Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 703
Filtrar
1.
Curr Oncol Rep ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990501

RESUMEN

PURPOSE OF REVIEW: The goal of this paper is to summarize the data pertaining to the use of sodium-glucose cotransporter-2 inhibitors (SGLT-2i) for the prevention of cardiotoxicity in patients receiving anthracyclines for cancer treatment. We discuss the potential efficacy of this class of medications, incorporating insights from existing literature and ongoing studies. RECENT FINDINGS: SGLT2i are a class of medications which were initially developed for treatment of Type 2 diabetes and later extended to treat heart failure with reduced and preserved ejection fraction regardless of diabetes status. There remains a need for effective and safe treatments to preventing cardiotoxicity in anthracycline-treated patients. It has been proposed that SGLT2i may provide protection against the cardiotoxic effects of anthracyclines. Some of the proposed mechanisms include beneficial metabolic, neurohormonal, and hemodynamic effects, renal protection, as well as a decrease in inflammation, oxidative stress, apoptosis, mitochondrial dysfunction and ion homeostasis. There is emerging evidence from basic science and observational studies that SGLT2i may play a role in the prevention of chemotherapy-induced cardiotoxicity. Randomized controlled trials are needed to conclusively determine the role of SGLT2 inhibitors as a cardioprotective therapy in patients receiving anthracyclines for the treatment of cancer.

2.
Cancer Manag Res ; 16: 731-740, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952352

RESUMEN

Background: Doxorubicin (DOX) is used to treat various types of cancers. However, its use is restricted by cardiotoxicity, a leading cause of morbidity and mortality. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) may be associated with cardioprotective properties. Purpose: This study aims to determine the protective effects of different semaglutide (SEM) doses on DOX-induced cardiotoxicity in a rat model. Methodology: Thirty-five female Wistar rats were divided into five groups. The first group received distilled water as a negative control (NC); the positive control (PC) group received distilled water plus DOX; the third group (SL) received a low dose of SEM (0.06 mg/kg) plus DOX; the fourth group (SM) received a moderate dose of SEM (0.12 mg/kg) plus DOX; and the fifth group (SH) received a high dose of SEM (0.24 mg/kg) plus DOX. Blood samples were collected on day 8 to assess serum troponin, lactate dehydrogenase (LDH), creatine phosphokinase (CPK), total lipid profile, and vascular cell adhesion molecule 1 (VCAM-1). Cardiac tissue was sent for histopathological analysis. Results: DOX increased the total cholesterol (TC), low-density lipoprotein (LDL), triglyceride (TG), LDH, and CKP levels. Moderate and high doses of semaglutide significantly reduced serum cholesterol levels (*p = 0.0199), (**p = 0.0077), respectively. A significant reduction (***p = 0.0013) in total body weight after treatment with SEM was observed in the SL group and a highly significant reduction (****p < 0.0001) was observed in the SM and SH groups. SEM at all doses reduced CPK levels. The SL group showed a significant reduction in troponin level (*p=0.0344). Serum LDH levels were reduced by all three SEM doses. The histopathological findings support the biochemical results. Conclusion: Semaglutide may possess cardioprotective properties against DOX-induced cardiotoxicity in a rat model by decreasing serum biochemical markers of cardiotoxicity.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38864969

RESUMEN

PURPOSE: Coronary artery bypass grafting (CABG) on cardiopulmonary bypass (CPB) is associated with myocardial ischemia-reperfusion injury (IRI), which may limit the benefit of the surgery. Both experimental and clinical studies suggest that Intralipid, a lipid emulsion commonly used for parenteral nutrition, can limit myocardial IRI. We therefore aimed to investigate whether Intralipid administered at reperfusion can reduce myocardial IRI in patients undergoing CABG on CPB. METHODS: We conducted a randomized, double-blind, pilot trial in which 29 adult patients scheduled for CABG were randomly assigned (on a 1:1 basis) to receive either 1.5 ml/kg Intralipid 20% or Ringer's Lactate 3 min before aortic cross unclamping. The primary endpoint was the 72-h area under the curve (AUC) for troponin I. RESULTS: Of the 29 patients randomized, 26 were included in the study (two withdrew consent and one was excluded before surgery). The 72-h AUC for troponin I did not significantly differ between the control and Intralipid group (546437 ± 205518 versus 487561 ± 115724 arbitrary units, respectively; P = 0.804). Other outcomes (including 72-h AUC for CK-MB, C-reactive protein, need for defibrillation, time to extubation, length of ICU and hospital stay, and serious adverse events) were similar between the two groups. CONCLUSION: In patients undergoing CABG on CPB, Intralipid did not limit myocardial IRI compared to placebo. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02807727 (registration date: 16 June 2016).

4.
Basic Res Cardiol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935171

RESUMEN

Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new drug class initially designed and approved for treatment of diabetes mellitus, have been shown to exert pleiotropic metabolic and direct cardioprotective and nephroprotective effects that extend beyond their glucose-lowering action. These properties prompted their use in two frequently intertwined conditions, heart failure and chronic kidney disease. Their unique mechanism of action makes SGLT2i an attractive option also to lower the rate of cardiac events and improve overall survival of oncological patients with preexisting cardiovascular risk and/or candidate to receive cardiotoxic therapies. This review will cover biological foundations and clinical evidence for SGLT2i modulating myocardial function and metabolism, with a focus on their possible use as cardioprotective agents in the cardio-oncology settings. Furthermore, we will explore recently emerged SGLT2i effects on hematopoiesis and immune system, carrying the potential of attenuating tumor growth and chemotherapy-induced cytopenias.

5.
Basic Res Cardiol ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856733

RESUMEN

Since the invention of cardiopulmonary bypass, cardioprotective strategies have been investigated to mitigate ischemic injury to the heart during aortic cross-clamping and reperfusion injury with cross-clamp release. With advances in cardiac surgical and percutaneous techniques and post-operative management strategies including mechanical circulatory support, cardiac surgeons are able to operate on more complex patients. Therefore, there is a growing need for improved cardioprotective strategies to optimize outcomes in these patients. This review provides an overview of the basic principles of cardioprotection in the setting of cardiac surgery, including mechanisms of cardiac injury in the context of cardiopulmonary bypass, followed by a discussion of the specific approaches to optimizing cardioprotection in cardiac surgery, including refinements in cardiopulmonary bypass and cardioplegia, ischemic conditioning, use of specific anesthetic and pharmaceutical agents, and novel mechanical circulatory support technologies. Finally, translational strategies that investigate cardioprotection in the setting of cardiac surgery will be reviewed, with a focus on promising research in the areas of cell-based and gene therapy. Advances in this area will help cardiologists and cardiac surgeons mitigate myocardial ischemic injury, improve functional post-operative recovery, and optimize clinical outcomes in patients undergoing cardiac surgery.

6.
Purinergic Signal ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833181

RESUMEN

The A2B adenosine receptor (A2BR) is one of the four adenosine-activated G protein-coupled receptors. In addition to adenosine, protein kinase C (PKC) was recently found to activate the A2BR. The A2BR is coupled to both Gs and Gi, as well as Gq proteins in some cell types. Many primary cells and cell lines, such as bladder and breast cancer, bronchial smooth muscle, skeletal muscle, and fat cells, express the A2BR endogenously at high levels, suggesting its potentially important role in asthma, cancer, diabetes, and other conditions. The A2BR has been characterized as both pro- and anti-inflammatory, inducing cell type-dependent secretion of IL-6, IL-8, and IL-10. Theophylline and enprofylline have long been used for asthma treatment, although it is still not entirely clear if their A2BR antagonism contributes to their therapeutic effects or side effects. The A2BR is required in ischemic cardiac preconditioning by adenosine. Both A2BR and protein kinase C (PKC) contribute to cardioprotection, and both modes of A2BR signaling can be blocked by A2BR antagonists. Inhibitors of PKC and A2BR are in clinical cancer trials. Sulforaphane and other isothiocyanates from cruciferous vegetables such as broccoli and cauliflower have been reported to inhibit A2BR signaling via reaction with an intracellular A2BR cysteine residue (C210). A full, A2BR-selective agonist, critical to elucidate many controversial roles of the A2BR, is still not available, although agonist-bound A2BR structures have recently been reported.

7.
Cureus ; 16(4): e57791, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38721216

RESUMEN

Purpose The purpose of this study is to comprehensively evaluate the role of different echocardiography parameters in breast cancer patients undergoing chemotherapy. While echocardiography examination with calculation of ejection fraction (EF), is pivotal for patient monitoring, its operator dependence and insensitivity to subtle changes in left ventricular (LV) contractility present challenges. Global longitudinal strain (GLS), derived from speckle tracking, is more sensitive and stable than EF. Our research aimed to delineate supplementary echocardiography measurements beneficial for the cardiological monitoring of breast cancer patients. Methods Patients were followed up with echocardiography at baseline, during, and after the chemotherapy. Conventional echocardiography and multiple speckle tracking imaging parameters including myocardial work index, atrial strain, twist, and automatic EF were investigated. Results A total of 25 patients were recruited. A subset (15/25) exhibited pronounced GLS reduction, associated with decreased EF and altered cardiac mechanics. Patients with unchanged GLS were often hypertensive and on specific medications, in particular angiotensin-converting enzyme inhibitors (ACE inhibitors)/angiotensin II receptor blockers (ARBs), potentially indicating protective effects. Despite stability in other parameters, GLS and EF sensitivity highlight their importance. A strong correlation between manual and automated EF measurement methods was also observed. Conclusion Despite the small sample size, across diverse echocardiography parameters, GLS and EF are primarily affected by chemotherapy. Hypertensive individuals exhibited lower susceptibility to chemotherapy-induced damage, likely attributed to the cardioprotective properties of ACE inhibitors and angiotensin II receptor blockers. A strong correlation between automatic and Simpson-based EF was found.

8.
JACC CardioOncol ; 6(2): 200-213, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38774008

RESUMEN

Background: Older patients with Hodgkin lymphoma (HL) often have comorbid cardiovascular disease; however, the impact of pre-existing heart failure (HF) on the management and outcomes of HL is unknown. Objectives: The aim of this study was to assess the prevalence of pre-existing HF in older patients with HL and its impact on treatment and outcomes. Methods: Linked Surveillance, Epidemiology, and End Results (SEER) and Medicare data from 1999 to 2016 were used to identify patients 65 years and older with newly diagnosed HL. Pre-existing HF, comorbidities, and cancer treatment were ascertained from billing codes and cause-specific mortality from SEER. The associations between pre-existing HF and cancer treatment were estimated using multivariable logistic regression. Cause-specific Cox proportional hazards models adjusted for comorbidities and cancer treatment were used to estimate the association between pre-existing HF and cause-specific mortality. Results: Among 3,348 patients (mean age 76 ± 7 years, 48.6% women) with newly diagnosed HL, pre-existing HF was present in 437 (13.1%). Pre-existing HF was associated with a lower likelihood of using anthracycline-based chemotherapy regimens (OR: 0.42; 95% CI: 0.29-0.60) and a higher likelihood of lymphoma mortality (HR: 1.25; 95% CI: 1.06-1.46) and cardiovascular mortality (HR: 2.57; 95% CI: 1.96-3.36) in models adjusted for comorbidities. One-year lymphoma mortality cumulative incidence was 37.4% (95% CI: 35.5%-39.5%) with pre-existing HF and 26.3% (95% CI: 25.0%-27.6%) without pre-existing HF. The cardioprotective medications dexrazoxane and liposomal doxorubicin were used in only 4.2% of patients. Conclusions: Pre-existing HF in older patients with newly diagnosed HL is common and associated with higher 1-year mortality. Strategies are needed to improve lymphoma and cardiovascular outcomes in this high-risk population.

9.
Med Int (Lond) ; 4(4): 37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799005

RESUMEN

Doxorubicin (DOX), a cornerstone of cancer chemotherapy, is marred by its dose-dependent cardiotoxicity, leading to cardiomyopathy and heart failure. The epidemiology of DOX-related cardiotoxicity highlights its cumulative, progressive nature, with a significant impact on the health of patients. The pathophysiological mechanisms involve mitochondrial dysfunction, oxidative stress and disrupted calcium homeostasis in cardiomyocytes. Despite the search for effective cardioprotective strategies, current treatments offer limited efficacy. Visnagin emerges as a potential solution, known for its vasodilatory and anti-inflammatory properties, and recent studies suggest its cardioprotective efficacy against DOX-induced cardiotoxicity through mitochondrial protection, the modulation of key signaling pathways and the inhibition of apoptosis. The present review aimed to provide a comprehensive overview of the mechanisms of action of visnagin, as well as to provide experimental evidence, and potential integration into cancer treatment regimens, highlighting its promise as a novel therapeutic agent for managing cardiotoxicity in patients undergoing anthracycline chemotherapy.

10.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167208, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701956

RESUMEN

OBJECTIVE: This study aims to investigate the cardiac protective effects and molecular mechanisms of electroacupuncture (EA) pre-treatment in lipopolysaccharide (LPS)-Induced Cardiomyopathy. METHODS AND RESULTS: Pre-treatment with EA was performed 30 min before intraperitoneal injection of LPS. Cardiac function changes in mice of the EA + LPS group were observed using electrocardiography, echocardiography, and enzyme linked immunosorbent assay (ELISA) and compared with the LPS group. The results demonstrated that EA pre-treatment significantly improved the survival rate of septic mice, alleviated the severity of endotoxemia, and exhibited notable cardiac protective effects. These effects were characterized by a reduction in ST-segment elevation on electrocardiography, an increase in ejection fraction (EF) and fraction shortening (FS) on echocardiography and a decrease in the expression of serum cardiac troponin I (cTn-I) levels. Serum exosomes obtained after EA pre-treatment were extracted and administered to septic mice, revealing significant cardiac protective effects of EA-derived exosomes. Furthermore, the antagonism of circulating exosomes in mice markedly suppressed the cardiac protective effects conferred by EA pre-treatment. Analysis of serum exosomes using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed a significant upregulation of miR-381 expression after EA pre-treatment. Inhibition or overexpression of miR-381 through serotype 9 adeno-associated virus (AAV9)-mediated gene delivery demonstrated that overexpression of miR-381 exerted a cardiac protective effect, while inhibition of miR-381 significantly attenuated the cardiac protective effects conferred by EA pre-treatment. CONCLUSIONS: Our research findings have revealed a novel endogenous cardiac protection mechanism, wherein circulating exosomes derived from EA pre-treatment mitigate LPS-induced cardiac dysfunction via miR-381.


Asunto(s)
Cardiomiopatías , Electroacupuntura , Exosomas , Lipopolisacáridos , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Exosomas/metabolismo , Exosomas/genética , Electroacupuntura/métodos , Ratones , Cardiomiopatías/inducido químicamente , Cardiomiopatías/metabolismo , Cardiomiopatías/terapia , Cardiomiopatías/patología , Cardiomiopatías/genética , Cardiomiopatías/prevención & control , Lipopolisacáridos/toxicidad , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
11.
Cardiovasc Diabetol ; 23(1): 160, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715043

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is a crucial complication of long-term chronic diabetes that can lead to myocardial hypertrophy, myocardial fibrosis, and heart failure. There is increasing evidence that DCM is associated with pyroptosis, a form of inflammation-related programmed cell death. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor ß superfamily, which regulates oxidative stress, inflammation, and cell survival to mitigate myocardial hypertrophy, myocardial infarction, and vascular injury. However, the role of GDF11 in regulating pyroptosis in DCM remains to be elucidated. This research aims to investigate the role of GDF11 in regulating pyroptosis in DCM and the related mechanism. METHODS AND RESULTS: Mice were injected with streptozotocin (STZ) to induce a diabetes model. H9c2 cardiomyocytes were cultured in high glucose (50 mM) to establish an in vitro model of diabetes. C57BL/6J mice were preinjected with adeno-associated virus 9 (AAV9) intravenously via the tail vein to specifically overexpress myocardial GDF11. GDF11 attenuated pyroptosis in H9c2 cardiomyocytes after high-glucose treatment. In diabetic mice, GDF11 alleviated cardiomyocyte pyroptosis, reduced myocardial fibrosis, and improved cardiac function. Mechanistically, GDF11 inhibited pyroptosis by preventing inflammasome activation. GDF11 achieved this by specifically binding to apoptosis-associated speck-like protein containing a CARD (ASC) and preventing the assembly and activation of the inflammasome. Additionally, the expression of GDF11 during pyroptosis was regulated by peroxisome proliferator-activated receptor α (PPARα). CONCLUSION: These findings demonstrate that GDF11 can treat diabetic cardiomyopathy by alleviating pyroptosis and reveal the role of the PPARα-GDF11-ASC pathway in DCM, providing ideas for new strategies for cardioprotection.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Fibrosis , Factores de Diferenciación de Crecimiento , Inflamasomas , Ratones Endogámicos C57BL , Miocitos Cardíacos , Piroptosis , Transducción de Señal , Animales , Piroptosis/efectos de los fármacos , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/prevención & control , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Línea Celular , Inflamasomas/metabolismo , Masculino , Factores de Diferenciación de Crecimiento/metabolismo , Ratas , Glucemia/metabolismo , Ratones , Glucosa/metabolismo , Glucosa/toxicidad , Proteínas Morfogenéticas Óseas , PPAR alfa
12.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732013

RESUMEN

The orphan nuclear receptor ERRα is the most extensively researched member of the estrogen-related receptor family and holds a pivotal role in various functions associated with energy metabolism, especially in tissues characterized by high energy requirements, such as the heart, skeletal muscle, adipose tissue, kidney, and brain. Abscisic acid (ABA), traditionally acknowledged as a plant stress hormone, is detected and actively functions in organisms beyond the land plant kingdom, encompassing cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. Its ancient, cross-kingdom role enables ABA and its signaling pathway to regulate cell responses to environmental stimuli in various organisms, such as marine sponges, higher plants, and humans. Recent advancements in understanding the physiological function of ABA and its mammalian receptors in governing energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells suggest potential therapeutic applications for ABA in pre-diabetes, diabetes, and cardio-/neuroprotection. The ABA/LANCL1-2 hormone/receptor system emerges as a novel regulator of ERRα expression levels and transcriptional activity, mediated through the AMPK/SIRT1/PGC-1α axis. There exists a reciprocal feed-forward transcriptional relationship between the LANCL proteins and transcriptional coactivators ERRα/PGC-1α, which may be leveraged using natural or synthetic LANCL agonists to enhance mitochondrial function across various clinical contexts.


Asunto(s)
Ácido Abscísico , Receptor Relacionado con Estrógeno ERRalfa , Metabolismo Energético , Receptores de Estrógenos , Receptores de Estrógenos/metabolismo , Humanos , Animales , Ácido Abscísico/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
13.
Cardiovasc Toxicol ; 24(6): 539-549, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703273

RESUMEN

NaAsO2 is known as a harmful pollutant all over the world, and many chronic heart diseases can be attributed to its prolonged exposure in NaAsO2-contaminated water. Therefore, considering the anti-inflammatory and antioxidant effects of betaine (BET), in this study, our team investigated the cardioprotective effects of this phytochemical agent on sodium arsenite (NaAsO2)-induced cardiotoxicity. Forty male mice were randomly divided into 4 groups: (I) Control; (II) BET (500 mg/kg); (III) NaAsO2 (50 ppm); and (IV) NaAsO2 + BET. NaAsO2 was given to the animals for 8 weeks, but BET was given in the last two weeks. After decapitation, inflammatory factors and biochemical parameters were measured, and Western blot analyses were performed. BET decrease the activity level of alanine aspartate aminotransferase, creatine kinase MB, thiobarbituric acid reactive substances level, inflammatory factors (tumor necrosis factor-α) content, and nuclear factor kappa B expression. Furthermore, BET increased cardiac total thiol and activity levels of catalase, superoxide dismutase, and glutathione peroxidase and nuclear factor erythroid-2 expression. Hence, the administration of BET ameliorated the deleterious effects stemming from the imbalance of oxidative and antioxidant pathways and histopathological alterations observed in NaAsO2-intoxicated mice, thereby attenuating oxidative stress-induced damage and inflammation.


Asunto(s)
Antiinflamatorios , Antioxidantes , Arsenitos , Betaína , Cardiotoxicidad , Modelos Animales de Enfermedad , Cardiopatías , Mediadores de Inflamación , Estrés Oxidativo , Transducción de Señal , Compuestos de Sodio , Animales , Arsenitos/toxicidad , Compuestos de Sodio/toxicidad , Masculino , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Antiinflamatorios/farmacología , Ratones , Betaína/farmacología , Cardiopatías/prevención & control , Cardiopatías/inducido químicamente , Cardiopatías/patología , Cardiopatías/metabolismo , Mediadores de Inflamación/metabolismo , Transducción de Señal/efectos de los fármacos , Biomarcadores/metabolismo , Biomarcadores/sangre , Citoprotección , Miocardio/patología , Miocardio/metabolismo
14.
Cells ; 13(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38786104

RESUMEN

Radiation-induced heart disease (RIHD), a common side effect of chest irradiation, is a primary cause of mortality among patients surviving thoracic cancer. Thus, the development of novel, clinically applicable cardioprotective agents which can alleviate the harmful effects of irradiation on the heart is of great importance in the field of experimental oncocardiology. Biglycan and decorin are structurally related small leucine-rich proteoglycans which have been reported to exert cardioprotective properties in certain cardiovascular pathologies. Therefore, in the present study we aimed to examine if biglycan or decorin can reduce radiation-induced damage of cardiomyocytes. A single dose of 10 Gray irradiation was applied to induce radiation-induced cell damage in H9c2 cardiomyoblasts, followed by treatment with either biglycan or decorin at various concentrations. Measurement of cell viability revealed that both proteoglycans improved the survival of cardiac cells post-irradiation. The cardiocytoprotective effect of both biglycan and decorin involved the alleviation of radiation-induced proapoptotic mechanisms by retaining the progression of apoptotic membrane blebbing and lowering the number of apoptotic cell nuclei and DNA double-strand breaks. Our findings provide evidence that these natural proteoglycans may exert protection against radiation-induced damage of cardiac cells.


Asunto(s)
Apoptosis , Biglicano , Decorina , Miocitos Cardíacos , Decorina/metabolismo , Biglicano/metabolismo , Apoptosis/efectos de la radiación , Apoptosis/efectos de los fármacos , Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de la radiación , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Ratas , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Humanos
16.
Int J Mol Sci ; 25(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38791311

RESUMEN

Doxorubicin (DOX), widely used as a chemotherapeutic agent for various cancers, is limited in its clinical utility by its cardiotoxic effects. Despite its widespread use, the precise mechanisms underlying DOX-induced cardiotoxicity at the cellular and molecular levels remain unclear, hindering the development of preventive and early detection strategies. To characterize the cytotoxic effects of DOX on isolated ventricular cardiomyocytes, focusing on the expression of specific microRNAs (miRNAs) and their molecular targets associated with endogenous cardioprotective mechanisms such as the ATP-sensitive potassium channel (KATP), Sirtuin 1 (SIRT1), FOXO1, and GSK3ß. We isolated Guinea pig ventricular cardiomyocytes by retrograde perfusion and enzymatic dissociation. We assessed cell morphology, Reactive Oxygen Species (ROS) levels, intracellular calcium, and mitochondrial membrane potential using light microscopy and specific probes. We determined the miRNA expression profile using small RNAseq and validated it using stem-loop qRT-PCR. We quantified mRNA levels of some predicted and validated molecular targets using qRT-PCR and analyzed protein expression using Western blot. Exposure to 10 µM DOX resulted in cardiomyocyte shortening, increased ROS and intracellular calcium levels, mitochondrial membrane potential depolarization, and changes in specific miRNA expression. Additionally, we observed the differential expression of KATP subunits (ABCC9, KCNJ8, and KCNJ11), FOXO1, SIRT1, and GSK3ß molecules associated with endogenous cardioprotective mechanisms. Supported by miRNA gene regulatory networks and functional enrichment analysis, these findings suggest that DOX-induced cardiotoxicity disrupts biological processes associated with cardioprotective mechanisms. Further research must clarify their specific molecular changes in DOX-induced cardiac dysfunction and investigate their diagnostic biomarkers and therapeutic potential.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , MicroARNs , Miocitos Cardíacos , Especies Reactivas de Oxígeno , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Animales , Doxorrubicina/efectos adversos , Doxorrubicina/toxicidad , Cardiotoxicidad/etiología , MicroARNs/genética , MicroARNs/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cobayas , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/citología , Masculino , Calcio/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos
17.
Front Cardiovasc Med ; 11: 1289663, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818214

RESUMEN

Background: Anthracycline-mediated adverse cardiovascular events are among the leading causes of morbidity and mortality in patients with cancer. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) exert multiple cardiometabolic benefits in patients with/without type 2 diabetes, chronic kidney disease, and heart failure with reduced and preserved ejection fraction. We hypothesized that the SGLT2i dapagliflozin administered before and during doxorubicin (DOXO) therapy could prevent cardiac dysfunction and reduce pro-inflammatory pathways in preclinical models. Methods: Cardiomyocytes were exposed to DOXO alone or combined with dapagliflozin (DAPA) at 10 and 100 nM for 24 h; cell viability, iATP, and Ca++ were quantified; lipid peroxidation products (malondialdehyde and 4-hydroxy 2-hexenal), NLRP3, MyD88, and cytokines were also analyzed through selective colorimetric and enzyme-linked immunosorbent assay (ELISA) methods. Female C57Bl/6 mice were treated for 10 days with a saline solution or DOXO (2.17 mg/kg), DAPA (10 mg/kg), or DOXO combined with DAPA. Systemic levels of ferroptosis-related biomarkers, galectin-3, high-sensitivity C-reactive protein (hs-CRP), and pro-inflammatory chemokines (IL-1α, IL-1ß, IL-2, IL-4, IL-6, IL-10, IL-12, IL17-α, IL-18, IFN-γ, TNF-α, G-CSF, and GM-CSF) were quantified. After treatments, immunohistochemical staining of myocardial and renal p65/NF-kB was performed. Results: DAPA exerts cytoprotective, antioxidant, and anti-inflammatory properties in human cardiomyocytes exposed to DOXO by reducing iATP and iCa++ levels, lipid peroxidation, NLRP-3, and MyD88 expression. Pro-inflammatory intracellular cytokines were also reduced. In preclinical models, DAPA prevented the reduction of radial and longitudinal strain and ejection fraction after 10 days of treatment with DOXO. A reduced myocardial expression of NLRP-3 and MyD-88 was seen in the DOXO-DAPA group compared to DOXO mice. Systemic levels of IL-1ß, IL-6, TNF-α, G-CSF, and GM-CSF were significantly reduced after treatment with DAPA. Serum levels of galectine-3 and hs-CRP were strongly enhanced in the DOXO group; on the other hand, their expression was reduced in the DAPA-DOXO group. Troponin-T, B-type natriuretic peptide (BNP), and N-Terminal Pro-BNP (NT-pro-BNP) were strongly reduced in the DOXO-DAPA group, revealing cardioprotective properties of SGLT2i. Mice treated with DOXO and DAPA exhibited reduced myocardial and renal NF-kB expression. Conclusion: The overall picture of the study encourages the use of DAPA in the primary prevention of cardiomyopathies induced by anthracyclines in patients with cancer.

18.
Front Oncol ; 14: 1393930, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706609

RESUMEN

Detrimental side effects of drugs like doxorubicin, which can cause cardiotoxicity, pose barriers for preventing cancer progression, or treating cancer early through molecular interception. Extracellular vesicles (EVs) are valued for their potential as biomarkers of human health, chemical and molecular carcinogenesis, and therapeutics to treat disease at the cellular level. EVs are released both during normal growth and in response to toxicity and cellular death, playing key roles in cellular communication. Consequently, EVs may hold promise as precision biomarkers and therapeutics to prevent or offset damaging off-target effects of chemotherapeutics. EVs have promise as biomarkers of impending cardiotoxicity induced by chemotherapies and as cardioprotective therapeutic agents. However, EVs can also mediate cardiotoxic cues, depending on the identity and past events of their parent cells. Understanding how EVs mediate signaling is critical toward implementing EVs as therapeutic agents to mitigate cardiotoxic effects of chemotherapies. For example, it remains unclear how mixtures of EV populations from cells exposed to toxins or undergoing different stages of cell death contribute to signaling across cardiac tissues. Here, we present our perspective on the outlook of EVs as future clinical tools to mitigate chemotherapy-induced cardiotoxicity, both as biomarkers of impending cardiotoxicity and as cardioprotective agents. Also, we discuss how heterogeneous mixtures of EVs and transient exposures to toxicants may add complexity to predicting outcomes of exogenously applied EVs. Elucidating how EV cargo and signaling properties change during dynamic cellular events may aid precision prevention of cardiotoxicity in anticancer treatments and development of safer chemotherapeutics.

19.
Artículo en Inglés | MEDLINE | ID: mdl-38684422

RESUMEN

PURPOSE: The study aims to assess the effects of dexmedetomidine (Dex) pretreatment on patients during cardiac valve replacement under cardiopulmonary bypass. METHODS: For patients in the Dex group (n = 52), 0.5 µg/kg Dex was given before anesthesia induction, followed by 0.5 µg/kg/h pumping injection before aortic occlusion. For patients in the control group (n = 52), 0.125 ml/kg normal saline was given instead of Dex. RESULTS: The patients in the Dex group had longer time to first dose of rescue propofol than the control group (P = 0.003). The Dex group required less total dosage of propofol than the control group (P = 0.0001). The levels of cardiac troponin I (cTnI), creatine kinase isoenzyme MB (CK-MB), malondialdehyde (MDA), and tumor necrosis factor-α (TNF-α) were lower in the Dex group than the control group at T4, 8 h after the operation (T5), and 24 h after the operation (T6) (P <0.01). The Dex group required less time for mechanical ventilation than the control group (P = 0.003). CONCLUSION: The study suggests that 0.50 µg/kg Dex pretreatment could reduce propofol use and the duration of mechanical ventilation, and confer myocardial protection without increased adverse events during cardiac valve replacement.


Asunto(s)
Biomarcadores , Puente Cardiopulmonar , Dexmedetomidina , Implantación de Prótesis de Válvulas Cardíacas , Propofol , Respiración Artificial , Troponina I , Dexmedetomidina/administración & dosificación , Dexmedetomidina/efectos adversos , Humanos , Puente Cardiopulmonar/efectos adversos , Masculino , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Femenino , Factores de Tiempo , Persona de Mediana Edad , Resultado del Tratamiento , Propofol/efectos adversos , Propofol/administración & dosificación , Biomarcadores/sangre , Troponina I/sangre , Forma MB de la Creatina-Quinasa/sangre , Agonistas de Receptores Adrenérgicos alfa 2/efectos adversos , Agonistas de Receptores Adrenérgicos alfa 2/administración & dosificación , Factor de Necrosis Tumoral alfa/sangre , Malondialdehído/sangre , Anciano , Adulto , Anestésicos Intravenosos/efectos adversos , Anestésicos Intravenosos/administración & dosificación , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/etiología
20.
J Mol Cell Cardiol ; 191: 12-22, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643934

RESUMEN

Doxorubicin (DOX) is a widely used chemotherapeutic agent that can cause serious cardiotoxic side effects, leading to heart failure (HF). Impaired mitochondrial function is thought to be key factor driving progression into HF. We have previously shown in a rat model of DOX-HF that heart failure with reduced ejection fraction correlates with mitochondrial loss and dysfunction. Adenosine monophosphate-dependent kinase (AMPK) is a cellular energy sensor, regulating mitochondrial biogenesis and energy metabolism, including fatty acid oxidation. We hypothesised that AMPK activation could restore mitochondrial function and therefore be a novel cardioprotective strategy for the prevention of DOX-HF. Consequently, we set out to assess whether 5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR), an activator of AMPK, could prevent cardiac functional decline in this chronic intravenous rat model of DOX-HF. In line with our hypothesis, AICAR improved cardiac systolic function. AICAR furthermore improved cardiac mitochondrial fatty acid oxidation, independent of mitochondrial number, and in the absence of observable AMPK-activation. In addition, we found that AICAR prevented loss of myocardial mass. RNAseq analysis showed that this may be driven by normalisation of pathways associated with ribosome function and protein synthesis, which are impaired in DOX-treated rat hearts. AICAR furthermore prevented dyslipidemia and excessive body-weight loss in DOX-treated rats, which may contribute to preservation of myocardial mass. Though it is unclear whether AICAR exerted its cardioprotective effect through cardiac or extra-cardiac AMPK-activation or via an AMPK-independent effect, these results show promise for the use of AICAR as a cardioprotective agent in DOX-HF to both preserve cardiac function and mass.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Aminoimidazol Carboxamida , Cardiotónicos , Doxorrubicina , Insuficiencia Cardíaca , Ribonucleótidos , Animales , Doxorrubicina/efectos adversos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/prevención & control , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/tratamiento farmacológico , Ribonucleótidos/farmacología , Masculino , Cardiotónicos/farmacología , Ratas , Proteínas Quinasas Activadas por AMP/metabolismo , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patología , Ácidos Grasos/metabolismo , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA