Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
1.
Nucleus ; 15(1): 2360196, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38880976

RESUMEN

The eukaryotic translation initiation factor eIF4E acts as a multifunctional factor that simultaneously influences mRNA processing, export, and translation in many organisms. Its multifactorial effects are derived from its capacity to bind to the methyl-7-guanosine cap on the 5'end of mRNAs and thus can act as a cap chaperone for transcripts in the nucleus and cytoplasm. In this review, we describe the multifactorial roles of eIF4E in major mRNA-processing events including capping, splicing, cleavage and polyadenylation, nuclear export and translation. We discuss the evidence that eIF4E acts at two levels to generate widescale changes to processing, export and ultimately the protein produced. First, eIF4E alters the production of components of the mRNA processing machinery, supporting a widescale reprogramming of multiple mRNA processing events. In this way, eIF4E can modulate mRNA processing without physically interacting with target transcripts. Second, eIF4E also physically interacts with both capped mRNAs and components of the RNA processing or translation machineries. Further, specific mRNAs are sensitive to eIF4E only in particular mRNA processing events. This selectivity is governed by the presence of cis-acting elements within mRNAs known as USER codes that recruit relevant co-factors engaging the appropriate machinery. In all, we describe the molecular bases for eIF4E's multifactorial function and relevant regulatory pathways, discuss the basis for selectivity, present a compendium of ~80 eIF4E-interacting factors which play roles in these activities and provide an overview of the relevance of its functions to its oncogenic potential. Finally, we summarize early-stage clinical studies targeting eIF4E in cancer.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Biosíntesis de Proteínas , ARN Mensajero , Humanos , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Animales , Transporte de ARN , Procesamiento Postranscripcional del ARN
2.
Transl Oncol ; 45: 101972, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705053

RESUMEN

BACKGROUND: Accumulating evidence has shown that circular RNAs (circRNAs) are involved in gastric cancer (GC) tumorigenesis. However, specific functional circRNAs in GC remain to be discovered, and their underlying mechanisms remain to be elucidated. METHODS: CircRNAs that were differentially expressed between GC tissues and controls were analyzed using a circRNA microarray dataset. The expression of circVDAC3 in GC was determined using quantitative real-time PCR (qRT-PCR), and the structural features of circVDAC3 were validated. Cell function assays and animal experiments were conducted to explore the effects of circVDAC3 on GC. Finally, bioinformatics analysis, fluorescent in situ hybridization, and dual luciferase assays were used to analyze the downstream mechanisms of circVDAC3. RESULTS: Our results showed that circVDAC3 was downregulated in GC and inhibited the proliferation and metastasis of GC cells. Mechanistically, circVDAC3 acts as a competing endogenous RNA (ceRNA) of miR-592 and deregulates the repression of EIF4E3 by miR-592. EIF4E3 is downregulated in GC and overexpression of miR-592 or knockdown of EIF4E3 in circVDAC3-overexpressing cells weakens the anticancer effect of circVDAC3. CONCLUSION: Our study provides evidence that circVDAC3 affects the growth and metastasis of GC cells via the circVDAC3/miR-592/EIF4E3 axis. Our findings offer valuable insights into the mechanisms underlying GC tumorigenesis and suggest novel therapeutic strategies.

3.
Cancer Lett ; 593: 216939, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38729556

RESUMEN

Helicobacter pylori (H. pylori) infection is the main risk factor for gastric cancer. The SRY-Box Transcription Factor 9 (SOX9) serves as a marker of stomach stem cells. We detected strong associations between AURKA and SOX9 expression levels in gastric cancers. Utilizing in vitro and in vivo mouse models, we demonstrated that H. pylori infection induced elevated levels of both AURKA and SOX9 proteins. Notably, the SOX9 protein and transcription activity levels were dependent on AURKA expression. AURKA knockdown led to a reduction in the number and size of gastric gland organoids. Conditional knockout of AURKA in mice resulted in a decrease in SOX9 baseline level in AURKA-knockout gastric glands, accompanied by diminished SOX9 induction following H. pylori infection. We found an AURKA-dependent increase in EIF4E and cap-dependent translation with an AURKA-EIF4E-dependent increase in SOX9 polysomal RNA levels. Immunoprecipitation assays demonstrated binding of AURKA to EIF4E with a decrease in EIF4E ubiquitination. Immunohistochemistry analysis on tissue arrays revealed moderate to strong immunostaining of AURKA and SOX9 with a significant correlation in gastric cancer tissues. These findings elucidate the mechanistic role of AURKA in regulating SOX9 levels via cap-dependent translation in response to H. pylori infection in gastric tumorigenesis.


Asunto(s)
Aurora Quinasa A , Factor 4E Eucariótico de Iniciación , Infecciones por Helicobacter , Helicobacter pylori , Factor de Transcripción SOX9 , Neoplasias Gástricas , Animales , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/genética , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Humanos , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Aurora Quinasa A/metabolismo , Aurora Quinasa A/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Ratones Noqueados , Ratones , Biosíntesis de Proteínas , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ubiquitinación
4.
In Silico Pharmacol ; 12(1): 33, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655099

RESUMEN

CRC has a major global health impact due to high mortality rates. CRC shows high expression of eukaryotic translation initiation factor (eIF4E) protein, the rapid development of lung, bladder, colon, prostate, breast, head, and neck cancer is attributed to the dysregulation of eIF4E making an important target for treatment. Targeting eIF4E-mediated translation is a promising anti-cancer strategy. Many organic compounds that inhibit eIF4E are being studied clinically. The compound Sizofiran has emerged as a promising eIF4E inhibitor candidate, but its exact mechanism of action is unclear. In an effort to close this discrepancy by clarifying the mechanism of the interactions between phytochemical substances and eIF4E, molecular docking and dynamics studies were conducted. Molecular docking studies found Sizofiran (- 12.513 kcal/mol) has the most affinity eIF4E binding energy out of 93 phytochemicals, 5 current drugs, and 4 known inhibitors. This positions it as a top eIF4E inhibitor candidate. An alignment of eIF4E protein sequences from multiple pathogens revealed that the glutamate103 interacting residues are evolutionarily conserved across the different eIF4E proteins. Further insights from 100 ns of MD simulations supported Sizofiran having superior stability and eIF4E inhibition compared to reference compounds. Designed Sizofiran-related compounds showed better activity than the current drugs such as Camptosar, Sorafenib, Regorafenib, Doxorubicin, and Kenpaullone, indicating strong potential to suppress CRC progression by targeting eIF4E. This research aims to significantly aid development of improved eIF4E-targeting drugs for cancer treatment. Graphical abstract: Showing the Graphical abstract of the complete study. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-024-00206-3.

5.
Heliyon ; 10(6): e27319, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38501022

RESUMEN

Background: Long non-coding RNAs (lncRNAs) can be severed as competing endogenous RNAs (ceRNAs) to regulate target genes or mRNAs via sponging microRNAs (miRNAs). This study explored the effect of LINC01554 on liver cancer cells through the ceRNA mechanism. Methods: Five significantly down-regulated lncRNAs were selected for further verification, and then through bioinformatics, interactive miRNAs and mRNAs of lncRNAs were identified. The relationship between LINC01554, miR-148b-3p and EIF4E3 was detected by the dual luciferase reporter gene assay. Afterwards, HCCLM3 cells were transfected with pCDH-LINC01554, miR-148b-3p inhibitor and miR-148b-3p mimics. Cell viability, apoptosis, migration and invasion were measured by Cell Counting Kit-8, flow cytometer, and Transwell assays. Real-time quantitative PCR (RT-qPCR) and Western blot were used to measure the expressions of related genes and proteins. Results: LINC01554 was significantly down-regulated in the liver cancer cell lines, and was expressed in the cytoplasm of HCCLM3 cells. LINC01554 overexpression inhibited proliferation, migration, and invasion of HCCLM3 cells, and promote their apoptosis (P < 0.05). Besides, LINC01554 overexpression also significantly increased the levels of BAX, BCL2/BAX, P53, cleaved-Caspase3, TIMP3, E-cadherin and EIF4E3 (P < 0.05). Through bioinformatics and dual-luciferase reporter gene assay, LINC01554, miR-148b-3p and EIF4E3 were proved to interact with each other. Furthermore, the effects of miR-148b-3p knockdown on HCCLM3 cells were similar with those of LINC01554 overexpression, and miR-148b-3p mimics could reverse the changes of cell viability, apoptosis, migration, and invasion induced by LINC01554 overexpression. Conclusions: LINC01554 overexpression could suppress the growth and metastasis of HCCLM3 cells via miR-148b-3p/EIF4E3.

6.
Mol Divers ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498082

RESUMEN

Mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) can regulate cellular mRNA translation by controlling the phosphorylation of the eukaryotic translation initiation factor 4E (eIF4E), which plays an important role in tumor initiation, development, and metastasis. Although small-molecule MNK inhibitors have made significant breakthroughs in the treatment of various malignancies, their clinical application can be limited by drug resistance, target selectivity and other factors. The strategy of MNK-PROTACs which selectively degrades MNK kinases provides a new approach for developing small-molecule drugs for related diseases. In this study, DS33059, a small-molecule compound modified based on the ongoing clinical trials drug ETC-206, was chosen as the target protein ligand. A series of novel MNK-PROTACs were designed, synthesized and evaluated biological activity. Several compounds showed good inhibitory activities against MNK1/2. Besides, compounds exhibited moderate to excellent anti-proliferative activity in A549 and TMD-8 cells in vitro. In particular, compound II-5 significantly inhibited A549 (IC50 = 1.79 µM) and TMD-8 (IC50 = 1.07 µM) cells. The protein degradation assay showed that compound II-5 had good capability to degrade MNK1. The MNK-PROTACs strategy represents a new direction in treating tumors and deserves further exploration.

7.
Mol Plant Pathol ; 25(1): e13418, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38279849

RESUMEN

Eukaryotic translation initiation factor 4E (eIF4E), which plays a pivotal role in initiating translation in eukaryotic organisms, is often hijacked by the viral genome-linked protein to facilitate the infection of potyviruses. In this study, we found that the naturally occurring amino acid substitution D71G in eIF4E is widely present in potyvirus-resistant watermelon accessions and disrupts the interaction between watermelon eIF4E and viral genome-linked protein of papaya ringspot virus-watermelon strain, zucchini yellow mosaic virus or watermelon mosaic virus. Multiple sequence alignment and protein modelling showed that the amino acid residue D71 located in the cap-binding pocket of eIF4E is strictly conserved in many plant species. The mutation D71G in watermelon eIF4E conferred resistance against papaya ringspot virus-watermelon strain and zucchini yellow mosaic virus, and the equivalent mutation D55G in tobacco eIF4E conferred resistance to potato virus Y. Therefore, our finding provides a potential precise target for breeding plants resistant to multiple potyviruses.


Asunto(s)
Aminoácidos , Potyvirus , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Aminoácidos/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Enfermedades de las Plantas/genética , Potyvirus/genética , Potyvirus/metabolismo , Citrullus/virología
8.
Bioessays ; 46(1): e2300145, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37926700

RESUMEN

Recent findings position the eukaryotic translation initiation factor eIF4E as a novel modulator of mRNA splicing, a process that impacts the form and function of resultant proteins. eIF4E physically interacts with the spliceosome and with some intron-containing transcripts implying a direct role in some splicing events. Moreover, eIF4E drives the production of key components of the splicing machinery underpinning larger scale impacts on splicing. These drive eIF4E-dependent reprogramming of the splicing signature. This work completes a series of studies demonstrating eIF4E acts in all the major mRNA maturation steps whereby eIF4E drives production of the RNA processing machinery and escorts some transcripts through various maturation steps. In this way, eIF4E couples the mRNA processing-export-translation axis linking nuclear mRNA processing to cytoplasmic translation. eIF4E elevation is linked to worse outcomes in acute myeloid leukemia patients where these activities are dysregulated. Understanding these effects provides new insight into post-transcriptional control and eIF4E-driven cancers.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Leucemia Mieloide Aguda , Humanos , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
bioRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38077058

RESUMEN

Hematopoietic stem cell (HSC) transplantation using umbilical cord blood (UCB) is a potentially life-saving treatment for leukemia and bone marrow failure but is limited by the low number of HSCs in UCB. The loss of HSCs after ex vivo manipulation is also a major obstacle to gene editing for inherited blood disorders. HSCs require a low rate of translation to maintain their capacity for self-renewal, but hematopoietic cytokines used to expand HSCs stimulate protein synthesis and impair long-term self-renewal. We previously described cytokine-free conditions that maintain but do not expand human and mouse HSCs ex vivo. Here we performed a high throughput screen and identified translation inhibitors that allow ex vivo expansion of human HSCs while minimizing cytokine exposure. Transplantation assays show a ~5-fold expansion of long-term HSCs from UCB after one week of culture in low cytokine conditions. Single cell transcriptomic analysis demonstrates maintenance of HSCs expressing mediators of the unfolded protein stress response, further supporting the importance of regulated proteostasis in HSC maintenance and expansion. This expansion method maintains and expands human HSCs after CRISPR/Cas9 editing of the BCL11A+58 enhancer, overcoming a major obstacle to ex vivo gene correction for human hemoglobinopathies.

10.
Eur Biophys J ; 52(6-7): 497-510, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37798395

RESUMEN

The cap at the 5'terminus of mRNA is a key determinant of gene expression in eukaryotic cells, which among others is required for cap dependent translation and protects mRNA from degradation. These properties of cap are mediated by several proteins. One of them is 4E-Transporter (4E-T), which plays an important role in translational repression, mRNA decay and P-bodies formation. 4E-T is also one of several proteins that interact with eukaryotic initiation factor 4E (eIF4E), a cap binding protein which is a key component of the translation initiation machinery. The molecular mechanisms underlying the interactions of these two proteins are crucial for mRNA processing. Studying the interactions between human eIF4E1a and the N-terminal fragment of 4E-T that possesses unstructured 4E-binding motifs under non-reducing conditions, we observed that 4E-T preferentially forms an intramolecular disulphide bond. This "disulphide loop" reduces affinity of 4E-T for eIF4E1a by about 300-fold. Considering that only human 4E-T possesses two cysteines located between the 4E binding motifs, we proposed that the disulphide bond may act as a switch to regulate interactions between the two proteins.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Biosíntesis de Proteínas , Humanos , Unión Proteica , ARN Mensajero/genética , Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo
11.
Bioorg Med Chem ; 95: 117498, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37857256

RESUMEN

The SARS-CoV-2 papain-like protease (PLpro) and main protease (Mpro) are nucleophilic cysteine enzymes that catalyze hydrolysis of the viral polyproteins pp1a/1ab. By contrast with Mpro, PLpro is also a deubiquitinase (DUB) that accepts post-translationally modified human proteins as substrates. Here we report studies on the DUB activity of PLpro using synthetic Nε-lysine-branched oligopeptides as substrates that mimic post-translational protein modifications by ubiquitin (Ub) or Ub-like modifiers (UBLs), such as interferon stimulated gene 15 (ISG15). Mass spectrometry (MS)-based assays confirm the DUB activity of isolated recombinant PLpro. They reveal that the sequence of both the peptide fragment derived from the post-translationally modified protein and that derived from the UBL affects PLpro catalysis; the nature of substrate binding in the S sites appears to be more important for catalytic efficiency than binding in the S' sites. Importantly, the results reflect the reported cellular substrate selectivity of PLpro, i.e. human proteins conjugated to ISG15 are better substrates than those conjugated to Ub or other UBLs. The combined experimental and modelling results imply that PLpro catalysis is affected not only by the identity of the substrate residues binding in the S and S' sites, but also by the substrate fold and the conformational dynamics of the blocking loop 2 of the PLpro:substrate complex. Nε-Lysine-branched oligopeptides thus have potential to help the identification of PLpro substrates. More generally, the results imply that MS-based assays with Nε-lysine-branched oligopeptides have potential to monitor catalysis by human DUBs and hence to inform on their substrate preferences.


Asunto(s)
COVID-19 , Lisina , Humanos , Proteínas Virales/metabolismo , SARS-CoV-2 , Ubiquitina/metabolismo , Enzimas Desubicuitinizantes , Oligopéptidos
12.
Eur J Med Chem ; 260: 115781, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37669595

RESUMEN

Overexpression of eIF4E is common in patients with various solid tumors and hematologic cancers. As a potential anti-cancer target, eIF4E has attracted extensive attention from researchers. At the same time, mTOR kinases inhibitors and MNK kinases inhibitors, which are directly related to regulation of eIF4E, have been rapidly developed. To explore the optimal anti-cancer targets among MNK, mTOR, and eIF4E, this review provides a detailed classification and description of the anti-cancer activities of promising compounds. In addition, the structures and activities of some dual-target inhibitors are briefly described. By analyzing the different characteristics of the inhibitors, it can be concluded that MNK1/2 and eIF4E/eIF4G interaction inhibitors are superior to mTOR inhibitors. Simultaneous inhibition of MNK and eIF4E/eIF4G interaction may be the most promising anti-cancer method for targeting translation initiation.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Humanos , Factor 4G Eucariótico de Iniciación , Serina-Treonina Quinasas TOR , Neoplasias/tratamiento farmacológico , Factor 4E Eucariótico de Iniciación
13.
Curr Med Sci ; 43(5): 927-934, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37752406

RESUMEN

OBJECTIVE: Aberrant activating mutations in cyclin-dependent kinases 4 and 6 (CDK4/6) are common in various cancers, including gastroesophageal malignancies. Although CDK4/6 inhibitors, such as abemaciclib and palbociclib, have been approved for breast cancer treatment, their effectiveness as a monotherapy remains limited for gastroesophageal tumors. The present study explored the underlying mechanism of abemaciclib resistance. METHODS: Abemaciclib-resistant gastric cancer cell lines were generated, and the phospho-eukaryotic translation initiation factor 4E (p-eIF4E) and eIF4E expression was compared between resistant and parental cell lines. In order to analyze the role of eIF4E in cell resistance, siRNA knockdown was employed. The effectiveness of ribavirin alone and its combination with abemaciclib was evaluated in the gastric cancer xenograft mouse model. RESULTS: The upregulation of eIF4E was a common feature in gastric cancer cells exposed to prolonged abemaciclib treatment. Gastric cancer cells with increased eIF4E levels exhibited a better response to eIF4E inhibition, especially those that were resistant to abemaciclib. Ribavirin, which is an approved anti-viral drug, significantly improved the efficacy of abemaciclib, both in vitro and in vivo, by inhibiting eIF4E. Importantly, ribavirin effectively suppressed the abemaciclib-resistant gastric cancer growth in mice without causing toxicity. CONCLUSION: These findings suggest that targeting eIF4E can enhance the abemaciclib treatment for gastric cancer, proposing the potential combination therapy of CDK4/6 inhibitors with ribavirin for advanced gastric cancer.


Asunto(s)
Aminopiridinas , Resistencia a Antineoplásicos , Ribavirina , Neoplasias Gástricas , Animales , Humanos , Ratones , Línea Celular Tumoral , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Aminopiridinas/uso terapéutico
14.
Am J Cancer Res ; 13(8): 3763-3780, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37693135

RESUMEN

Tumor metastasis is a leading cause of death in nasopharyngeal carcinoma (NPC) patients. Previous research has identified that transcription factor Yin Yang 1 (YY1) acts as a tumor suppressor that inhibits cell proliferation and tumor growth in NPC; however, the role and the molecular mechanisms of YY1 in NPC invasion and metastasis remain unclear. In this study, we discovered that YY1 could inhibit the migration and invasion of NPC cells in vitro as well as NPC xenograft tumor metastasis in vivo. Furthermore, we identified eIF4E as a direct downstream target of YY1, and YY1 could negatively regulate the expression of eIF4E at transcriptional level. Moreover, we found that eIF4E promoted the migration and invasion of NPC cells as well as NPC lung metastasis, suggesting its potential as a pro-metastatic mediator in NPC. Importantly, restoring eIF4E expression could partially reverse the inhibitory effects of YY1 on NPC malignancy. In consistent with these findings, the expression of YY1 was downregulated while eIF4E was upregulated in NPC patients with metastasis, and there was a negative correlation between YY1 and eIF4E expression. Collectively, our results indicate that YY1 suppresses the invasion and metastasis of NPC by negatively regulating eIF4E transcription. Therefore, targeting the YY1/eIF4E transcriptional axis could be a potential therapeutic strategy for the treatment of patients with NPC.

15.
Front Oncol ; 13: 1240996, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37766871

RESUMEN

Triple-negative breast cancer (TNBC) and its recently identified subtype, quadruple negative breast cancer (QNBC), collectively account for approximately 13% of reported breast cancer cases in the United States. These aggressive forms of breast cancer are associated with poor prognoses, limited treatment options, and lower overall survival rates. In previous studies, our research demonstrated that VNLG-152R exhibits inhibitory effects on TNBC cells both in vitro and in vivo and the deuterated analogs were more potent inhibitors of TNBC cells in vitro. Building upon these findings, our current study delves into the molecular mechanisms underlying this inhibitory action. Through transcriptome and proteome analyses, we discovered that VNLG-152R upregulates the expression of E3 ligase Synoviolin 1 (SYVN1), also called 3-hydroxy-3-methylglutaryl reductase degradation (HRD1) in TNBC cells. Moreover, we provide genetic and pharmacological evidence to demonstrate that SYVN1 mediates the ubiquitination and subsequent proteasomal degradation of MNK1/2, the only known kinases responsible for phosphorylating eIF4E. Phosphorylation of eIF4E being a rate-limiting step in the formation of the eIF4F translation initiation complex, the degradation of MNK1/2 by VNLG-152R and its analogs impedes dysregulated translation in TNBC cells, resulting in the inhibition of tumor growth. Importantly, our findings were validated in vivo using TNBC xenograft models derived from MDA-MB-231, MDA-MB-468, and MDA-MB-453 cell lines, representing different racial origins and genetic backgrounds. These xenograft models, which encompass TNBCs with varying androgen receptor (AR) expression levels, were effectively inhibited by oral administration of VNLG-152R and its deuterated analogs in NRG mice. Importantly, in direct comparison, our compounds are more effective than enzalutamide and docetaxel in achieving tumor growth inhibition/repression in the AR+ MDA-MD-453 xenograft model in mice. Collectively, our study sheds light on the involvement of SYVN1 E3 ligase in the VNLG-152R-induced degradation of MNK1/2 and the therapeutic potential of VNLG-152R and its more potent deuterated analogs as promising agents for the treatment of TNBC across diverse patient populations.

16.
Front Oncol ; 13: 1076855, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601696

RESUMEN

The eukaryotic translation initiation factor eIF4E can specifically bind to the cap structure of an mRNA 5' end, mainly regulating translation initiation and preferentially enhancing the translation of carcinogenesis related mRNAs. The expression of eIF4E is closely related to a variety of malignant tumors. In tumor cells, eIF4E activity is abnormally increased, which stimulates cell growth, metastasis and translation of related proteins. The main factors affecting eIF4E activity include intranuclear regulation, phosphorylation of 4EBPs, and phosphorylation and sumoylation of eIF4E. In this review, we summarize the biological functions and the research progress of eIF4E, the main influencing factors of eIF4E activity, and the recent progress of drugs targeting eIF4E, in the hope of providing new insights for the treatment of multiple malignancies and development of targeted drugs.

17.
Virologie (Montrouge) ; 27(4): 225-337, 2023 08 01.
Artículo en Francés | MEDLINE | ID: mdl-37565678

RESUMEN

Resistance to viruses is an important aspect of plant breeding. One way to achieve it is to select genetic resistances based on the susceptibility factors hijacked by the virus to infect the plants. Here, we recount work done on genes encoding translation initiation factors eIF4E, some of the most successful targets for obtaining resistance to potyviruses, starting from their characterization 20 years ago. With examples from different plant species, pepper, tomato, tobacco and arabidopsis, we present the basis of this type of resistances and their characteristics, highlighting the role of gene redundancy among 4E factors, their specificity for the virus and the need for the plant of a trade-off between resistance and development. Finally, we show how the new genome editing techniques could be used in plant breeding to develop eIF4E-based resistances in crops, mimicking the functional alleles that have been selected during evolution in many crops.


Asunto(s)
Resistencia a la Enfermedad , Factor 4E Eucariótico de Iniciación , Enfermedades de las Plantas , Plantas , Potyvirus , Alelos , Factor 4E Eucariótico de Iniciación/genética , Fitomejoramiento , Potyvirus/genética , Plantas/virología , Enfermedades de las Plantas/virología
18.
Gene ; 884: 147675, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37541559

RESUMEN

BACKGROUND: The transcription factor CCAAT/enhancer-binding protein ß (C/EBPß) is implicated in diverse processes and diseases. Its two isoforms, namely liver-enriched activator protein (LAP) and liver-enriched inhibitor protein (LIP) are translated from the same mRNA. They share the same C-terminal DNA binding domain except LAP has an extra N-terminal activation domain. Probably due to its higher affinity for its DNA cognate sequences, LIP can inhibit LAP transcriptional activity even at substoichiometric levels. However, the regulatory mechanism of C/EBPß gene expression and the LAP: LIP ratio is unclear. METHODS: In this study, the C/EBPß promoter sequence was scanned for conserved P53 response element (P53RE), and binding of P53 to the C/EBPß promoter was tested by Electrophoretic Mobility Shift Assay (EMSA) and chromatin immunoprecipitation assay. P53 over-expression and dominant negative P53 expression plasmids were transfected into rat lung fibroblasts and tested for C/EBPß gene transcription and expression. Western blot analysis was used to test the regulation of C/EBPß LAP and LIP isoforms. Constructs containing the LAP 5'untranslated region (5'UTR) or the LIP 5'UTR region were used to test the importance of 5'UTR in the control of C/EBPß LAP and LIP translation. RESULTS: The C/EBPß promoter sequence was found to contain a conserved P53 response element (P53RE), which binds P53 as demonstrated by Electrophoresis Mobility Shift Assay and chromatin immunoprecipitation assays. P53 over-expression suppressed while dominant negative P53 stimulated C/EBPß gene transcription and expression. Western blot analysis showed that P53 differentially regulated the translation of the C/EBPß LAP and LIP isoforms through the regulation of eIF4E and eIF4E-BP1. Further studies with constructs containing the LAP 5'untranslated region (5'UTR) or the LIP 5'UTR region showed that the 5'UTR is important in differential control of C/EBPß LAP and LIP translation. CONCLUSION: Analysis of the effects of P53 on C/EBPß expression revealed a novel mechanism by which P53 could antagonize the effects of C/EBPß on its target gene expression. For the first time, P53 is shown to be a repressor of C/EBPß gene expression at both transcriptional and translational levels, with a differential effect in the magnitude of the effect on LAP vs. LIP isoforms.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Proteína p53 Supresora de Tumor , Ratas , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Regiones no Traducidas 5'/genética , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Regulación de la Expresión Génica , Isoformas de Proteínas/metabolismo , Expresión Génica , ADN/metabolismo , Unión Proteica
19.
Cell Rep ; 42(8): 112868, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37494188

RESUMEN

Cells maintain and dynamically change their proteomes according to the environment and their needs. Mechanistic target of rapamycin (mTOR) is a key regulator of proteostasis, homeostasis of the proteome. Thus, dysregulation of mTOR leads to changes in proteostasis and the consequent progression of diseases, including cancer. Based on the physiological and clinical importance of mTOR signaling, we investigated mTOR feedback signaling, proteostasis, and cell fate. Here, we reveal that mTOR targeting inhibits eIF4E-mediated cap-dependent translation, but feedback signaling activates a translation initiation factor, eukaryotic translation initiation factor 3D (eIF3D), to sustain alternative non-canonical translation mechanisms. Importantly, eIF3D-mediated protein synthesis enables cell phenotype switching from proliferative to more migratory. eIF3D cooperates with mRNA-binding proteins such as heterogeneous nuclear ribonucleoprotein F (hnRNPF), heterogeneous nuclear ribonucleoprotein K (hnRNPK), and Sjogren syndrome antigen B (SSB) to support selective mRNA translation following mTOR inhibition, which upregulates and activates proteins involved in insulin receptor (INSR)/insulin-like growth factor 1 receptor (IGF1R)/insulin receptor substrate (IRS) and interleukin 6 signal transducer (IL-6ST)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling. Our study highlights the mechanisms by which cells establish the dynamic change of proteostasis and the resulting phenotype switch.


Asunto(s)
Proteostasis , Receptor de Insulina , ARN Mensajero/metabolismo , Receptor de Insulina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Sirolimus , Biosíntesis de Proteínas
20.
Cell Signal ; 109: 110742, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37268164

RESUMEN

Melanoma is relatively resistant to chemotherapy, and no targeted therapies are fully effective. The most common mutations in melanoma result in hyperactivation of the mitogen-activated protein kinase (MAPK) and PI3K/AKT/ mTOR pathways responsible for initiating and controlling oncogenic protein translation. This makes both the signaling pathways potentially important therapeutic targets in melanoma. Our studies were carried out on human melanoma cell lines WM793 and 1205 LU with similar genomic alteration (BRAFV600E and PTEN loss). We used a highly specific PI3K/mTOR inhibitor, dactolisib (NVP-BEZ235), and Mnk inhibitor - CGP57380 alone and in combination. Here, we explore the mechanism of action of these drugs alone and in combination, as well as their effect on the viability and invasiveness of melanoma cells. Although when used independently, both drugs suppressed cell proliferation and migration, their combination has additional antitumor effects. We demonstrate that simultaneous inhibition of both pathways may prevent possible drug resistance.


Asunto(s)
Antineoplásicos , Melanoma , Quinolinas , Humanos , Inhibidores mTOR , Fosfatidilinositol 3-Quinasas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Factor 4E Eucariótico de Iniciación/metabolismo , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Quinolinas/farmacología , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA