Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.321
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Hepatol ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39357545

RESUMEN

BACKGROUND & AIMS: Tumour-associated macrophages (TAMs) contribute to hepatocellular carcinoma (HCC) progression. However, while the pro-tumour and immunosuppressive roles of lipid-loaded macrophages are well established, the mechanisms by which lipid metabolism enhances the tumour-promoting effects in TAMs remain unclear. METHODS: Single-cell RNA sequencing was performed on mouse and human HCC tumour samples to elucidate the landscape of HCC TAMs. Macrophages were stimulated with various long-chain unsaturated fatty acids (UFAs) to assess immunosuppressive molecules expression in vitro. Additionally, in vivo and in vitro studies were conducted using mice with macrophage-specific deficiencies in fatty acid-binding protein 5 (FABP5) or peroxisome proliferator-activated receptor (PPAR). RESULTS: Single-cell RNA sequencing identified a subpopulation of FABP5+ lipid-loaded TAMs characterized by enhanced immune checkpoint blocker ligands and immunosuppressive molecules in an oncogene-mutant HCC mouse model and human HCC tumours. Mechanistically, long-chain UFAs released by tumour cells activate PPARvia FABP5, resulting in TAM immunosuppressive properties. FABP5 deficiency in macrophages decreases immunosuppressive molecules expression, enhances T-cell-dependent antitumor immunity, diminishes HCC growth, and improves immunotherapy efficacy. CONCLUSIONS: This study demonstrates that UFAs promote tumourigenesis by enhancing the immunosuppressive tumour microenvironment via FABP5-PPAR signaling and provides a proof-of-concept for targeting this pathway to improve tumour immunotherapy.

2.
Clin Mol Hepatol ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39355870

RESUMEN

Background/Aims: Metabolic dysfunction-associated fatty liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific proteinase 29 (USP29) plays pivotal roles in hepatic ischemia‒reperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression. Methods: USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes. Results: USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid ß-oxidation (FAO) under metabolic stimulation, directly interacted with Acyl-CoA synthetase long chain family member 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5. Conclusions: USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.

3.
N Biotechnol ; 84: 77-84, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39357797

RESUMEN

The extensive production of olive mill solid waste (OMSW) from olive oil industry in the Mediterranean basin claims effective treatments and valorization strategies. This study aims to elucidate the potential of anaerobic digestion (AD) and anaerobic fermentation (AF) to convert pre-treated OMSW into biogas (CH4) and volatile fatty acids (VFA), respectively. The two thermal treatment conditions (65 °C and 180 °C) that are being implemented in the industry that manages the OMSW were tested. Comparing the two treatments aims to demonstrate the influence on the AD process of the degree of solubilization and degradation of the metabolites produced from the same substrate. AD of OMSW treated at low-temperature (65 °C) exhibited similar methane yields (195 ± 8 mL CH4/g volatile solid (VS)) to raw OMSW. AD of the solid phase (SP) after high-temperature treatment with acid addition at 180 °C resulted in methane yields comparable to raw OMSW while the liquid phase (LP) exhibited low methane yields (85 ± 10 mL CH4/g VS). Nevertheless, LP/180 °C exhibited the highest VFA bioconversion at 27.6 %, compared to less than 10 % for SP/180 ºC, SP/65 °C, and raw OMSW. The VFA profile showed notable variations with thermal treatment temperatures. Propionic acid dominated at SP/65 °C, while acetic acid became the primary VFA at 180 °C. Furthermore, significant degradation rates of phenolic compounds and furans were observed during the final day of both anaerobic processes. Overall, these findings suggest that AD is more suitable for raw OMSW, treated at low temperature and SP at high temperature, while AF offers a promising alternative for high-temperature-treated LP.

4.
J Equine Vet Sci ; 143: 105205, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39362294

RESUMEN

The equine sarcoid is the most common skin neoplasia of fibroblastic origin in horses, characterized by an excessive accumulation of extracellular matrix produced by sarcoid fibroblasts under hypoxic condition. Neoplastic cells can adapt to hypoxia by using alternative energy sources, particularly those that arise from fatty acid oxidation (FAO). The Carnitine Palmitoyl Transferase 1A (CPT1A) belongs to Carnitine System (CS) and promotes the entrance of fatty acids into the mitochondria for ß-oxidation. In this study, CPT1A expression was comparatively addressed in 25 equine sarcoids and 5 normal skin samples using immunohistochemistry (IHC). Specificity of CPT1A antibody was validated by Western Blotting (WB). In normal skin samples IHC staining was weak and mainly confined to basal epidermis and few dermal fibroblasts. Sarcoid fibroblast exhibited a strong cytoplasmic and nuclear signal in 60% of the tumor samples. Cytoplasmic CPT1A expression in sarcoid fibroblasts indicates that the protein is actively involved in metabolic reprogramming processes. Nuclear CPT1A expression suggests that the protein may also be involved in the regulation of neoplastic proliferation.

5.
Biol Trace Elem Res ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377959

RESUMEN

Chronic kidney disease (CKD), characterized by progressive kidney failure, significantly increases mortality and comorbidity risks such as anemia. This study contrasts the impacts of omega-3 and medium-chain triglycerides (MCT) oil on levels of iron, ferritin, total iron-binding capacity (TIBC), hemoglobin (Hb), and transferrin saturation in patients with CKD undergoing dialysis. This interventional trial was conducted on 120 patients with CKD undergoing dialysis in Rasht, Iran. For 8 weeks, the omega-3 group was orally administered three 1000-mg capsules of omega-3 fatty acid supplement, and the MCT group was administered three 1000-mg capsules containing MCT oil daily. Serum concentrations of ferritin, iron, TIBC, Hb, and transferrin saturation were assessed pre-intervention and after the intervention. There was a significant increase in serum iron levels in the MCT group compared to the omega-3 group (103.72 ± 57.8 vs. 77.48±40.13; P = 0.031). No effect was found regarding other iron-related factors such as TIBC, Hb, transferrin saturation, and ferritin levels. The results of our study indicated that taking MCT oil increased serum iron levels compared to omega-3 supplementation in patients with CKD undergoing dialysis. Further research is needed to better understand the potential benefits of MCT oils in patients with CKD.

6.
Prev Nutr Food Sci ; 29(3): 270-278, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39371515

RESUMEN

The development of inflammatory bowel disease (IBD) is closely linked to inflammatory damage and dysbiosis. Recently, probiotics are being increasingly used to improve intestinal health. Probiotic-based therapies can prevent IBD by restoring the balance of gastrointestinal microbiota, reducing gut inflammation, and increasing the concentration of short-chain fatty acids (SCFAs). The present study aimed to investigate the protective effects of Lactiplantibacillus plantarum subsp. plantarum Dad-13, a novel probiotic strain derived from dadih (Indonesian curd from buffalo milk), on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in BALB/c mice. The results showed that probiotic Dad-13 supplementation at a dose of 107 or 109 CFU/mL improved the clinical symptoms of IBD and enhanced the production of SCFAs, particularly propionate and butyrate. Moreover, probiotic Dad-13 supplementation significantly decreased the levels of pro-inflammatory cytokines [tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß] and significantly increased the levels of anti-inflammatory cytokines (IL-10). These findings show that L. plantarum Dad-13 can effectively prevent TNBS-induced colitis by modulating SCFA production and inflammatory cytokines.

7.
Phytomedicine ; 135: 156023, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39368339

RESUMEN

BACKGROUND: Leukemia is one of the most lethal cancers worldwide and represents the sixth-leading cause of cancer deaths. The results of leukemia treatment have not been as positive as desired, and recurrence is common. PURPOSE: Thus, there is an urgent requirement for the development of new therapeutic drugs. Salvia multicaulis (Bardakosh) is a widespread species that contains multiple phytochemical components with anti-cancer activities. METHODS: We isolated and characterized the major diterpene candesalvone B methyl ester from S. multicaulis and investigated its action as a cytotoxic agent towards sensitive and drug-resistant leukemia cells by the resazurin reduction assay. Additionally, the targeted genes and the affected molecular mechanisms attributed to the potent cytotoxic activities were discovered by transcriptome-wide mRNA expression profiling. The targets predicted to be regulated by candesalvone B methyl ester in each cell line were confirmed by qRT-PCR, molecular docking, microscale thermophoresis, and western blotting. Moreover, cell cycle distribution and apoptosis were analyzed by flow cytometry. RESULTS: Candesalvone B methyl ester was cytotoxic with IC50 values of 20.95 ± 0.15 µM against CCRF-CEM cells and 4.13 ± 0.10 µM against multidrug-resistant CEM/ADR5000 leukemia cells. The pathway enrichment analysis disclosed that candesalvone B methyl ester could regulate the heat-shock response signaling pathway via targeting heat shock factor 1 (HSF1) in CCRF-CEM cells and ELOVL fatty acid elongase 5 (ELOVL5) controls the fatty acid metabolism pathway in CEM/ADR5000 cells. Microscale thermophoresis showed the binding of candesalvone B methyl ester with HSF1 and ELOVL5, confirming the results of molecular docking analysis. Down-regulation of both HSF1 and ELOVL5 by candesalvone B methyl ester as detected by both western blotting and RT-qPCR was related to the reversal of drug resistance in the leukemia cells. Furthermore, candesalvone B methyl ester increased the arrest in the sub-G1 phase of the cell cycle in a dose-dependent manner from 1.3 % to 32.3 % with concomitant induction of apoptosis up to 29.0 % in CCRF-CEM leukemic cells upon inhibition of HSF1. CONCLUSION: Candesalvone B methyl ester isolated from S. multicaulis exerted cytotoxicity by affecting apoptosis, cell division, and modulation of expression levels of genes contributing to the heat stress signaling and fatty acid metabolism pathways that could relieve drug resistance of leukemia cells.

8.
J Biol Chem ; : 107855, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39369989

RESUMEN

Thioesterase superfamily member 2 (Them2), a long-chain fatty acyl-CoA thioesterase that is highly expressed in oxidative tissues, interacts with phosphatidylcholine transfer protein (PC-TP) to regulate hepatic lipid and glucose metabolism and to suppress insulin signaling. High-fat diet (HFD)-fed mice lacking Them2 globally or specifically in skeletal muscle, but not liver, exhibit reduced hepatic steatosis and insulin resistance. Here, we report that the capacity of Them2 in skeletal muscle to promote hepatic steatosis and insulin resistance depends on both its catalytic activity and interaction with PC-TP. Two residues of Them2 catalytic site were mutated (N50A/D65A) to produce the inactive enzyme while maintaining its homotetrameric structure and interaction with PC-TP. Restoration of skeletal muscle expression in Them2-/- mice using recombinant adeno-associated virus revealed that wild-type (WT), but not N50A/D65A Them2, promoted HFD-induced weight gain and hepatic steatosis. This was accompanied by greater impairment of insulin sensitivity in WT compared with N50A/D65A Them2. Pharmacological inhibition or genetic ablation of PC-TP attenuated these effects. In reductionist experiments, conditioned medium collected from WT primary cultured myotubes promoted excess lipid accumulation in oleic acid-treated primary cultured hepatocytes relative to Them2-/- myotubes, which was attributable to secreted extracellular vesicles (EV). Reconstitution of Them2 expression in Them2-/- myotubes affirmed the requirements for catalytic activity and PC-TP interactions for EV to promote lipid accumulation in hepatocytes. These studies provide valuable mechanistic insights whereby Them2 in skeletal muscle promotes hepatic steatosis and establish both Them2 and PC-TP as represent attractive targets for managing metabolic dysfunction-associated steatotic liver disease.

9.
J Agric Food Chem ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39382334

RESUMEN

Atrazine (ATZ), a widely used herbicide, disrupts mitochondrial function and lipid metabolism in the liver. Melatonin (MLT), a naturally synthesized hormone, combats mitochondrial dysfunction and alleviates lipid toxicity. However, the mechanisms behind ATZ-induced lipid metabolism toxicity and the protective effects of MLT remain unexplored. Mice were randomly assigned to four groups: control (Con), 5 mg/kg MLT, 170 mg/kg ATZ, and a cotreatment group receiving 170 mg/kg ATZ with 5 mg/kg MLT (ATZ+MLT). Additionally, we analyzed the effects of MLT and Rab8a on mRNA and proteins related to mitochondrial function and lipid metabolism disrupted by ATZ in AML12 cells. In conclusion, ATZ induced mitochondrial stress and disrupted fatty acid metabolism in mouse hepatocytes and AML12 cells. Exogenous MLT restores Rab8a levels, regulating fatty acid utilization in mitochondria and mitochondrial function. Notably, targeting Rab8a does not significantly affect mitochondrial function but prevents ATZ-induced lipid metabolism disorders in hepatocytes.

10.
Heliyon ; 10(19): e36851, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39386876

RESUMEN

Consuming traditional petroleum-derived diesel fuel has long been associated with issues such as the depletion of natural energy resources. To solve these challenges, an alternate source like as biodiesel is an appealing option. Seed oils have long been recognized as an abundant and diverse source of biodiesel. In this study, poppy seed oil from the poppy (Papaver somniferum) was investigated for biodiesel production. Poppy seed biodiesel was generated and refined using acid-pretreated esterification with sulphuric acid prior to transesterification, as well as single-step alkaline catalyzed transesterification with methanol and potassium hydroxide. Finally, the percentage yield was compared. Using Statistica, the Box-Behnken design was applied to optimize process variables like time, temperature, catalyst concentration, and methanol-oil ratio to produce maximum yield. The relationship of process variables was also shown with the help of the Response Surface Methodology. A maximum yield of 94.87 % was obtained at optimized conditions, i.e., 90min reaction time, 60 °C of temperature, 0.25 mg of catalyst concentration, and 3v/v% alcohol-oil ratio. The fuel properties of biodiesel produced, such as acid value, moisture content, saponification value, iodine value, specific gravity, percentage of free fatty acids, refractive index, viscosity, boiling point, and peroxide value, were measured and compared with the American Society for Testing and Materials (ASTM) D6751 and European Standards (EN) 14214. Further results were studied and discussed using Fourier Transfer Infrared (FTIR) analysis, which showed maximum similarity of raw material to formed biodiesel. Gas Chromatography-Mass Spectrometry (GC-MS) analysis was performed to identify and quantify various fatty acid methyl esters. The results obtained were in accordance with various international standards for biodiesel fuel. Thus, poppy seeds can be used to obtain biodiesel.

11.
Free Radic Biol Med ; 225: 208-220, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39368517

RESUMEN

The monomeric heme protein myoglobin (Mb) is aberrantly expressed in approximately 40 % of breast tumors. Mb expression is associated with better patient prognosis, yet the molecular mechanisms underlying this effect are unclear. In muscle, Mb's heme moiety confers oxygen storage and delivery. However, prior studies demonstrate that low levels of Mb in cancer cells preclude this function. Several studies propose a fatty acid binding function for Mb via lysine residue K46. Because cancer cells can upregulate fatty acid oxidation (FAO) to fuel cell migration, we tested whether Mb-mediated fatty acid binding modulates FAO and migration. We demonstrate that stable expression of human Mb in MDA-MB-231 breast cancer cells decreases cell migration and FAO. Site-directed mutagenesis of Mb K46 disrupted fatty acid binding but did not improve FAO or migration. Conversely, cells expressing Apo-Mb (with disrupted heme binding) did not show impaired FAO or migration rates, suggesting Mb attenuates FAO and migration via a heme-dependent mechanism rather than through fatty acid binding. Mb's heme-dependent oxidant generation dysregulates migratory gene expression, which is reversed by catalase treatment. Collectively, these data demonstrate that Mb's heme-dependent oxidant production decreases breast cancer cell migration, prompting therapeutic strategies to modulate oxidant production and Mb in tumors.

12.
J Anim Sci ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39383123

RESUMEN

Previous research has demonstrated that decreasing starch availability of steam-flaked corn by increasing flake density or increasing the degree of starch retrogradation influences in vitro gas production kinetics. However, it is unclear if increasing flake density or the degree of starch retrogradation influences end-products of in vitro ruminal fermentation (methane, volatile fatty acids, ammonia). The objective of this experiment was to evaluate the effects of increasing flake density and the degree of starch retrogradation on in vitro gas production kinetics, digestibility, and ruminal fermentation characteristics of steam-flaked corn. Three ruminally-cannulated steers were fed a high-concentrate diet and sampled for ruminal digesta for an in vitro fermentation experiment with a 5×2 factorial arrangement of treatments. Steam-flaked corn was produced to flake densities of 257, 296, 335, 373, and 412 g/L by adjusting the rolls of a steam-flaker. Samples were stored for 3 d at either 23°C to produce fresh steam-flaked corn or at 55°C in heat-sealed foil bags to produce retrograded steam-flaked corn. In vitro fermentation vessels were incubated for 24 h and then assessed for fermentation parameters including dry matter digestibility, volatile fatty acid concentrations, and total gas and methane production. Increasing the degree of starch retrogradation decreased (P < 0.01) the rate of gas production across all flake densities of steam-flaked corn but did not decrease the extent of gas production. In vitro methane production, dry matter digestibility, and microbial biomass concentration were not influenced by increasing flake density or starch retrogradation. Increasing the degree of starch retrogradation decreased (P = 0.03) the molar propionate proportion and increased (P < 0.06) the molar proportions of butyrate, isobutyrate, and isovalerate and the acetate:propionate ratio. Enzymatic starch availability of steam-flaked corn was positively correlated with mean propionate proportion (r2 = 0.93) and negatively correlated with the mean butyrate proportion (r2 = 0.89). Results from the current study demonstrate that increasing the degree of starch retrogradation of steam-flaked corn decreased the rate of in vitro gas production and altered volatile fatty acid profiles in the ruminal fermentation media.

13.
Am J Mens Health ; 18(5): 15579883241273305, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39376007

RESUMEN

While cisplatin remains a frontline treatment for bladder cancer (BCa), the onset of resistance greatly hampers its effectiveness. RAC3 is closely linked to chemoresistance in cancer cells, but its specific role in cisplatin resistance within BCa is still elusive. RAC3 expression in BCa was analyzed using bioinformatics and quantitative polymerase chain reaction (qPCR). The gene set enrichment analysis (GSEA) identified RAC3-enriched pathways and the correlation between RAC3 and fatty acid synthase (FASN), a gene involved in fatty acid synthesis. Potential upstream transcription factors of RAC3 were predicted and their interaction with RAC3 was confirmed via dual-luciferase and chromatin immunoprecipitation (ChIP) assays. T24/DDP, a cisplatin-resistant BCa cell line, was established to probe into the regulatory role of RAC3 in cisplatin resistance. Cell proliferation was evaluated by colony formation and the IC50 values after cisplatin treatment were determined using cell counting kit-8 (CCK-8). The levels of free fatty acids and triglycerides (TGs), as well as the expression of DGAT2 and FASN proteins, were measured to gauge the extent of fatty acid synthesis in cells. Elevated expression of RAC3 was observed in BCa and the cisplatin-resistant BCa cells (T24/DDP). The knockdown of RAC3 within T24/DDP cells was demonstrated to counteract cisplatin resistance. Subsequent analyses identified RAC3 as being notably enriched in the fatty acid synthesis pathway, with Kruppel-like factor 1 (KLF1) emerging as a key upstream regulator. The overexpression of RAC3 was correlated with increased cisplatin resistance in T24/DDP cells, an effect that was mitigated by the addition of the FASN inhibitor, Orlistat. Furthermore, the downregulation of KLF1 suppressed RAC3 expression, disrupted fatty acid synthesis, and attenuated cisplatin resistance in T24/DDP cells. Conversely, the co-overexpression of RAC3 counteracted the effects conferred by KLF1 knockdown. Our study has validated that KLF1 activates RAC3 to mediate fatty acid synthesis and promote cisplatin resistance in BCa, suggesting the KLF1/RAC3 axis as a potential target for combating cisplatin-resistant BCa.


Asunto(s)
Antineoplásicos , Cisplatino , Resistencia a Antineoplásicos , Ácidos Grasos , Factores de Transcripción de Tipo Kruppel , Neoplasias de la Vejiga Urinaria , Proteínas de Unión al GTP rac , Humanos , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Ácidos Grasos/metabolismo , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Proteínas de Unión al GTP rac/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
14.
Lipids ; 2024 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-39397372

RESUMEN

Pancreatic cancer (PC) is one of the most fatal malignancies, which has attracted scientists to investigate its etiology and pathogenesis. Nevertheless, the association between erythrocyte fatty acids and PC risk remains unclear. This study aimed to evaluate the association between levels of erythrocyte fatty acids and PC risk. The erythrocyte fatty acid compositions of 105 PC patients and 120 controls were determined by gas chromatography. Cases and controls were frequency matched by age and sex. Multivariable conditional logistic regression model and restricted cubic spline were applied to estimate the odds ratio with 95% confidence interval (OR, 95% CI) of erythrocyte fatty acids and PC risk. Our main findings indicated a significant negative association between levels of erythrocyte total monounsaturated fatty acids (MUFA) and n-3 polyunsaturated fatty acids (n-3 PUFA) and the risk of PC (ORT3-T1 = 0.30 [0.14, 0.63] and ORT3-T1 = 0.15 [0.06, 0.33], respectively). In contrast, erythrocyte n-6 polyunsaturated fatty acids, specifically linoleic acid (LA) and arachidonic acid (AA) levels, were positively associated with PC incidence (RT1-T3 = 4.24 [1.97, 9.46] and ORT1-T3 = 4.53 [2.09, 10.20]). Total saturated fatty acid (SFA), especially high levels of palmitic acid (16:0), was positively associated with the risk of PC (ORT3-T1 = 3.25 [1.53, 7.08]). Our findings suggest that levels of different types of fatty acids in erythrocytes may significantly alter PC susceptibility. Protective factors against PC include unsaturated fatty acids such as n-3 PUFA and MUFA.

15.
Food Chem ; 463(Pt 3): 141379, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39362151

RESUMEN

Mathematical models of transesterification commonly assume that oil is a mixture of triacylglycerols, where each component has only one type of acid attached. This article aims to show how a different assumption on acid distribution affects the results of acylglycerols fraction composition. Experiments of fish oil ethanolysis have been performed at different enzyme loadings and ethanol concentrations, leading to enrichments from 35 % to 52 % of ω3 mass fraction in acylglycerols, by losing 12.1 % of ω3 as ethyl esters. A kinetic model is developed assuming both all acids of the same type on each acylglycerol and all acids randomly distributed on the available positions. The two different assumptions showed strong discrepancies on the acylglycerols fraction compositions predictions, demonstrating how the initial fatty acids distribution is important when an accurate description of the acylglycerols fraction is desired.

16.
Angew Chem Int Ed Engl ; : e202414941, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39363718

RESUMEN

Cerulenin (1) is the first reported natural fatty acid synthase inhibitor and has been intensively researched for its antifungal, anticancer and anti-obesity properties. However, the molecular basis for its biosynthesis has remained a mystery for six decades. Here, we have identified the polyketide biosynthetic gene cluster (cer) responsible for the biosynthesis of 1 from two Sarocladium species using a self-resistance gene mining approach, which we validated via heterologous reconstitution of cer cluster in an Aspergillus nidulans host. Expression of various combinations of cer genes uncovered key pathway intermediates, electrocyclisation products derived from PKS-encoded polyenoic acids, and a suite of 13 new analogues of 1. This enabled us to establish a biosynthetic pathway to 1 that starts with a C12 polyketide precursor with both E and Z double bonds and involves a complex series of epoxidations, double bond shifts, E/Z isomerisation and epoxide reduction. Using in vitro assays, we further validated the roles of amidotransferase CerD in amidation, and oxidase CerF and reductase CerE in the final two-electron oxidation and enone reduction steps towards 1. These findings expand our understanding of complex tailoring modifications in highly reducing PKS pathways and pave the way for the engineered biosynthesis of cerulenin analogues.

17.
Int Rev Cell Mol Biol ; 389: 67-103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39396850

RESUMEN

Understanding the intricacies of the metabolic phenotype in immune cells and its plasticity within the tumor microenvironment is pivotal in understanding the pathology and prognosis of cancer. Unfavorable conditions and cellular stress in the tumor microenvironment (TME) exert a profound impact on cellular functions in immune cells, thereby influencing both tumor progression and immune responses. Elevated AMP:ATP ratio, a consequence of limited glucose levels, activate AMP-activated protein kinase (AMPK) while concurrently repressing the activity of mechanistic target of rapamycin (mTOR) and hypoxia-inducible factor 1-alpha (HIF-1α). The intricate balance between AMPK, mTOR, and HIF-1α activities defines the metabolic phenotype of immune cells in the TME. These Changes in metabolic phenotype are strongly associated with immune cell functions and play a crucial role in creating a milieu conducive to tumor progression. Insufficiency of nutrient and oxygen supply leads to a metabolic shift in immune cells characterized by a decrease in glycolysis and an increase in oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) rates. In most cases, this shift in metabolism is accompanied by a compromise in the effector functions of these immune cells. This metabolic adaptation prompts immune cells to turn down their effector functions, entering a quiescent or immunosuppressive state that may support tumor growth. This article discusses how tumor microenvironment alters the metabolism in immune cells leading to their tolerance and tumor progression, with emphasis on mitochondrial metabolism (OXPHOS and FAO).


Asunto(s)
Mitocondrias , Microambiente Tumoral , Microambiente Tumoral/inmunología , Humanos , Mitocondrias/metabolismo , Animales , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/inmunología
18.
Proc Natl Acad Sci U S A ; 121(42): e2402674121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39388261

RESUMEN

Elevated lipid synthesis is one of the best-characterized metabolic alterations in cancer and crucial for membrane expansion. As a key rate-limiting enzyme in de novo fatty acid synthesis, ATP-citrate lyase (ACLY) is frequently up-regulated in tumors and regulated by posttranslational modifications (PTMs). Despite emerging evidence showing O-GlcNAcylation on ACLY, its biological function still remains unknown. Here, we observed a significant upregulation of ACLY O-GlcNAcylation in various types of human tumor cells and tissues and identified S979 as a major O-GlcNAcylation site. Importantly, S979 O-GlcNAcylation is required for substrate CoA binding and crucial for ACLY enzymatic activity. Moreover, it is sensitive to glucose fluctuation and decisive for fatty acid synthesis as well as tumor cell proliferation. In response to EGF stimulation, both S979 O-GlcNAcylation and previously characterized S455 phosphorylation played indispensable role in the regulation of ACLY activity and cell proliferation; however, they functioned independently from each other. In vivo, streptozocin treatment- and EGFR overexpression-induced growth of xenograft tumors was mitigated once S979 was mutated. Collectively, this work helps comprehend how cells interrogate the nutrient enrichment for proliferation and suggests that although mammalian cell proliferation is controlled by mitogen signaling, the ancient nutrition-sensing mechanism is conserved and still efficacious in the cells of multicellular organisms.


Asunto(s)
ATP Citrato (pro-S)-Liasa , Proliferación Celular , Glucosa , Lipogénesis , Humanos , ATP Citrato (pro-S)-Liasa/metabolismo , ATP Citrato (pro-S)-Liasa/genética , Glucosa/metabolismo , Animales , Ratones , Línea Celular Tumoral , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Procesamiento Proteico-Postraduccional , Fosforilación , Glicosilación
19.
Front Immunol ; 15: 1477267, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39399493

RESUMEN

Background and aim: Cholangiocarcinoma (CCA) is a rare cancer, yet its incidence and mortality rates have been steadily increasing globally over the past few decades. Currently, there are no effective targeted treatment strategies available for patients. ACLY (ATP Citrate Lyase), a key enzyme in de novo lipogenesis, is aberrantly expressed in several tumors and is associated with malignant progression. However, its role and mechanisms in CCA have not yet been elucidated. Methods: The expression of ACLY in CCA was assessed using transcriptomic profiles and tissue microarrays. Kaplan-Meier curves were employed to evaluate the prognostic significance of ACLY in CCA. Functional enrichment analysis was used to explore the potential mechanisms of ACLY in CCA. A series of assays were conducted to examine the effects of ACLY on the proliferation and migration of CCA cells. Ferroptosis inducers and inhibitors, along with lipid peroxide probes and MDA assay kits, were utilized to explore the role of ACLY in ferroptosis within CCA. Additionally, lipid-depleted fetal bovine serum and several fatty acids were used to evaluate the impact of fatty acids on ferroptosis induced by ACLY inhibition. Correlation analyses were performed to elucidate the relationship between ACLY and tumor stemness as well as tumor microenvironment. Results: The expression of ACLY was found to be higher in CCA tissues compared to adjacent normal tissues. Patients with elevated ACLY expression demonstrated poorer overall survival outcomes. ACLY were closed associated with fatty acid metabolism and tumor-initiating cells. Knockdown of ACLY did not significantly impact the proliferation and migration of CCA cells. However, ACLY inhibition led to increased accumulation of lipid peroxides and enhanced sensitivity of CCA cells to ferroptosis inducers. Polyunsaturated fatty acids were observed to inhibit the proliferation of ACLY-knockdown cells; nonetheless, this inhibitory effect was diminished when the cells were cultured in medium supplemented with lipid-depleted fetal bovine serum. Additionally, ACLY expression was negatively correlated with immune cell infiltration and immune scores in CCA. Conclusion: ACLY promotes ferroptosis by disrupting the balance of saturated and unsaturated fatty acids. ACLY may therefore serve as a potential diagnostic and therapeutic target for CCA.


Asunto(s)
ATP Citrato (pro-S)-Liasa , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Ferroptosis , Colangiocarcinoma/patología , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Humanos , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/mortalidad , Línea Celular Tumoral , Ferroptosis/genética , ATP Citrato (pro-S)-Liasa/metabolismo , ATP Citrato (pro-S)-Liasa/genética , Proliferación Celular , Microambiente Tumoral , Pronóstico , Regulación Neoplásica de la Expresión Génica , Masculino , Movimiento Celular , Biomarcadores de Tumor/metabolismo , Femenino
20.
Cells ; 13(19)2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39404424

RESUMEN

Dysregulated fatty acid metabolism is an attractive therapeutic target for colorectal cancer (CRC). We previously reported that fatty acid synthase (FASN), a key enzyme of de novo synthesis, promotes the initiation and progression of CRC. However, the mechanisms of how upregulation of FASN promotes the initiation and progression of CRC are not completely understood. Here, using Apc/VillinCre and ApcMin mouse models, we show that upregulation of FASN is associated with an increase in activity of ß-catenin and expression of multiple stem cell markers, including Notum. Genetic and pharmacological downregulation of FASN in mouse adenoma organoids decreases the activation of ß-catenin and expression of Notum and significantly inhibits organoid formation and growth. Consistently, we demonstrate that NOTUM is highly expressed in human CRC and its expression positively correlates with the expression of FASN in tumor tissues. Utilizing overexpression and shRNA-mediated knockdown of FASN, we demonstrate that upregulation of FASN increases ß-catenin transcriptional activity, NOTUM expression and secretion, and enhances stem-like properties of human CRC cells. Pharmacological inhibition of NOTUM decreases adenoma organoids growth and proliferation of cancer cells. In summary, upregulation of FASN enhances ß-catenin signaling, increases NOTUM expression and stem-like properties of CRC cells, thus suggesting that targeting FASN upstream of the ß-catenin/NOTUM axis may be an effective preventative therapeutic strategy for CRC.


Asunto(s)
Neoplasias Colorrectales , Células Madre Neoplásicas , Regulación hacia Arriba , beta Catenina , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , beta Catenina/metabolismo , Humanos , Animales , Ratones , Regulación hacia Arriba/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Regulación Neoplásica de la Expresión Génica , Ácido Graso Sintasas/metabolismo , Ácido Graso Sintasas/genética , Línea Celular Tumoral , Organoides/metabolismo , Proliferación Celular , Adenoma/patología , Adenoma/metabolismo , Adenoma/genética , Esterasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA