , Humanos , Amlodipino/farmacología , Amlodipino/uso terapéutico , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Sinaptotagminas/antagonistas & inhibidores , Sinaptotagminas/genética , Sinaptotagminas/metabolismo , Bloqueadores de los Canales de Calcio/farmacología
19.
Genes Cells ; 29(6): 512-520, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38597132

RESUMEN

Macropinocytosis (MPC) is a large-scale endocytosis pathway that involves actin-dependent membrane ruffle formation and subsequent ruffle closure to generate macropinosomes for the uptake of fluid-phase cargos. MPC is categorized into two types: constitutive and stimuli-induced. Constitutive MPC in macrophages relies on extracellular Ca2+ sensing by a calcium-sensing receptor. However, the link between stimuli-induced MPC and Ca2+ remains unclear. Here, we find that both intracellular and extracellular Ca2+ are required for epidermal growth factor (EGF)-induced MPC in A431 human epidermoid carcinoma cells. Through investigation of mammalian homologs of coelomocyte uptake defective (CUP) genes, we identify ATP2B4, encoding for a Ca2+ pump called the plasma membrane calcium ATPase 4 (PMCA4), as a Ca2+-related regulator of EGF-induced MPC. Knockout (KO) of ATP2B4, as well as depletion of extracellular/intracellular Ca2+, inhibited ruffle closure and macropinosome formation, without affecting ruffle formation. We demonstrate the importance of PMCA4 activity itself, independent of interactions with other proteins via its C-terminus known as a PDZ domain-binding motif. Additionally, we show that ATP2B4-KO reduces EGF-stimulated Ca2+ oscillation during MPC. Our findings suggest that EGF-induced MPC requires ATP2B4-dependent Ca2+ dynamics.


Asunto(s)
Calcio , Factor de Crecimiento Epidérmico , Pinocitosis , ATPasas Transportadoras de Calcio de la Membrana Plasmática , Humanos , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Calcio/metabolismo , Línea Celular Tumoral
20.
Addict Biol ; 29(3): e13382, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38488467

RESUMEN

Methamphetamine (METH) is a highly addictive psycho-stimulant that induces addictive behaviour by stimulating increased dopamine release in the nucleus accumbens (NAc). The sarco/endoplasmic reticulum calcium ion transport ATPases (SERCA or ATP2A) is a calcium ion (Ca2+) pump in the endoplasmic reticulum (ER) membrane. SERCA2b is a SERCA subtype mainly distributed in the central nervous system. This study used conditioned place preference (CPP), a translational drug reward model, to observe the effects of SERCA and SERCA2b on METH-CPP in mice. Result suggested that the activity of SERCA was significantly decreased in NAc after METH-CPP. Intraperitoneal SERCA agonist CDN1163 injection or bilateral CDN1163 microinjection in the NAc inhibited METH-CPP formation. SERCA2b overexpression by the Adeno-associated virus can reduce the DA release of NAc and inhibit METH-CPP formation. Although microinjection of SERCA inhibitor thapsigargin in the bilateral NAc did not significantly aggravate METH-CPP, interference with SERCA2b expression in NAc by adeno-associated virus increased DA release and promoted METH-CPP formation. METH reduced the SERCA ability to transport Ca2+ into the ER in SHSY5Y cells in vitro, which was reversed by CDN1163. This study revealed that METH dysregulates intracellular calcium balance by downregulating SERCA2b function, increasing DA release in NAc and inducing METH-CPP formation. Drugs that target SERCA2b may have the potential to treat METH addiction.


Asunto(s)
Benzamidas , Estimulantes del Sistema Nervioso Central , Metanfetamina , Ratones , Animales , Metanfetamina/farmacología , Metanfetamina/metabolismo , Núcleo Accumbens , Calcio/metabolismo , Aminoquinolinas/metabolismo , Aminoquinolinas/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA