Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.896
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biomaterials ; 313: 122766, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39180916

RESUMEN

The immune resistance of tumor microenvironment (TME) causes immune checkpoint blockade therapy inefficient to hepatocellular carcinoma (HCC). Emerging strategies of using chemotherapy regimens to reverse the immune resistance provide the promise for promoting the efficiency of immune checkpoint inhibitors. The induction of cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) in tumor cells evokes the adaptive immunity and remodels the immunosuppressive TME. In this study, we report that mitoxantrone (MIT, a chemotherapeutic drug) activates the cGAS-STING signaling pathway of HCC cells. We provide an approach to augment the efficacy of MIT using a signal transducer and activator of transcription 3 (STAT3) inhibitor called napabucasin (NAP). We prepare an aminoethyl anisamide (AEAA)-targeted polyethylene glycol (PEG)-modified poly (lactic-co-glycolic acid) (PLGA)-based nanocarrier for co-delivery of MIT and NAP. The resultant co-nanoformulation can elicit the cGAS-STING-based immune responses to reshape the immunoresistant TME in the mice orthotopically grafted with HCC. Consequently, the resultant co-nanoformulation can promote anti-PD-1 antibody for suppressing HCC development, generating long-term survival, and inhibiting tumor recurrence. This study reveals the potential of MIT to activate the cGAS-STING signaling pathway, and confirms the feasibility of nano co-delivery for MIT and NAP on achieving HCC chemo-immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Inmunoterapia , Neoplasias Hepáticas , Proteínas de la Membrana , Mitoxantrona , Nucleotidiltransferasas , Factor de Transcripción STAT3 , Mitoxantrona/farmacología , Mitoxantrona/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Animales , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Humanos , Nucleotidiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Factor de Transcripción STAT3/metabolismo , Ratones , Inmunoterapia/métodos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Benzofuranos , Naftoquinonas
2.
Gene ; 932: 148904, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39218415

RESUMEN

BACKGROUND: Cervical cancer, primarily caused by HPV infection, remains a global health concern. Current treatments face challenges including drug resistance and toxicity. This study investigates combining E5-siRNA with chemotherapy drugs, Oxaliplatin and Ifosfamide, to enhance treatment efficacy in HPV-16 positive cervical cancer cells, targeting E5 oncoprotein to overcome limitations of existing therapies. METHODS: The CaSki cervical cancer cell line was transfected with E5-siRNA, and subsequently treated with Oxaliplatin/Ifosfamide. Quantitative real-time PCR was employed to assess the expression of related genes including p53, MMP2, Nanog, and Caspases. Cell apoptosis, cell cycle progression, and cell viability were evaluated using Annexin V/PI staining, DAPI staining, and MTT test, respectively. Furthermore, stemness ability was determined through a colony formation assay, and cell motility was assessed by wound healing assay. RESULTS: E5-siRNA transfection significantly reduced E5 mRNA expression in CaSki cells compared to the control group. The MTT assay revealed that monotherapy with E5-siRNA, Oxaliplatin, or Ifosfamide had moderate effects on cell viability. However, combination therapy showed synergistic effects, reducing the IC50 of Oxaliplatin from 11.42 × 10-8 M (45.36 µg/ml) to 6.71 × 10-8 M (26.66 µg/ml) and Ifosfamide from 12.52 × 10-5 M (32.7 µg/ml) to 8.206 × 10-5 M (21.43 µg/ml). Flow cytometry analysis demonstrated a significant increase in apoptosis for combination treatments, with apoptosis rates rising from 11.02 % (Oxaliplatin alone) and 16.98 % (Ifosfamide alone) to 24.8 % (Oxaliplatin + E5-siRNA) and 34.9 % (Ifosfamide + E5-siRNA). The sub-G1 cell population increased from 15.7 % (Oxaliplatin alone) and 18 % (Ifosfamide alone) to 21.9 % (Oxaliplatin + E5-siRNA) and 27.1 % (Ifosfamide + E5-siRNA), indicating cell cycle arrest. The colony formation assay revealed a substantial decrease in the number of colonies following combination treatment. qRT-PCR analysis showed decreased expression of stemness-related genes CD44 and Nanog, and migration-related genes MMP2 and CXCL8 in the combination groups. Apoptosis-related genes Casp-3, Casp-9, and pP53 showed increased expression following combination therapy, while BAX expression increased and BCL2 expression decreased relative to the control. CONCLUSION: The study demonstrates that combining E5-siRNA with Oxaliplatin or Ifosfamide enhances the efficacy of chemotherapy in HPV-16 positive cervical cancer cells. This synergistic approach effectively targets multiple aspects of cancer cell behavior, including proliferation, apoptosis, migration, and stemness. The findings suggest that this combination strategy could potentially allow for lower chemotherapy doses, thereby reducing toxicity while maintaining therapeutic efficacy. This research provides valuable insights into targeting HPV E5 as a complementary approach to existing therapies focused on E6 and E7 oncoproteins, opening new avenues for combination therapies in cervical cancer treatment.


Asunto(s)
Apoptosis , Papillomavirus Humano 16 , Ifosfamida , Oxaliplatino , ARN Interferente Pequeño , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/virología , Oxaliplatino/farmacología , Femenino , ARN Interferente Pequeño/genética , Línea Celular Tumoral , Ifosfamida/farmacología , Apoptosis/efectos de los fármacos , Papillomavirus Humano 16/genética , Infecciones por Papillomavirus/tratamiento farmacológico , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/virología , Supervivencia Celular/efectos de los fármacos , Proteínas Oncogénicas Virales/genética , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
3.
Front Oncol ; 14: 1432899, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39376986

RESUMEN

Exercise plays many important roles across the entire cancer continuum that have been described in previous frameworks. These frameworks, however, have generally provided a simplified description of the roles of exercise postdiagnosis. The modern cancer treatment landscape has become complex and often consists of multiple lines of multimodal treatments combined concurrently and/or sequentially and delivered over many months or years. This complexity requires a more multifaceted and targeted approach to the study of exercise after a cancer diagnosis. Here, we propose a new integrated framework-Exercise Across the Postdiagnosis Cancer Continuum (EPiCC)-that highlights the distinct roles of exercise for disease treatment and supportive care from diagnosis until death. We also propose new terminology to clarify the distinct roles of exercise that emerge in the context of the modern cancer treatment landscape. The EPiCC Framework is structured around multiple sequential cancer treatments that highlight six distinct cancer treatment-related time periods for exercise-before treatments, during treatments, between treatments, immediately after successful treatments, during longer term survivorship after successful treatments, and during end of life after unsuccessful treatments. The EPiCC Framework proposes that the specific roles of exercise as a disease treatment and supportive care intervention will vary depending on its positioning within different cancer treatment combinations. As a cancer treatment, exercise may serve as a "priming therapy", primary therapy, neoadjuvant therapy, induction therapy, "bridging therapy", adjuvant therapy, consolidation therapy, maintenance therapy, and/or salvage therapy. As a supportive care intervention, exercise may serve as prehabilitation, intrahabilitation, interhabilitation, rehabilitation, "perihabilitation", health promotion/disease prevention, and/or palliation. To date, exercise has been studied during all of the cancer treatment-related time periods but only in relation to some cancer treatments and combinations. Moreover, fewer studies have examined exercise across multiple cancer treatment-related time periods within any cancer treatment combination. Future research is needed to study exercise as a disease treatment and supportive care intervention within and across the distinct cancer treatment-related time periods contained within different cancer treatment combinations. The aim of the EPiCC Framework is to stimulate a more targeted, integrated, and clinically-informed approach to the study of exercise after a cancer diagnosis.

4.
Front Oncol ; 14: 1430991, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39376988

RESUMEN

Hepatocellular carcinoma (HCC) is the most common primary liver cancer, affecting millions of people worldwide. Due to the complexity and variability of the disease, there are major challenges in the treatment of HCC in its intermediate and advanced stages; despite advances in various treatment modalities, there are still gaps in our understanding of effective therapeutic strategies. Key findings from several studies have shown that the combination of immunotherapy and targeted therapy has a synergistic anti-tumor effect, which can significantly enhance efficacy with a favorable safety profile. In addition, other studies have identified potential biomarkers of therapeutic response, such as tumor protein 53 (TP53) and CTNNB1 (encoding ß-conjugated proteins), thus providing personalized treatment options for patients with intermediate and advanced hepatocellular carcinoma. The aim of this article is to review the recent advances in the treatment of intermediate and advanced HCC, especially targeted immune-combination therapy, chimeric antigen receptor T cell therapy (CAR-T cell therapy), and gene therapy for these therapeutic options that fill in the gaps in our knowledge of effective treatment strategies, providing important insights for further research and clinical practice.

5.
Mol Carcinog ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377735

RESUMEN

The rising incidence of hepatocellular carcinoma (HCC) is a global problem. Several approved treatments, including immune therapy and multi-tyrosine kinase inhibitors, are used for treatment, although the results are not optimum. There is an unmet need to develop highly effective chemotherapies for HCC. Targeting multiple pathways to attack cancer cells is beneficial. Cabozantinib is an orally available bioactive multikinase inhibitor and has a modest effect on HCC treatment. Silmitasertib is an orally bioavailable, potent CK2 inhibitor with a direct role in DNA damage repair and is in clinical trials for other cancers. In this study, we planned to repurpose these existing drugs on HCC treatment. We observed a stronger antiproliferative effect of these two combined drugs on HCC cells generated from different etiologies as compared to the single treatment. Global RNA-seq analyses revealed a decrease in the expression of G2/M cell cycle transition genes in HCC cells following combination treatment, suggesting G2 phase cell arrest. We observed G2/M cell cycle phase arrest in HCC cells upon combination treatment compared to the single-treated or vehicle-treated control cells. The downregulation of CCNA2 and CDC25C following combination therapy further supported the observation. Subsequent analyses demonstrated that combination treatment inhibited 70 kDa ribosomal protein S6 kinase (p70S6K) phosphorylation, and increased Bim expression. Apoptosis of HCC cells were accompanied by increased poly (ADP-ribose) polymerase cleavage and caspase-9 activation. Next, we observed that a combination therapy significantly delayed the progression of HCC xenograft growth as compared to vehicle control. Together, our results suggested combining cabozantinib and silmitasertib would be a promising treatment option for HCC.

6.
Colloids Surf B Biointerfaces ; 245: 114285, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39366109

RESUMEN

Glioblastoma is one of the most recurring types of glioma, having the highest mortality rate among all other gliomas. Traditionally, the standard course of treatment for glioblastoma involved maximum surgical resection, followed by chemotherapy and radiation therapy. Nanocarriers have recently focused on enhancing the chemotherapeutic administration to the brain to satisfy unmet therapeutic requirements for treating brain-related disorders. Due to the significant drawbacks and high recurrence rates of gliomas, intranasal administration of nanocarrier systems presents several advantages. These include low toxicity, non-invasiveness, and the ability to cross the blood-brain barrier. By customizing their size, encasing them with mucoadhesive agents, or undergoing surface modification that encourages movement over the nose's mucosa, we can exceptionally engineer nanocarriers for intranasal administration. Olfactory and trigeminal nerves absorb drugs administered nasally and transport them to the brain, serving as the primary delivery mechanism for nose-to-brain administration. This review sums up the latest developments in chemotherapeutic nanocarriers, such as metallic nanoparticles, polymeric nanoparticles, nanogels, nano vesicular carriers, genetic material-based nanocarriers, and polymeric micelles. These nanocarriers have demonstrated efficient drug delivery from the nose to the brain, effectively overcoming mucociliary clearance. However, challenges persist, such as limitations in targeted chemotherapy and restricted drug loading capacity for intranasal administration. Additionally, the review addresses regulatory considerations and prospects for these innovative drug delivery systems.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39367984

RESUMEN

This study examined the safety and potential anti-lung cancer effects of combinations of phytol and α-bisabolol in Swiss albino mice. Both acute and subacute toxicity assessments showed that the combination of phytol and α-bisabolol is safe, with no adverse effects observed at higher concentrations. Hematological, biochemical, and histopathological tests showed no signs of toxicity in the heart, lungs, liver, spleen, and kidneys. The LD50 was greater than 2000 mg/kg, indicating a large safety margin. Histopathological analysis confirmed cancer induction in the B(a)P-induced group, which had significantly altered relative lung weights. Lung weight increased slightly pre and post-treatment, but histopathology showed normal alveolar epithelium. GSH and SOD levels increased significantly in B(a)P-exposed groups, indicating an adaptive antioxidant response. CAT levels increased significantly in the post-treatment group, demonstrating the role of combination of phytol and α-bisabolol in protecting against B(a)P-induced oxidative damage. Upregulation of Bax and downregulation of Bcl-2 caused a pro-apoptotic environment, suggesting a way to inhibit malignant cell survival. Modulation of caspase-3 and caspase-9 showed the complexity of carcinogen-induced apoptotic signaling. In conclusion, phytol and α-bisabolol were found to be safe and organ-protective, and demonstrated no acute or subacute toxicity. They modulate antioxidant defenses and apoptotic pathways, which may help prevent and treat lung cancer.

8.
Biochem Biophys Res Commun ; 734: 150781, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39368372

RESUMEN

Despite demonstrating promising outcomes in treating hematologic malignancies, the efficacy of chimeric antigen receptor-modified T (CAR-T) cell therapy remains limited when applied to solid tumors due to tumor immune microenvironment (TIME). Strategies to augment CAR-T cell efficacy against solid tumors have been investigated by ameliorating TIME to a certain extent. In this study, Cabozantinib was utilized in combination with CAR-T cells targeting carbonic anhydrase IX (CAIX) for the treatment of renal cancer. Our findings indicate that combination therapy with CAIX-CAR-T and Cabozantinib demonstrated synergistic efficacy against an orthotopic xenograft tumor model and a subcutaneous tumor model of renal cell carcinoma in mice. Mechanistically, it was observed that CAR-T cells combined with Cabozantinib led to an increase in the infiltration of tumor-infiltrating T cells, while reducing tumor-associated macrophages and M2 polarization. Additionally, Cabozantinib blocked the programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) axis by decreasing the expression of PD-L1 in tumor cells and PD-1 in T cells. Furthermore, Cabozantinib promoted CAR-T cell effector function and reduced T cell exhaustion. This combination therapy represents a novel approach to enhancing CAR-T cell efficacy against solid tumors and holds significant promise for advancing CAR-T cell therapy in clinical settings.

9.
Life Sci ; 357: 123097, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362582

RESUMEN

Targeted therapies using epidermal growth factor receptor (EGFR) inhibitors have markedly improved survival rates and quality of life for patients with EGFR-mutant lung adenocarcinoma (LUAD). Despite these advancements, resistance to EGFR inhibitors remains a significant challenge, limiting the overall effectiveness of the treatment. This study explored the synergistic effects of combining Paeoniae Radix (PR) with first-generation EGFR-tyrosine kinase inhibitors (TKIs), erlotinib and gefitinib, to overcome this resistance. Transcriptomic analysis of EGFR-mutant LUAD cell lines revealed that PR treatment could potentially reverse the gene signatures associated with resistance to EGFR-TKIs, primarily through the suppression of the Aurora B pathway. Experimental validation demonstrated that combining PR with erlotinib and gefitinib enhanced drug responsiveness by inhibiting Aurora kinase activity and inducing apoptosis in LUAD cells. Additionally, gene expression changes confirmed these combined effects, with the suppression of the Aurora B pathway and upregulation of the apoptotic pathway, which was accompanied by increased expression of multiple pro-apoptotic genes. Our findings contribute to the development of natural product-based therapeutic strategies to mitigate drug resistance in LUAD.

10.
Drug Resist Updat ; 77: 101152, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39369466

RESUMEN

Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Platinum-based drugs, such as cisplatin and oxaliplatin, are frontline chemotherapy for CRC, effective in both monotherapy and combination regimens. However, the clinical efficacy of these treatments is often undermined by the development of drug resistance, a significant obstacle in cancer therapy. In recent years, epigenetic alterations have been recognized as key players in the acquisition of resistance to platinum drugs. Targeting these dysregulated epigenetic mechanisms with small molecules represents a promising therapeutic strategy. This review explores the complex relationship between epigenetic changes and platinum resistance in CRC, highlighting current epigenetic therapies and their effectiveness in countering resistance mechanisms. By elucidating the epigenetic underpinnings of platinum resistance, this review aims to contribute to ongoing efforts to improve treatment outcomes for CRC patients.

11.
Int J Biol Macromol ; : 136444, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39389487

RESUMEN

Starvation therapy targets the high metabolic demand of tumor cells. It primarily leans over the consumption of intracellular glucose and simultaneous blockade of alternative metabolic pathways. The strategy involves the use of glucose oxidase (GOx) for catalyzing the conversion of glucose into gluconic acid and hydrogen peroxide. Under these conditions, metabolic re-programming of tumor cells enables the utilization of substrates such as amino acids, fatty acids and lipids. This can be overcome by co-administration of chemo-, photo- and immuno-therapeutics together with glucose oxidase. Targeted delivery of glucose oxidase at tumor site can be enabled with the use of nanoformulations. In this review, we highlight that the outcomes of starvation therapy can be improved using rationally developed nano-formulations. It is possible to load synergistically acting bioactives in these formulations and deliver in site-specific manner and hence achieve the elimination of tumors cells with greater efficacy.

13.
Front Oncol ; 14: 1453164, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39381045

RESUMEN

Background: In this study, we aimed to explore the mechanism by which resveratrol promotes cisplatin-induced death of HepG2 cells and to provide a potential strategy for resveratrol in the treatment of cancer. Methods: HepG2 cells were exposed to a range of drug concentrations for 24 h: resveratrol (2.5 µg/mL [10.95 µM], 5 µg/mL [21.91 µM], 10 µg/mL [43.81 µM], 20 µg/mL [87.62 µM], 40 µg/mL [175.25 µM], and 80 µg/mL [350.50 µM]), cisplatin (0.625 µg/mL [2.08 µM], 1.25 µg/mL [4.17 µM], 2.5 µg/mL [8.33 µM], 4.5 µg/mL [15.00 µM], and 10 µg/mL [33.33 µM]), 24 µg/mL (105.15 µM) resveratrol + 9 µg/mL (30.00 µM) cisplatin, and 12 µg/mL (52.57 µM) resveratrol + 4.5 µg/mL (15.00 µM) cisplatin. The interaction of two drugs was evaluated by coefficient of drug interaction (CDI), which was based on the Pharmacological Additivity model. The MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to detect the effect of different concentrations of drugs on cell viability, while transcriptome sequencing was used to identify pathways associated with higher gene enrichment. Synchrotron radiation FTIR microspectroscopy experiments and data analysis were conducted to obtain detailed spectral information. The second-derivative spectra were calculated using the Savitzky-Golay algorithm. Single-cell infrared spectral absorption matrices were constructed to analyze the spectral characteristics of individual cells. The Euclidean distance between cells was calculated to assess their spectral similarity. The cell-to-cell Euclidean distance was computed to evaluate the spatial relationships between cells. The target protein of resveratrol was verified by performing a Western blot analysis. Results: After 24 h of treatment with resveratrol, HepG2 cell growth was inhibited in a dose-dependent manner. Resveratrol promotes cisplatin-induced HepG2 cell death through membrane-related pathways. It also significantly changes the membrane components of HepG2 cells. Additionally, resveratrol changes the morphology of the HepG2 cell membrane by decreasing the expression of PLA2G2. Conclusion: Resveratrol changes the morphology of the HepG2 cell membrane by decreasing the expression of PLA2G2 and promotes cisplatin-induced HepG2 cell death. The combination of cisplatin and resveratrol can play a synergistic therapeutic effect on HepG2 cells.

14.
ACS Nano ; 18(41): 28104-28114, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39373015

RESUMEN

The nanozyme with NADPH oxidase (NOX)-like activity can promote the consumption of NADPH and the generation of free radicals. In consideration of that the upregulation of glucose-6-phosphate dehydrogenase (G6PD) would accelerate the compensation production of NADPH, for inhibition of G6PD activity, our designed bioorthogonal nanozyme can in situ catalyze pro-DHEA to produce G6PD inhibitor and dehydroepiandrosterone (DHEA) drugs to inhibit G6PD activity. Therefore, the well-defined platform can disrupt NADPH homeostasis, leading to the collapse of the antioxidant defense system in the tumor cells. The enzyme-like activity of PdCuFe is further enhanced when irradiated by NIR-II light. The destruction of NADPH homeostasis can promote ferroptosis and, in turn, facilitate mild photothermal therapy. Our design can realize NADPH depletion and greatly improve the therapeutic effect through metabolic regulation, which may provide inspiration for the design of bioorthogonal catalysis.


Asunto(s)
Ferroptosis , Glucosafosfato Deshidrogenasa , Terapia Fototérmica , Ferroptosis/efectos de los fármacos , Humanos , Glucosafosfato Deshidrogenasa/metabolismo , NADP/metabolismo , NADP/química , Animales , Ratones , Deshidroepiandrosterona/metabolismo , Deshidroepiandrosterona/química , Deshidroepiandrosterona/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas/química , Nanopartículas/metabolismo
15.
MAbs ; 16(1): 2412881, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39381966

RESUMEN

Currently approved human epidermal growth factor receptor 2 (HER2)-targeted antibody therapies are largely derived from trastuzumab, including trastuzumab-chemotherapy combinations, fixed-dose trastuzumab-pertuzumab combinations, and trastuzumab antibody-drug conjugates. To expand the options, bispecific antibodies, which may better utilize the benefits of combination therapy, are being developed. Among them, biparatopic antibodies (bpAbs) have shown improved efficacy compared to monoclonal antibody (mAb) combinations in HER2-positive patients. BpAbs bind two independent epitopes on the same antigen, which allows fine-tuning of mechanisms of action, including enhancement of on-target specificity and induction of strong antigen clustering due to the unique binding mode. To fully utilize the potential of bpAbs for anti-HER2 drug development, it is crucial to consider formats that offer stability and high-yield production, along with a functional balance between the two epitopes. In this study, we rationally designed a bpAb, KJ015, that shares a common light chain with two Fab arms and exhibits functionally balanced high affinity for two HER2 non-overlapping epitopes. KJ015 demonstrated high-expression titers over 7 g/L and stable physicochemical properties at elevated concentrations, facilitating subcutaneous administration with hyaluronidase. Moreover, KJ015 maintained comparable antibody-dependent cytotoxicity, phagocytosis, and complement-dependent cytotoxicity with trastuzumab plus pertuzumab. It exhibited enhanced synergy when administered subcutaneously with hyaluronidase and anti-PD-1 mAb in a mouse tumor model, suggesting promising clinical prospects for this combination.


Asunto(s)
Anticuerpos Biespecíficos , Receptor ErbB-2 , Animales , Humanos , Receptor ErbB-2/inmunología , Receptor ErbB-2/antagonistas & inhibidores , Ratones , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Femenino , Línea Celular Tumoral , Afinidad de Anticuerpos , Ensayos Antitumor por Modelo de Xenoinjerto , Sinergismo Farmacológico , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Monoclonales Humanizados/farmacología
16.
Rheumatol Ther ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39397239

RESUMEN

This commentary explores the potential cardiovascular (CV) benefits of combining methotrexate (MTX) and Janus kinase inhibitors (JAKis) in the treatment of rheumatoid arthritis (RA). While European guidelines recommend MTX as first-line treatment, concerns about the CV risks associated with JAKis have emerged. This article reviews the existing literature to assess the role of concomitant MTX in reducing CV risk when used with JAKis. Clinical trials confirm the efficacy of JAKis in combination with MTX in terms of treatment outcomes in RA. However, the number of major adverse cardiovascular events (MACEs) reported is too low to draw conclusions on adverse CV outcomes. Indirect evidence does, however, suggest potential protective effects of MTX on CV outcomes, as several mechanisms may contribute to MTX's cardioprotective effects, including reduced inflammation, adenosine monophosphate-activated protein kinase (AMPK) activation, increased cholesterol efflux, and adenosine accumulation. These mechanisms and the available data may support the case for CV benefits of concomitant MTX when JAKis are used in the treatment of patients with RA, although further research is needed. In particular, the lipid paradox associated with RA highlights the complex relationship between RA treatments (MTX, JAKis, tumor necrosis factor (TNF) inhibitors, and interleukin (IL)-6 receptor inhibitors), inflammation, different lipid profiles, and CV risk. In the absence of contraindications and when MTX is tolerated, this commentary suggests the concomitant use of MTX and JAKis as a preferred option for optimizing CV protection in patients with RA.

17.
Front Immunol ; 15: 1468440, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39355241

RESUMEN

Background: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality globally, particularly when diagnosed at an unresectable stage. Traditional treatments for advanced HCC have limited efficacy, prompting the exploration of combination therapies. This systematic review and meta-analysis evaluate the effectiveness and safety of combining PD-1/PD-L1 inhibitors with anti-angiogenic agents in patients with unresectable HCC. Methods: A comprehensive literature search was conducted in PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), and Web of Science, including studies up to June 2024. Randomized controlled trials (RCTs) comparing combination therapy (PD-1/PD-L1 inhibitors with anti-angiogenic agents) to monotherapy or standard treatments in unresectable HCC patients were included. Data were synthesized using random-effects models, with pooled hazard ratios (HRs) for overall survival (OS) and progression-free survival (PFS), and risk ratios (RRs) for objective response rate (ORR) and adverse events (AEs). Results: Five Phase III RCTs involving 1515 patients were included. Combination therapy significantly improved OS (HR: 0.71, 95% CI: 0.60-0.85) and PFS (HR: 0.64, 95% CI: 0.53-0.77) compared to monotherapy or standard treatments. The pooled OR for ORR was 1.27 (95% CI: 1.57-2.11), indicating a higher response rate with combination therapy. However, the risk of AEs was also higher in the combination therapy group (RR: 1.04, 95% CI: 1.02-1.06). Subgroup analyses revealed consistent benefits across different types of PD-1/PD-L1 inhibitors and anti-angiogenic agents, with no significant publication bias detected. Conclusions: The combination of PD-1/PD-L1 inhibitors with anti-angiogenic agents offers significant benefits in improving OS and PFS in patients with unresectable HCC, although it is associated with an increased risk of adverse events.


Asunto(s)
Inhibidores de la Angiogénesis , Antígeno B7-H1 , Carcinoma Hepatocelular , Inhibidores de Puntos de Control Inmunológico , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/mortalidad , Inhibidores de la Angiogénesis/uso terapéutico , Inhibidores de la Angiogénesis/efectos adversos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Antígeno B7-H1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como Asunto
18.
Artículo en Inglés | MEDLINE | ID: mdl-39385421

RESUMEN

Cyclophosphamide is a precursor of alkylating nitrogen mustard and was initially claimed to have antineoplastic and immunosuppressive properties. However, the role of cyclo-phosphamide as an immune activator has also been reported, depending on the dosage used. The application of lower-dose cyclophosphamide has emerged as a potential approach to cancer treatment. Cyclophosphamide selectively depletes regulatory T cells (Tregs), which dampens the immunological response, thereby rebalancing the immune system to allow other immune cells to act more efficiently. Cyclophosphamide can be either a friend or a foe in cancer treatment, de-pending on the therapeutic regime. The following questions remain to be answered: Can the cy-clophosphamide be used in the presence of other agents? Is there any single immunotherapeutic agent that acts synergistically with cyclophosphamide to effectively alter the immunosuppres-sive tumor microenvironment? This review emphasizes the role of cyclophosphamide as an im-mune modulator, both alone and in combination with other immunotherapeutic agents, for effec-tive cancer treatment in preclinical and clinical settings.

19.
Ther Adv Med Oncol ; 16: 17588359241285981, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39399411

RESUMEN

Background: Extranodal natural killer/T-cell lymphoma (ENKTCL) has a unique treatment principle. However, the optimal combination of drugs along with radiotherapy (RT) is unknown. Design: Retrospective cohort study. Objectives: We screened multiple drug combinations to identify the most efficacious therapeutic combinations. Methods: We reviewed 3105 patients who received 40 chemotherapy regimens with different combinations of 9 drug classes and/or RT. Least absolute shrinkage and selection operator and multivariable Cox regression analyses were used to screen efficacious single drugs and identify optimal combinations for overall survival (OS). Inverse probability of treatment weighting (IPTW) and multivariable analyses were used to compare survival between treatment regimens. Results: Screening and validation revealed RT, asparaginase (ASP), and gemcitabine (GEM) to be the most efficacious single modality/drug. RT remained an important component of first-line treatment, whereas ASP was a fundamental drug of non-anthracycline (ANT)-based regimens. Addition of RT to non-ANT-based or ASP/GEM-based regimens, or addition of an ASP-drug into ANT-based or GEM/platinum-based regimens, improved 5-year OS significantly. Use of ASP/GEM-based regimens was associated with significantly higher 5-year OS (79.9%) compared with ASP/ANT-based (69.2%, p = 0.001), ASP/methotrexate-based (63.5%, p = 0.011), or ASP/not otherwise specified-based (63.2%, p < 0.001) regimens. The survival benefit of ASP/GEM-based regimens over other ASP-based regimens was substantial across risk-stratified and advanced-stage subgroups. The survival benefits of a combination of RT, ASP, and GEM were consistent after adjustment for confounding factors by IPTW. Conclusion: These results suggest that combining ASP/GEM with RT for ENKTCL is an efficacious and feasible therapeutic option and provides a rationale and strategy for developing combination therapies.

20.
Clin Exp Gastroenterol ; 17: 261-315, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39403342

RESUMEN

Crohn's disease (CD) is a complex, chronic inflammatory bowel disease characterized by unpredictable flare-ups and periods of remission. Despite advances in treatment, CD remains a significant health burden, leading to substantial direct healthcare costs and out-of-pocket expenses for patients, especially in the first-year post-diagnosis. The impact of CD on patients' quality of life is profound, with significant reductions in physical, emotional, and social well-being. Despite advancements in therapeutic options, including biologics, immunomodulators, and small molecules, many patients struggle to achieve or maintain remission, leading to a considerable therapeutic ceiling. This has led to an increased focus on novel and emerging treatments. This context underscores the importance of exploring advanced and innovative treatment options for managing refractory CD. By examining the latest approaches, including immunomodulators, combination therapies, stem cell therapies, and emerging treatments like fecal microbiota transplantation and dietary interventions, there is an opportunity to gain a comprehensive understanding of how best to address and manage refractory cases of CD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA