Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cells ; 10(6)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201243

RESUMEN

Alphaviruses are a group of arboviruses that generate chronic inflammatory rheumatisms in humans. Currently, no approved vaccines or antiviral therapies are available to prevent or treat alphavirus-induced diseases. The aim of this study was to evaluate the repositioning of the anti-cancer molecule irinotecan as a potential modulator of the antiviral and inflammatory responses of primary human synovial fibroblasts (HSF), the main stromal cells of the joint synovium. HSF were exposed to O'nyong-nyong virus (ONNV) and polyinosinic-polycytidylic acid (PIC) to mimic, respectively, acute and chronic infectious settings. The cytokine IL-1ß was used as a major pro-inflammatory cytokine to stimulate HSF. Quantitative RT-PCR analysis revealed that irinotecan at 15 µM was able to amplify the antiviral response (i.e., interferon-stimulated gene expression) of HSF exposed to PIC and reduce the expression of pro-inflammatory genes (CXCL8, IL-6 and COX-2) upon IL-1ß treatment. These results were associated with the regulation of the expression of several genes, including those encoding for STAT1, STAT2, p53 and NF-κB. Irinotecan did not modulate these responses in both untreated cells and cells stimulated with ONNV. This suggests that this drug could be therapeutically useful for the treatment of chronic and severe (rather than acute) arthritis due to viruses.


Asunto(s)
Infecciones por Alphavirus/tratamiento farmacológico , Antivirales/farmacología , Artritis Reumatoide/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Irinotecán/farmacología , Citocinas/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Humanos , Cultivo Primario de Células , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/patología
2.
J Med Virol ; 92(2): 139-148, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31483508

RESUMEN

Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitoes. CHIKV infection leads to polyarthritis and polyarthralgia among patients. The synovial fibroblasts are the primary target for CHIKV. The microRNAs (miRNAs) are the small endogenous noncoding RNAs which posttranscriptionally regulate the expression of genes by binding to their target messenger RNAs (mRNAs) through their 3'-untranslated regions. The miRNAs are the key regulators for various pathological processes including viral infection, cancer, cardiovascular disease, and neurodegeneration. This study was designed to dissect out the roles of miRNAs during CHIKV (Ross Strain E1: A226V) infection in primary human synovial fibroblasts. The miRNA microarray profiling was performed on the primary human synovial fibroblasts infected by CHIKV. The gene target prediction analysis, enrichment, and network analysis were performed by various bioinformatics analyses. The subset of 26 differentially expressed microRNAs (DEMs) were identified through microarray profiling and were further screened for gene predictions, Gene Ontology, pathway enrichment, and miRNA-mRNA network using various bioinformatics tools. The bioinformatics analysis indicates the role of DEMs by suppressing the immune response which may contribute to CHIKV persistence in human primary synovial fibroblasts. Our study provides the plausible roles of DEMs, miRNAs, and mRNA interactions and pathways involved in the molecular pathogenesis of CHIKV.


Asunto(s)
Fiebre Chikungunya/genética , Fibroblastos/virología , MicroARNs/genética , ARN Mensajero/genética , Animales , Células Cultivadas , Virus Chikungunya/patogenicidad , Chlorocebus aethiops , Biología Computacional , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Análisis por Micromatrices , Membrana Sinovial/virología , Células Vero
3.
Biochem Biophys Rep ; 8: 68-74, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28955943

RESUMEN

BACKGROUND: The ability to decrease inflammation and promote healing is important in the intervention and management of a variety of disease states, including osteoarthritis of the knee (OAK). Even though cyclooxygenase 2 (COX2) has an established pro-inflammatory role, evidence suggests it is also critical to the resolution that occurs after the initial activation phase of the immune response. In this study, we investigated the effects of the low molecular weight fraction of 5% human serum albumin (LMWF-5A), an agent that has proven to decrease pain and improve function in OAK patients after intra-articular injection, on the expression of COX2 and its downstream products, prostaglandins (PGs). METHODS: Fibroblast-like synoviocytes from the synovial membrane of OAK patients were treated with LMWF-5A or saline as a control with or without the addition of interleukin-1ß (IL-1ß) or tumor necrosis factor α (TNFα) to elicit an inflammatory response. Cells were harvested for RNA and protein at 2, 4, 8, 12, and 24 h, and media was collected at 24 h for analysis of secreted products. COX2 mRNA expression was determined by qPCR, and COX2 protein expression was determined by western blot analysis. Levels of prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2) in the media were quantified by competitive ELISA. RESULTS: In the presence of either IL-1ß or TNFα, LMWF-5A increased the expression of both COX2 mRNA and protein, and this increase was significant compared to that observed with IL-1ß- or TNFα-stimulated, saline-treated cells. Downstream of COX2, the levels of PGE2 were increased only in TNFα-stimulated, LMWF-5A-treated cells; however, in both IL-1ß- and TNFα-stimulated cells, LMWF-5A increased the release of the anti-inflammatory prostaglandin PGD2. CONCLUSION: LMWF-5A appears to trigger increased anti-inflammatory PG signaling, and this may be a primary component of its therapeutic mode of action in the treatment of OAK.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA