Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Mol Immunol ; 21(5): 448-465, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38409249

RESUMEN

Phosphoglycerate dehydrogenase (PHGDH) has emerged as a crucial factor in macromolecule synthesis, neutralizing oxidative stress, and regulating methylation reactions in cancer cells, lymphocytes, and endothelial cells. However, the role of PHGDH in tumor-associated macrophages (TAMs) is poorly understood. Here, we found that the T helper 2 (Th2) cytokine interleukin-4 and tumor-conditioned media upregulate the expression of PHGDH in macrophages and promote immunosuppressive M2 macrophage activation and proliferation. Loss of PHGDH disrupts cellular metabolism and mitochondrial respiration, which are essential for immunosuppressive macrophages. Mechanistically, PHGDH-mediated serine biosynthesis promotes α-ketoglutarate production, which activates mTORC1 signaling and contributes to the maintenance of an M2-like macrophage phenotype in the tumor microenvironment. Genetic ablation of PHGDH in macrophages from tumor-bearing mice results in attenuated tumor growth, reduced TAM infiltration, a phenotypic shift of M2-like TAMs toward an M1-like phenotype, downregulated PD-L1 expression and enhanced antitumor T-cell immunity. Our study provides a strong basis for further exploration of PHGDH as a potential target to counteract TAM-mediated immunosuppression and hinder tumor progression.


Asunto(s)
Ácidos Cetoglutáricos , Diana Mecanicista del Complejo 1 de la Rapamicina , Fosfoglicerato-Deshidrogenasa , Transducción de Señal , Microambiente Tumoral , Macrófagos Asociados a Tumores , Animales , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfoglicerato-Deshidrogenasa/metabolismo , Ratones , Ácidos Cetoglutáricos/metabolismo , Humanos , Ratones Endogámicos C57BL , Fenotipo , Línea Celular Tumoral , Activación de Macrófagos
2.
J Exp Clin Cancer Res ; 42(1): 340, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38098117

RESUMEN

BACKGROUND: Cancer cells undergo cellular adaptation through metabolic reprogramming to sustain survival and rapid growth under various stress conditions. However, how brain tumors modulate their metabolic flexibility in the naturally serine/glycine (S/G)-deficient brain microenvironment remain unknown. METHODS: We used a range of primary/stem-like and established glioblastoma (GBM) cell models in vitro and in vivo. To identify the regulatory mechanisms of S/G deprivation-induced metabolic flexibility, we employed high-throughput RNA-sequencing, transcriptomic analysis, metabolic flux analysis, metabolites analysis, chromatin immunoprecipitation (ChIP), luciferase reporter, nuclear fractionation, cycloheximide-chase, and glucose consumption. The clinical significances were analyzed in the genomic database (GSE4290) and in human GBM specimens. RESULTS: The high-throughput RNA-sequencing and transcriptomic analysis demonstrate that the de novo serine synthesis pathway (SSP) and glycolysis are highly activated in GBM cells under S/G deprivation conditions. Mechanistically, S/G deprivation rapidly induces reactive oxygen species (ROS)-mediated AMP-activated protein kinase (AMPK) activation and AMPK-dependent hypoxia-inducible factor (HIF)-1α stabilization and transactivation. Activated HIF-1α in turn promotes the expression of SSP enzymes phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH). In addition, the HIF-1α-induced expression of glycolytic genes (GLUT1, GLUT3, HK2, and PFKFB2) promotes glucose uptake, glycolysis, and glycolytic flux to fuel SSP, leading to elevated de novo serine and glycine biosynthesis, NADPH/NADP+ ratio, and the proliferation and survival of GBM cells. Analyses of human GBM specimens reveal that the levels of overexpressed PHGDH, PSAT1, and PSPH are positively correlated with levels of AMPK T172 phosphorylation and HIF-1α expression and the poor prognosis of GBM patients. CONCLUSION: Our findings reveal that metabolic stress-enhanced glucose-derived de novo serine biosynthesis is a critical metabolic feature of GBM cells, and highlight the potential to target SSP for treating human GBM.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Glioblastoma , Humanos , Glioblastoma/patología , Serina , Glucosa/metabolismo , Glicina , ARN , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Línea Celular Tumoral , Microambiente Tumoral , Fosfofructoquinasa-2
3.
Cell Mol Gastroenterol Hepatol ; 16(4): 541-556, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37331567

RESUMEN

BACKGROUND & AIMS: Phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme of the de novo serine synthesis pathway (SSP), has been implicated in the carcinogenesis and metastasis of hepatocellular carcinoma (HCC) because of its excessive expression and promotion of SSP. In previous experiments we found that SSP flux was diminished by knockdown of zinc finger E-box binding homeobox 1 (ZEB1), a stimulator of HCC metastasis, but the underlying mechanism remains largely unknown. Here, we aimed to determine how SSP flux is regulated by ZEB1 and the contribution of such regulation to carcinogenesis and progression of HCC. METHODS: We used genetic mice with Zeb1 knockout in liver specifically to determine whether Zeb1 deficiency impacts HCC induced by the carcinogen diethylnitrosamine plus CCl4. We explored the regulatory mechanism of ZEB1 in SSP flux using uniformly-labeled [13C]-glucose tracing analyses, liquid chromatography-mass spectrometry, real-time quantitative polymerase chain reaction, luciferase report assay, and chromatin immunoprecipitation assay. We determined the contribution of the ZEB1-PHGDH regulatory axis to carcinogenesis and metastasis of HCC by cell counting assay, methyl thiazolyl tetrazolium (MTT) assay, scratch wound assay, Transwell assay, and soft agar assay in vitro, orthotopic xenograft, bioluminescence, and H&E assays in vivo. We investigated the clinical relevance of ZEB1 and PHGDH by analyzing publicly available data sets and 48 pairs of HCC clinical specimens. RESULTS: We identified that ZEB1 activates PHGDH transcription by binding to a nonclassic binding site within its promoter region. Up-regulated PHGDH augments SSP flux to enable HCC cells to be more invasive, proliferative, and resistant to reactive oxygen species and sorafenib. Orthotopic xenograft and bioluminescence assays have shown that ZEB1 deficiency significantly impairs the tumorigenesis and metastasis of HCC, and such impairments can be rescued to a large extent by exogenous expression of PHGDH. These results were confirmed by the observation that conditional knockout of ZEB1 in mouse liver dramatically impedes carcinogenesis and progression of HCC induced by diethylnitrosamine/CCl4, as well as PHGDH expression. In addition, analysis of The Cancer Genome Atlas database and clinical HCC samples showed that the ZEB1-PHGDH regulatory axis predicts poor prognosis of HCC. CONCLUSIONS: ZEB1 plays a crucial role in stimulating carcinogenesis and progression of HCC by activating PHGDH transcription and subsequent SSP flux, deepening our knowledge of ZEB1 as a transcriptional factor in fostering the development of HCC via reprogramming the metabolic pathway.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fosfoglicerato-Deshidrogenasa/genética , Dietilnitrosamina/toxicidad , Línea Celular Tumoral , Carcinogénesis/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
4.
Curr Cancer Drug Targets ; 23(3): 171-186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36043756

RESUMEN

Phosphoserine aminotransferase 1 (PSAT1) catalyzes 3-phosphohydroxylpyruvate and glutamate into 3-phosphoserine and α-ketoglutamate. It integrates metabolic pathways critical for cell proliferation, survival, migration and epigenetics, such as glycolysis, de novo serine synthesis, citric acid cycle and one-carbon metabolism. The level of this enzyme has been disclosed to be closely related to the occurrence, progression and prognosis of cancers like non-small cell lung cancer, colorectal cancer, esophageal squamous cell carcinoma, breast cancer, etc. via metabolic catalyzation, PSAT1 offers anabolic and energic supports for these tumor cells, affecting their proliferation, survival, autophagy, migration and invasion. Such functions also influence the epigenetics of other noncancerous cells and drive them to serve tumor cells. Moreover, PSAT1 exerts a non-enzymatic regulation of the IGF1 pathway and nuclear PKM2 to promote EMT and cancer metastasis. Genetically manipulating PSAT1 alters tumor progression in vitro and in vivo. This paper reviews the role and action mechanism of PSAT1 in tumor biology and chemotherapy as well as the regulation of PSAT1 expression, exhibiting the perspective for PSAT1 as a new molecular marker and target for cancer diagnosis and treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología
5.
J Enzyme Inhib Med Chem ; 36(1): 1282-1289, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34192988

RESUMEN

The small-molecule inhibitor of phosphoglycerate dehydrogenase, NCT-503, reduces incorporation of glucose-derived carbons into serine in vitro. Here we describe an off-target effect of NCT-503 in neuroblastoma cell lines expressing divergent phosphoglycerate dehydrogenase (PHGDH) levels and single-cell clones with CRISPR-Cas9-directed PHGDH knockout or their respective wildtype controls. NCT-503 treatment strongly reduced synthesis of glucose-derived citrate in all cell models investigated compared to the inactive drug control and independent of PHGDH expression level. Incorporation of glucose-derived carbons entering the TCA cycle via pyruvate carboxylase was enhanced by NCT-503 treatment. The activity of citrate synthase was not altered by NCT-503 treatment. We also detected no change in the thermal stabilisation of citrate synthase in cellular thermal shift assays from NCT-503-treated cells. Thus, the direct cause of the observed off-target effect remains enigmatic. Our findings highlight off-target potential within a metabolic assessment of carbon usage in cells treated with the small-molecule inhibitor, NCT-503.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Piperazinas/farmacología , Piridinas/farmacología , Tioamidas/farmacología , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclo del Ácido Cítrico/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas/métodos , Glucosa/metabolismo , Humanos , Metabolómica , Fosfoglicerato-Deshidrogenasa/genética
6.
Int J Cancer ; 148(5): 1219-1232, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33284994

RESUMEN

Here we sought metabolic alterations specifically associated with MYCN amplification as nodes to indirectly target the MYCN oncogene. Liquid chromatography-mass spectrometry-based proteomics identified seven proteins consistently correlated with MYCN in proteomes from 49 neuroblastoma biopsies and 13 cell lines. Among these was phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in de novo serine synthesis. MYCN associated with two regions in the PHGDH promoter, supporting transcriptional PHGDH regulation by MYCN. Pulsed stable isotope-resolved metabolomics utilizing 13 C-glucose labeling demonstrated higher de novo serine synthesis in MYCN-amplified cells compared to cells with diploid MYCN. An independence of MYCN-amplified cells from exogenous serine and glycine was demonstrated by serine and glycine starvation, which attenuated nucleotide pools and proliferation only in cells with diploid MYCN but did not diminish these endpoints in MYCN-amplified cells. Proliferation was attenuated in MYCN-amplified cells by CRISPR/Cas9-mediated PHGDH knockout or treatment with PHGDH small molecule inhibitors without affecting cell viability. PHGDH inhibitors administered as single-agent therapy to NOG mice harboring patient-derived MYCN-amplified neuroblastoma xenografts slowed tumor growth. However, combining a PHGDH inhibitor with the standard-of-care chemotherapy drug, cisplatin, revealed antagonism of chemotherapy efficacy in vivo. Emergence of chemotherapy resistance was confirmed in the genetic PHGDH knockout model in vitro. Altogether, PHGDH knockout or inhibition by small molecules consistently slows proliferation, but stops short of killing the cells, which then establish resistance to classical chemotherapy. Although PHGDH inhibition with small molecules has produced encouraging results in other preclinical cancer models, this approach has limited attractiveness for patients with neuroblastoma.


Asunto(s)
Amplificación de Genes , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/tratamiento farmacológico , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Femenino , Glicina/metabolismo , Humanos , Ratones , Neuroblastoma/genética , Serina/metabolismo
7.
Oncotarget ; 11(19): 1777-1796, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32477466

RESUMEN

Previously, we reported apolipoprotein A-I (apoA-I), the major protein component of high-density lipoprotein (HDL), has potent anti-melanoma activity. We used DNA microarray and bioinformatics to interrogate gene expression profiles of tumors from apoA-I expressing (A-I Tg+/-) versus apoA-I-null (A-I KO) animals to gain insights into mechanisms of apoA-I tumor protection. Differential expression analyses of 11 distinct tumors per group with > 1.2-fold cut-off and a false discovery rate adjusted p < 0.05, identified 176 significant transcripts (71 upregulated and 105 downregulated in A-I Tg+/- versus A-I KO group). Bioinformatic analyses identified the mevalonate and de novo serine/glycine synthesis pathways as potential targets for apoA-I anti-tumor activity. Relative to A-I KO, day 7 B16F10L melanoma tumor homografts from A-I Tg+/- exhibited reduced expression of mevalonate-5-pyrophosphate decarboxylase (Mvd), a key enzyme targeted in cancer therapy, along with a number of key genes in the sterol synthesis arm of the mevalonate pathway. Phosphoglycerate dehydrogenase (Phgdh), the first enzyme branching off glycolysis into the de novo serine synthesis pathway, was the most repressed transcript in tumors from A-I Tg+/-. We validated our mouse tumor studies by comparing the significant transcripts with adverse tumor markers previously identified in human melanoma and found 45% concordance. Our findings suggest apoA-I targets the mevalonate and serine synthesis pathways in melanoma cells in vivo, thus providing anti-tumor metabolic effects by inhibiting the flux of biomolecular building blocks for macromolecule synthesis that drive rapid tumor growth.

8.
Cell Metab ; 30(3): 539-555.e11, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31257153

RESUMEN

Epstein-Barr virus (EBV) causes Burkitt, Hodgkin, and post-transplant B cell lymphomas. How EBV remodels metabolic pathways to support rapid B cell outgrowth remains largely unknown. To gain insights, primary human B cells were profiled by tandem-mass-tag-based proteomics at rest and at nine time points after infection; >8,000 host and 29 viral proteins were quantified, revealing mitochondrial remodeling and induction of one-carbon (1C) metabolism. EBV-encoded EBNA2 and its target MYC were required for upregulation of the central mitochondrial 1C enzyme MTHFD2, which played key roles in EBV-driven B cell growth and survival. MTHFD2 was critical for maintaining elevated NADPH levels in infected cells, and oxidation of mitochondrial NADPH diminished B cell proliferation. Tracing studies underscored contributions of 1C to nucleotide synthesis, NADPH production, and redox defense. EBV upregulated import and synthesis of serine to augment 1C flux. Our results highlight EBV-induced 1C as a potential therapeutic target and provide a new paradigm for viral onco-metabolism.


Asunto(s)
Aminohidrolasas/metabolismo , Linfocitos B/metabolismo , Linfocitos B/virología , Transformación Celular Viral , Infecciones por Virus de Epstein-Barr/metabolismo , Ácido Fólico/metabolismo , Herpesvirus Humano 4/metabolismo , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Enzimas Multifuncionales/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Femenino , Glucólisis , Células HEK293 , Humanos , Activación de Linfocitos , Mitocondrias/metabolismo , NADP/biosíntesis , Oxidación-Reducción , Proteoma/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Serina/biosíntesis
9.
Elife ; 82019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31036157

RESUMEN

The human macula is more susceptible than the peripheral retina to developing blinding conditions such as age-related macular degeneration, diabetic retinopathy. A key difference between them may be the nature of their Müller cells. We found primary cultured Müller cells from macula and peripheral retina display significant morphological and transcriptomic differences. Macular Müller cells expressed more phosphoglycerate dehydrogenase (PHGDH, a rate-limiting enzyme in serine synthesis) than peripheral Müller cells. The serine synthesis, glycolytic and mitochondrial function were more activated in macular than peripheral Müller cells. Serine biosynthesis is critical in defending against oxidative stress. Intracellular reactive oxygen species and glutathione levels were increased in primary cultured macular Müller cells which were more susceptible to oxidative stress after inhibition of PHGDH. Our findings indicate serine biosynthesis is a critical part of the macular defence against oxidative stress and suggest dysregulation of this pathway as a potential cause of macular pathology.


Asunto(s)
Células Ependimogliales/metabolismo , Estrés Oxidativo/fisiología , Retina/metabolismo , Serina/biosíntesis , Células Ependimogliales/citología , Regulación de la Expresión Génica , Glutatión/metabolismo , Humanos , Mitocondrias/metabolismo , Fosfoglicerato-Deshidrogenasa , Especies Reactivas de Oxígeno/metabolismo , Serina/genética , Transcriptoma
10.
Mol Neurobiol ; 55(8): 7025-7037, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29383682

RESUMEN

De novo serine synthesis plays important roles in normal mitochondrial function and cellular anti-oxidative capacity. It is reported to be mainly activated in glial cells of the central nervous system, but its role in retinal Müller glia remains unclear. In this study, we inhibited de novo serine synthesis using CBR-5884, a specific inhibitor of phosphoglycerate dehydrogenase (PHGDH, a rate limiting enzyme in de novo serine metabolism) in MIO-M1 cells (immortalized human Müller cells) and huPMCs (human primary Müller cells) under mild oxidative stress. Alamar blue and LDH (lactate dehydrogenase) assays showed significantly reduced metabolic activities and increased cellular damage of Müller cells, when exposed to CBR-5884 accompanied by mild oxidative stress; however, CBR-5884 alone had little effect. The increased cellular damage was partially reversed by supplementation with exogenous serine/glycine. HSP72 (an oxidative stress marker) and reactive oxygen species (ROS) levels were significantly increased; glutathione and NADPH/NADP+ levels were pronouncedly reduced under PHGDH inhibition accompanied by oxidative stress. JC-1 staining and Seahorse respiration experiments showed that inhibition of de novo serine synthesis in Müller cells can also increase mitochondrial stress and decrease mitochondrial ATP production. qPCR and Western blot demonstrated an increased expression of HSP60 (a key mitochondrial stress-related gene), and this was further validated in human retinal explants. Our study suggests that de novo serine synthesis is important for Müller cell survival, particularly when they are exposed to mild oxidative stress, possibly by maintaining mitochondrial function and generating glutathione and NADPH to counteract ROS.


Asunto(s)
Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Mitocondrias/patología , Estrés Oxidativo , Serina/biosíntesis , Adenosina Trifosfato/metabolismo , Anciano , Chaperonina 60/metabolismo , Células Ependimogliales/enzimología , Glutatión/metabolismo , Proteínas del Choque Térmico HSP72/metabolismo , Humanos , Persona de Mediana Edad , Mitocondrias/metabolismo , NADP/metabolismo , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Fosfoglicerato-Deshidrogenasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba
11.
Cell Chem Biol ; 24(1): 55-65, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28042046

RESUMEN

Metabolic reprogramming in cancer cells facilitates growth and proliferation. Increased activity of the serine biosynthetic pathway through the enzyme phosphoglycerate dehydrogenase (PHGDH) contributes to tumorigenesis. With a small substrate and a weak binding cofactor, (NAD+), inhibitor development for PHGDH remains challenging. Instead of targeting the PHGDH active site, we computationally identified two potential allosteric sites and virtually screened compounds that can bind to these sites. With subsequent characterization, we successfully identified PHGDH non-NAD+-competing allosteric inhibitors that attenuate its enzyme activity, selectively inhibit de novo serine synthesis in cancer cells, and reduce tumor growth in vivo. Our study not only identifies novel allosteric inhibitors for PHGDH to probe its function and potential as a therapeutic target, but also provides a general strategy for the rational design of small-molecule modulators of metabolic enzyme function.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Serina/biosíntesis , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Fosfoglicerato-Deshidrogenasa/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA