Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.037
Filtrar
1.
Sci Rep ; 14(1): 18569, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127771

RESUMEN

Acute respiratory infections (ARIs) are associated with high mortality and morbidity. Acute lung injury (ALI) is caused by the activation of immune cells during ARIs caused by viruses such as SARS-CoV-2. Aquaporin 1 (AQP1) is distributed in a variety of immune cells and is related to the occurrence of ALI, but the mechanism is not clear. A reference map of human single cells was used to identify macrophages in COVID-19 patients at the single-cell level. "FindMarkers" was used to analyze differentially expressed genes (DEGs), and "clusterProfiler" was used to analyze the functions of the DEGs. An M1 macrophage polarization model was established with lipopolysaccharide (LPS) in vitro, and the relationships among AQP1, pyroptosis and M1 polarization were examined by using an AQP1 inhibitor. Transcriptome sequencing and RT-qPCR were used to examine the molecular mechanism by which AQP1 regulates macrophage polarization and pyroptosis. Antigen presentation, M1 polarization, migration and phagocytosis are abnormal in SARS-CoV-2-infected macrophages, which is related to the high expression of AQP1. An M1 polarization model of macrophages was constructed in vitro, and an AQP1 inhibitor was used to examine whether AQP1 could promote M1 polarization and pyroptosis in response to LPS. Transcriptome and cell experiments showed that this effect was related to a decrease in chemokines caused by AQP1 deficiency. AQP1 participates in M1 polarization and pyroptosis in macrophages by increasing the levels of chemokines induced by LPS, which provides new insights for the diagnosis and treatment of ALI.


Asunto(s)
Acuaporina 1 , COVID-19 , Lipopolisacáridos , Macrófagos , Piroptosis , SARS-CoV-2 , Lipopolisacáridos/farmacología , Humanos , Macrófagos/metabolismo , Macrófagos/inmunología , Acuaporina 1/metabolismo , Acuaporina 1/genética , COVID-19/virología , COVID-19/metabolismo , COVID-19/inmunología , COVID-19/patología , SARS-CoV-2/fisiología , Animales , Activación de Macrófagos , Ratones
2.
J Mol Histol ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110365

RESUMEN

Many people sustain acute lung injuries in road traffic collisions, but few studies have dealt with such injuries in live models. This study aimed to explore the basic pathophysiological and inflammatory changes in adult rabbits following acute thoracic trauma. We randomly assigned 50 rabbits to control and injury groups. Rabbits in the injury group were subjected to right chest pressure (2600 g) using a Hopkinson bar. Measurements were taken in the control group and 0, 24, 48, and 72 h after injury in the injury group. Injury severity was evaluated in gross view; with haematoxylin and eosin (H&E) staining; and through the serum changes of tumor necrosis factor alpha (TNF-α), surfactant protein D (SP-D), and neutrophils. Secretion changes in SP-D in right lung injured tissues were estimated by western blotting and qPCR. Serum TNF-α levels increased rapidly immediately after injury, gradually recovering after 24, 48, and 72 h (p < 0.01). The percentage of neutrophils in the accompanying blood showed a consistent trend. Gross necropsy and H&E staining indicated different levels of bleeding, alveoli exudation, and inflammatory transformation after impact. ELISA depicted the same trend in circulation (F = 22.902, p < 0.01). Western blotting showed that SP-D protein levels in tissues decreased at 0 h and increased at 24, 48, and 72 h. We demonstrate the feasibility of a model of impact lung injury. Primary impact caused injury without external signs. Inflammation began immediately, and the lungs began recovering at 24, 48, and 72 h, as shown by increased SP-D levels in circulation and tissues.With complaints of ALI and inflammation, SP-D may be a potential biomarker after chest trauma.

3.
Eur J Pharmacol ; 980: 176817, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39089462

RESUMEN

Infection-related lipopolysaccharide (LPS) release causes cytokine storm and acute lung injury. Emerging data show that the interleukin 6 (IL-6) inhibitor tocilizumab can improve lung damage in patients with sepsis. This study aimed to investigate the therapeutic effect of tocilizumab on acute lung injury in cirrhotic rats. Biliary cirrhosis was induced in Sprague-Dawley rats with common bile duct ligation (BDL). Sham-operated rats served as surgical controls. Tocilizumab was administered on post-operative day 21, and LPS was injected intraperitoneally on day 29. Three hours after LPS injection, hemodynamic parameters, biochemistry data, and arterial blood gas analysis were evaluated, along with measurements of IL-6 and tumor necrosis factor-α (TNF-α). Liver and lung histology was examined, and protein levels were analyzed. LPS administration reduced portal pressure, portal venous flow and cardiac index in the BDL rats. In addition, LPS administration induced acute lung injury, hypoxia and elevated TNF-α and IL-6 levels. Pre-treatment with tocilizumab did not affect hemodynamic and biochemistry data, but it ameliorated lung injury and decreased TNF-α, IL-6, and CD68-positive macrophage infiltration. Moreover, tocilizumab administration improved hypoxia and gas exchange in the BDL rats, and downregulated hepatic and pulmonary inflammatory protein expression. In conclusion, LPS administration induced acute lung injury in biliary cirrhotic rats. Pre-treatment with tocilizumab reduces lung damage and hypoxia, possibly by downregulating inflammatory proteins and reducing IL-6, TNF-α and CD68-positive macrophage recruitment in the lung.

4.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3837-3847, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39099357

RESUMEN

The study investigates the therapeutic effects and mechanisms of ginsenoside Rg_1(GRg_1) on sepsis-induced acute lung injury(SALI). A murine model of SALI was created using cecal ligation and puncture(CLP) surgery, and mice were randomly assigned to groups for GRg_1 intervention. Survival and body weight changes were recorded, lung function was assessed with a non-invasive lung function test system, and lung tissue damage was evaluated through HE staining. The content and expression of inflammatory factors were measured by ELISA and qRT-PCR. Apoptosis was examined using flow cytometry and TUNEL staining. The activation and expression of apoptosis-related molecules cysteinyl aspartate specific proteinase 3(caspase-3), B-cell lymphoma-2(Bcl-2), Bcl-2 associated X protein(Bax), and endoplasmic reticulum stress-related molecules protein kinase R-like endoplasmic reticulum kinase(PERK), eukaryotic initiation factor 2α(eIF2α), activating transcription factor 4(ATF4), and C/EBP homologous protein(CHOP) were studied using Western blot and qRT-PCR. In addition, an in vitro model of lipopolysaccharide(LPS)-induced lung alveolar epithelial cell injury was used, with the application of the endoplasmic reticulum stress inducer tunicamycin to validate the action mechanism of GRg_1. RESULTS:: indicated that, when compared to the model group, GRg_1 intervention significantly enhanced the survival time of CLP mice, mitigated body weight loss, and improved impaired lung function indices. The GRg_1-treated mice also displayed reduced lung tissue pathological scores, a reduced lung tissue wet-to-dry weight ratio, and lower protein content in the bronchoalveolar lavage fluid. Serum levels of interleukin-6(IL-6), interleukin-1ß(IL-1ß), and tumor necrosis factor-α(TNF-α), as well as the mRNA expressions of these cytokines in lung tissues, were decreased. There was a notable decrease in the proportion of apopto-tic alveolar epithelial cells, and down-regulated expressions of caspase-3, Bax, PERK, eIF2α, ATF4, and CHOP and up-regulated expression of Bcl-2 were observed. In vitro findings showed that the apoptosis-lowering and apoptosis-related protein down-regulating effects of GRg_1 were significantly inhibited with the co-application of tunicamycin. Altogether, GRg_1 reduces apoptosis of alveolar epithelial cells, inhibits inflammation in the lungs, alleviates lung injury, and enhances lung function, possibly through the PERK/eIF2α/ATF4/CHOP pathway.


Asunto(s)
Factor de Transcripción Activador 4 , Lesión Pulmonar Aguda , Células Epiteliales Alveolares , Apoptosis , Factor 2 Eucariótico de Iniciación , Ginsenósidos , Sepsis , Factor de Transcripción CHOP , eIF-2 Quinasa , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/genética , Ginsenósidos/farmacología , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Ratones , Apoptosis/efectos de los fármacos , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción CHOP/genética , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/metabolismo , Sepsis/genética , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Masculino , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Humanos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones Endogámicos C57BL
5.
Clin Transl Med ; 14(8): e1785, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39090662

RESUMEN

BACKGROUND: Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common acute respiratory failure due to diffuse pulmonary inflammation and oedema. Elaborate regulation of macrophage activation is essential for managing this inflammatory process and maintaining tissue homeostasis. In the past decades, metabolic reprogramming of macrophages has emerged as a predominant role in modulating their biology and function. Here, we observed reduced expression of carnitine palmitoyltransferase 1A (CPT1A), a key rate-limiting enzyme of fatty acid oxidation (FAO), in macrophages of lipopolysaccharide (LPS)-induced ALI mouse model. We assume that CPT1A and its regulated FAO is involved in the regulation of macrophage polarization, which could be positive regulated by interleukin-10 (IL-10). METHODS: After nasal inhalation rIL-10 and/or LPS, wild type (WT), IL-10-/-, Cre-CPT1Afl/fl and Cre+CPT1Afl/fl mice were sacrificed to harvest bronchoalveolar lavage fluid, blood serum and lungs to examine cell infiltration, cytokine production, lung injury severity and IHC. Bone marrow-derived macrophages (BMDMs) were extracted from mice and stimulated by exogenous rIL-10 and/or LPS. The qRT-PCR, Seahorse XFe96 and FAO metabolite related kits were used to test the glycolysis and FAO level in BMDMs. Immunoblotting assay, confocal microscopy and fluorescence microplate were used to test macrophage polarization as well as mitochondrial structure and function damage. RESULTS: In in vivo experiments, we found that mice lacking CPT1A or IL-10 produced an aggravate inflammatory response to LPS stimulation. However, the addition of rIL-10 could alleviate the pulmonary inflammation in mice effectively. IHC results showed that IL-10 expression in lung macrophage decreased dramatically in Cre+CPT1Afl/fl mice. The in vitro experiments showed Cre+CPT1Afl/fl and IL-10-/- BMDMs became more "glycolytic", but less "FAO" when subjected to external attacks. However, the supplementation of rIL-10 into macrophages showed reverse effect. CPT1A and IL-10 can drive the polarization of BMDM from M1 phenotype to M2 phenotype, and CPT1A-IL-10 axis is also involved in the process of maintaining mitochondrial homeostasis. CONCLUSIONS: CPT1A modulated metabolic reprogramming and polarisation of macrophage under LPS stimulation. The protective effects of CPT1A may be partly attributed to the induction of IL-10/IL-10 receptor expression.


Asunto(s)
Lesión Pulmonar Aguda , Carnitina O-Palmitoiltransferasa , Interleucina-10 , Macrófagos , Animales , Masculino , Ratones , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/tratamiento farmacológico , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Modelos Animales de Enfermedad , Interleucina-10/metabolismo , Lipopolisacáridos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Fenotipo , Ratones Noqueados
6.
Crit Rev Oncol Hematol ; : 104461, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39103129

RESUMEN

The treatment of thoracic tumors with ionizing radiation can cause radiation-induced lung injury (RILI), which includes radiation pneumonitis and radiation-induced pulmonary fibrosis. Preventing RILI is crucial for controlling tumor growth and improving quality of life. However, the serious adverse effects of traditional RILI treatment methods remain a major obstacle, necessitating the development of novel treatment options that are both safe and effective. This review summarizes the molecular mechanisms of RILI and explores novel treatment options, including natural compounds, gene therapy, nanomaterials, and mesenchymal stem cells. These recent experimental approaches show potential as effective prevention and treatment options for RILI in clinical practice.

7.
Clin Exp Pharmacol Physiol ; 51(9): e13913, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39103233

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by chronic inflammation, lung tissue fibrotic changes and impaired lung function. Pulmonary fibrosis 's pathological process is thought to be influenced by macrophage-associated phenotypes. IPF treatment requires specific targets that target macrophage polarization. Cytokine-like 1(CYTL1) is a secreted protein with multiple biological functions first discovered in CD34+ haematopoietic cells. However, its possible effects on IPF progression remain unclear. This study investigated the role of CYTL1 in IPF progression in a bleomycin-induced lung injury and fibrosis model. In bleomycin-induced mice, CYTL1 is highly expressed. Moreover, CYTL1 ablation alleviates lung injury and fibrosis in vivo. Further, downregulating CYTL1 reduces macrophage M2 polarization. Mechanically, CYTL1 regulates transforming growth factor ß (TGF-ß)/connective tissue growth factor (CCN2) axis and inhibition of TGF-ß pathway alleviates bleomycin-induced lung injury and fibrosis. In conclusion, highly expressed CYTL1 inhibits macrophage M2 polarization by regulating TGF-ß/CCN2 expression, alleviating bleomycin-induced lung injury and fibrosis. CYTL1 could, therefore, serve as a promising IPF target.


Asunto(s)
Bleomicina , Factor de Crecimiento del Tejido Conjuntivo , Regulación hacia Abajo , Macrófagos , Fibrosis Pulmonar , Factor de Crecimiento Transformador beta , Animales , Bleomicina/toxicidad , Ratones , Regulación hacia Abajo/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Ratones Endogámicos C57BL , Masculino , Polaridad Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología
8.
Respir Res ; 25(1): 303, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112999

RESUMEN

BACKGROUND: Acute lung injury (ALI) following pneumonia involves uncontrolled inflammation and tissue injury, leading to high mortality. We previously confirmed the significantly increased cargo content and extracellular vesicle (EV) production in thrombin-preconditioned human mesenchymal stromal cells (thMSCs) compared to those in naïve and other preconditioning methods. This study aimed to investigate the therapeutic efficacy of EVs derived from thMSCs in protecting against inflammation and tissue injury in an Escherichia coli (E. coli)-induced ALI mouse model. METHODS: In vitro, RAW 264.7 cells were stimulated with 0.1 µg/mL liposaccharides (LPS) for 1 h, then were treated with either PBS (LPS Ctrl) or 5 × 107 particles of thMSC-EVs (LPS + thMSC-EVs) for 24 h. Cells and media were harvested for flow cytometry and ELISA. In vivo, ICR mice were anesthetized, intubated, administered 2 × 107 CFU/100 µl of E. coli. 50 min after, mice were then either administered 50 µL saline (ECS) or 1 × 109 particles/50 µL of thMSC-EVs (EME). Three days later, the therapeutic efficacy of thMSC-EVs was assessed using extracted lung tissue, bronchoalveolar lavage fluid (BALF), and in vivo computed tomography scans. One-way analysis of variance with post-hoc TUKEY test was used to compare the experimental groups statistically. RESULTS: In vitro, IL-1ß, CCL-2, and MMP-9 levels were significantly lower in the LPS + thMSC-EVs group than in the LPS Ctrl group. The percentages of M1 macrophages in the normal control, LPS Ctrl, and LPS + thMSC-EV groups were 12.5, 98.4, and 65.9%, respectively. In vivo, the EME group exhibited significantly lower histological scores for alveolar congestion, hemorrhage, wall thickening, and leukocyte infiltration than the ECS group. The wet-dry ratio for the lungs was significantly lower in the EME group than in the ECS group. The BALF levels of CCL2, TNF-a, and IL-6 were significantly lower in the EME group than in the ECS group. In vivo CT analysis revealed a significantly lower percentage of damaged lungs in the EME group than in the ECS group. CONCLUSION: Intratracheal thMSC-EVs administration significantly reduced E. coli-induced inflammation and lung tissue damage. Overall, these results suggest therapeutically enhanced thMSC-EVs as a novel promising therapeutic option for ARDS/ALI.


Asunto(s)
Lesión Pulmonar Aguda , Vesículas Extracelulares , Células Madre Mesenquimatosas , Ratones Endogámicos ICR , Trombina , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/microbiología , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/terapia , Ratones , Células Madre Mesenquimatosas/metabolismo , Células RAW 264.7 , Trombina/metabolismo , Escherichia coli , Masculino , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Infecciones por Escherichia coli/terapia , Resultado del Tratamiento , Modelos Animales de Enfermedad , Humanos
9.
Respir Res ; 25(1): 299, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113018

RESUMEN

BACKGROUND: Although recent studies provide mechanistic understanding to the pathogenesis of radiation induced lung injury (RILI), rare therapeutics show definitive promise for treating this disease. Type II alveolar epithelial cells (AECII) injury in various manner results in an inflammation response to initiate RILI. RESULTS: Here, we reported that radiation (IR) up-regulated the TNKS1BP1, causing progressive accumulation of the cellular senescence by up-regulating EEF2 in AECII and lung tissue of RILI mice. Senescent AECII induced Senescence-Associated Secretory Phenotype (SASP), consequently activating fibroblasts and macrophages to promote RILI development. In response to IR, elevated TNKS1BP1 interacted with and decreased CNOT4 to suppress EEF2 degradation. Ectopic expression of EEF2 accelerated AECII senescence. Using a model system of TNKS1BP1 knockout (KO) mice, we demonstrated that TNKS1BP1 KO prevents IR-induced lung tissue senescence and RILI. CONCLUSIONS: Notably, this study suggested that a regulatory mechanism of the TNKS1BP1/CNOT4/EEF2 axis in AECII senescence may be a potential strategy for RILI.


Asunto(s)
Células Epiteliales Alveolares , Senescencia Celular , Ratones Endogámicos C57BL , Ratones Noqueados , Animales , Ratones , Senescencia Celular/efectos de la radiación , Senescencia Celular/fisiología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de la radiación , Células Epiteliales Alveolares/patología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/genética , Lesión Pulmonar/patología , Quinasa del Factor 2 de Elongación/metabolismo , Quinasa del Factor 2 de Elongación/genética , Humanos , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/genética , Células Cultivadas , Masculino
10.
Front Physiol ; 15: 1401774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105084

RESUMEN

Introduction: Sex-specific patterns in respiratory conditions, such as asthma, COPD, cystic fibrosis, obstructive sleep apnea, and idiopathic pulmonary fibrosis, have been previously documented. Animal models of acute lung injury (ALI) have offered insights into sex differences, with male mice exhibiting distinct lung edema and vascular leakage compared to female mice. Our lab has provided evidence that the chemoreflex is sensitized in male rats during the recovery from bleomycin-induced ALI, but whether sex-based chemoreflex changes occur post-ALI is not known. To bridge this gap, the current study employed the bleomycin-induced ALI animal model to investigate sex-based differences in chemoreflex activation during the recovery from ALI. Methods: ALI was induced using a single intra-tracheal instillation of bleomycin (bleo, 2.5 mg/Kg) (day 1). Resting respiratory frequency (fR) was measured at 1-2 days pre-bleo, day 7 (D7) post-bleo, and 1 month (1 mth) post-bleo. The chemoreflex responses to hypoxia (10% O2, 0% CO2) and normoxic-hypercapnia (21% O2, 5% CO2) were measured before bleo administration (pre-bleo) and 1 mth post-bleo using whole-body plethysmography. The apnea-hypopnea Index (AHI), post-sigh apneas, and sighs were measured at each time point. Results: There were no significant differences in resting fR between male and female rats at the pre-bleo time point or in the increase in resting fR at D7 post-bleo. At 1 mth post-bleo, the resting fR was partially restored in both sexes but the recovery towards normal ranges of resting fR was significantly lower in male rats. The AHI, post-sigh apneas, and sighs were not different between male and female rats pre-bleo and 1 mth post-bleo. However, at D7 post-bleo, the male rats exhibited a higher AHI than female rats. Both male and female rats exhibited a sensitized chemoreflex in response to hypoxia and normoxic-hypercapnia with no significant differences between sexes. Conclusion: A sex difference in resting ventilatory parameters occurs post ALI with a prolonged increase in resting fR and larger AHI in male rats. On the other hand, we did not find any sex differences in the chemoreflex sensitization that occurs at 1 mth post-bleo. This work contributes to a better understanding of sex-based variations in lung disorders.

11.
Redox Rep ; 29(1): 2387465, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39102510

RESUMEN

BACKGROUD: Bronchopulmonary dysplasia (BPD) is one of the most important complications plaguing neonates and can lead to a variety of sequelae. the ability of the HIF-1α/VEGF signaling pathway to promote angiogenesis has an important role in neonatal lung development. METHOD: Newborn rats were exposed to 85% oxygen. The effects of hyperoxia exposure on Pleomorphic Adenoma Gene like-2 (PLAGL2) and the HIF-1α/VEGF pathway in rats lung tissue were assessed through immunofluorescence and Western Blot analysis. In cell experiments, PLAGL2 was upregulated, and the effects of hyperoxia and PLAGL2 on cell viability were evaluated using scratch assays, CCK-8 assays, and EDU staining. The role of upregulated PLAGL2 in the HIF-1α/VEGF pathway was determined by Western Blot and RT-PCR. Apoptosis and ferroptosis effects were determined through flow cytometry and viability assays. RESULTS: Compared with the control group, the expression levels of PLAGL2, HIF-1α, VEGF, and SPC in lung tissues after 3, 7, and 14 days of hyperoxia exposure were all decreased. Furthermore, hyperoxia also inhibited the proliferation and motility of type II alveolar epithelial cells (AECII) and induced apoptosis in AECII. Upregulation of PLAGL2 restored the proliferation and motility of AECII and suppressed cell apoptosis and ferroptosis, while the HIF-1α/VEGF signaling pathway was also revived. CONCLUSIONS: We confirmed the positive role of PLAGL2 and HIF-1α/VEGF signaling pathway in promoting BPD in hyperoxia conditions, and provided a promising therapeutic targets.


Asunto(s)
Células Epiteliales Alveolares , Animales Recién Nacidos , Apoptosis , Ferroptosis , Hiperoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular , Animales , Ratas , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Células Epiteliales Alveolares/metabolismo , Ferroptosis/fisiología , Hiperoxia/metabolismo , Ratas Sprague-Dawley , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación hacia Abajo , Humanos , Proliferación Celular
12.
Cureus ; 16(6): e61718, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38975556

RESUMEN

Thermal injury to the pharyngeal structures is uncommon, and clinicians generally attribute these injuries to consuming hot foods or liquids. While thermal injuries have been reported with the ingestion of hot substances, thermal injuries from vape pens have not been widely described in the literature. We present a case of a 35-year-old male who presented to the emergency department (ED) with oropharyngeal burns after utilizing a vape pen that malfunctioned. The patient had visible burns on his uvula, as well as on the soft and hard palate. Additionally, he had symptoms of difficulty swallowing and a hoarse voice, which raised concerns about a possible deeper airway or lung injury. The patient required a flexible nasopharyngolaryngoscopy by a head and neck surgeon, which revealed mild edema and erythema of the epiglottis and the arytenoids. The patient was admitted to the hospital overnight for observation and treatment with analgesia and dexamethasone. The following morning, the patient's symptoms had improved. The repeat nasopharyngolaryngoscopy showed improvement in the swelling of the epiglottis and arytenoids, and the patient was deemed stable for discharge. This case brings attention to the variety of injuries possible from e-cigarette use and the importance of prompt management of oropharyngeal thermal injuries.

13.
Phytomedicine ; 132: 155859, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38972239

RESUMEN

BACKGROUND: Acute lung injury (ALI) has received considerable attention in the field of critical care as it can lead to high mortality rates. Polygala tenuifolia, a traditional Chinese medicine with strong expectorant properties, can be used to treat pneumonia. Owing to the complexity of its composition, the main active ingredient is not yet known. Thus, there is a need to identify its constituent compounds and mechanism of action in the treatment of ALI using advanced technological means. PURPOSE: We investigated the anti-inflammatory mechanism and constituent compounds with regard to the effect of P. tenuifolia Willd. extract (EPT) in lipopolysaccharide (LPS)-induced ALI in vivo and in vitro. METHODS: The UHPLC-Q-Exactive Orbitrap MS technology was used to investigate the chemical profile of EPT. Network pharmacology was used to predict the targets and pathways of action of EPT in ALI, and molecular docking was used to validate the binding of polygalacic acid to Toll-like receptor (TLR) 4. The main compounds were determined using LC-MS. A rat model of LPS-induced ALI was established, and THP-1 cells were stimulated with LPS and adenosine triphosphate (ATP) to construct an in vitro model. Pathological changes were observed using hematoxylin and eosin staining, Wright-Giemsa staining, and immunohistochemistry. The expression of inflammatory factors (NE, MPO, Ly-6 G, TNF-α, IL-1ß, IL-6, and iNOS) was determined using enzyme-linked immunosorbent assay, real-time fluorescence quantitative polymerase chain reaction, and western blotting. The LPS + ATP-induced inflammation model in THP-1 cells was used to verify the in vivo experimental results. RESULTS: Ninety-nine compounds were identified or tentatively deduced from EPT. Using network pharmacology, we found that TLR4/NF-κB may be a relevant pathway for the prevention and treatment of ALI by EPT. Polygalacic acid in EPT may be a potential active ingredient. EPT could alleviate LPS-induced histopathological lung damage and reduce the wet/dry lung weight ratio in the rat model of ALI. Moreover, EPT decreased the white blood cell and neutrophil counts in the bronchoalveolar lavage fluid and decreased the expression of genes and proteins of relevant inflammatory factors (NE, MPO, Ly-6 G, TNF-α, IL-1ß, IL-6, and iNOS) in lung tissues. It also increased the expression of endothelial-type nitric oxide synthase expression. Western blotting confirmed that EPT may affect TLR4/NF-κB and NLRP3 signaling pathways in vivo. Similar results were obtained in THP-1 cells. CONCLUSION: EPT reduced the release of inflammatory factors by affecting TLR4/NF-κB and NLRP3 signaling pathways, thereby attenuating the inflammatory response of ALI. Polygalacic acid is the likely compounds responsible for these effects.

14.
Cureus ; 16(6): e61996, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38983984

RESUMEN

Selectins are cell adhesion proteins discovered in the 1980s. As C-type lectins, selectins contain an essential calcium ion in the ligand-binding pocket and recognize the isomeric tetrasaccharides sialyl Lewisx (sLex) and sialyl Lewisa (sLea). Three selectins, E-selectin, P-selectin, and L-selectin, play distinct, complementary roles in inflammation, hematopoiesis, and tumor biology. They have been implicated in the pathology of diverse inflammatory disorders, and several selectin antagonists have been tested clinically. E-selectin plays a unique role in leukocyte activation, making it an attractive target for intervention, for example, in sickle cell disease (SCD). This review summarizes selectin biology and pathology, structure and ligand binding, and selectin antagonists that have reached clinical testing with an emphasis on E-selectin.

15.
Environ Sci Nano ; 11(5): 1817-1846, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38984270

RESUMEN

With the exponential growth of the nanotechnology field, the global nanotechnology market is on an upward track with fast-growing jobs. Nickel (Ni)-containing nanoparticles (NPs), an important class of transition metal nanoparticles, have been extensively used in industrial and biomedical fields due to their unique nanostructural, physical, and chemical properties. Millions of people have been/are going to be exposed to Ni-containing NPs in occupational and non-occupational settings. Therefore, there are increasing concerns over the hazardous effects of Ni-containing NPs on health and the environment. The respiratory tract is a major portal of entry for Ni-containing NPs; thus, the adverse effects of Ni-containing NPs on the respiratory system, especially the lungs, have been a focus of scientific study. This review summarized previous studies, published before December 1, 2023, on cytotoxic, genotoxic, and carcinogenic effects of Ni-containing NPs on humans, lung cells in vitro, and rodent lungs in vivo, and the potential underlying mechanisms were also included. In addition, whether these adverse effects were induced by NPs themselves or Ni ions released from the NPs was also discussed. The extra-pulmonary effects of Ni-containing NPs were briefly mentioned. This review will provide us with a comprehensive view of the pulmonary effects of Ni-containing NPs and their underlying mechanisms, which will shed light on our future studies, including the urgency and necessity to produce engineering Ni-containing NPs with controlled and reduced toxicity, and also provide the scientific basis for developing nanoparticle exposure limits and policies.

16.
Biochem Pharmacol ; 227: 116418, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996928

RESUMEN

Ovarian tumor domain-containing protease 1 (OTUD1) is a critical negative regulator that promotes innate immune homeostasis and is extensively involved in the pathogenesis of sepsis. In this study, we performed a powerful integration of multiomics analysis and an experimental mechanistic investigation to elucidate the immunoregulatory role of OTUD1 in sepsis at the clinical, animal and cellular levels. Our study revealed the upregulation of OTUD1 expression and the related distinctive alterations observed via multiomics profiling in clinical and experimental sepsis. Importantly, in vivo and in vitro, OTUD1 was shown to negatively regulate inflammatory responses and play a protective role in sepsis-induced pathological lung injury by mechanistically inhibiting the activation of the transforming growth factor-beta-activated kinase 1 (TAK1)-mediated mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling pathways in the present study. Subsequently, we probed the molecular mechanisms underlying OTUD1's regulation of NF-κB and MAPK pathways by pinpointing the target proteins that OTUD1 can deubiquitinate. Drawing upon prior research conducted in our laboratory, it has been demonstrated that tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) performs a protective function in septic lung injury and septic encephalopathy by suppressing the NF-κB and MAPK pathways. Hence, we hypothesized that TIPE2 might be a target protein of OTUD1. Additional experiments, including Co-IP, immunofluorescence co-localization, and Western blotting, revealed that OTUD1 indeed has the ability to deubiquitinate TIPE2. In summary, OTUD1 holds potential as an immunoregulatory and inflammatory checkpoint agent, and could serve as a promising therapeutic target for sepsis-induced lung injury.

17.
Pediatr Pulmonol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958257

RESUMEN

INTRODUCTION: Preterm infants close to viability commonly require mechanical ventilation (MV) for respiratory distress syndrome. Despite commonly used lung-sparing ventilation techniques, rapid lung expansion during MV induces lung injury, a risk factor for bronchopulmonary dysplasia. This study investigates whether ventilation with optimized lung expansion is feasible and whether it can further minimize lung injury. Therefore, optimized lung expansion ventilation (OLEV) was compared to conventional volume targeted ventilation. METHODS: Twenty preterm lambs were surgically delivered after 132 days of gestation. Nine animals were randomized to receive OLEV for 24 h, and seven received standard MV. Four unventilated animals served as controls (NV). Lungs were sampled for histological analysis at the end of the experimental period. RESULTS: Ventilation with OLEV was feasible, resulting in a significantly higher mean ventilation pressure (0.7-1.3 mbar). Temporary differences in oxygenation between OLEV and MV did not reach clinically relevant levels. Ventilation in general tended to result in higher lung injury scores compared to NV, without differences between OLEV and MV. While pro-inflammatory tumor necrosis factor-α messenger RNA (mRNA) levels increased in both ventilation groups compared to NV, only animals in the MV group showed a higher number of CD45-positive cells in the lung. In contrast, mean (standard deviations) surfactant protein-B mRNA levels were significantly lower in OLEV, 0.63 (0.38) compared to NV 1.03 (0.32) (p = .023, one-way analysis of variance). CONCLUSION: In conclusion, a small reduction in pulmonary inflammation after 24 h of support with OLEV suggests potential to reduce preterm lung injury.

18.
Heliyon ; 10(13): e33313, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39035527

RESUMEN

Background: Management guidelines for acute lung injury (ALI) are extremely limited. Xuebijing, a traditional Chinese medicine, exerts therapeutic effects in patients with ALI; however, supportive evidence is currently insufficient. Material and methods: A systematic literature search of seven electronic databases for randomised controlled trials assessing the efficacy of Xuebijing injections in patients with ALI, published from inception to March 31, 2024, was performed. The Risk of Bias assessment tool recommended by The Cochrane Collaboration was used for quality evaluation. Review Manager version 5.3 (R Foundation for Statistical Computing, Vienna, Austria) was used for analysis. Dichotomous variables are expressed as relative risk (RR) and continuous variables as standardised mean difference (SMD). Heterogeneity was assessed using the I 2 statistic and a funnel plot was used to visually assess publication bias. Results: Sixteen studies comprising 1327 patients were included. Xuebijing injection improved oxygenation index (SMD 1.08 [95 % confidence interval (CI) 0.79-1.38]), reduced the incidence of acute respiratory distress syndrome (RR 0.56 [95 % CI 0.42-0.74) and all-cause mortality (RR 0.48 [95 % CI 0.34-0.67]), and decreased serum tumor necrosis factor-alpha (SMD -1.33 [95 % CI -1.50 to -1.17]) and interleukin-6 levels (SMD -1.35 [95 % CI -1.52 to -1.17]). The funnel plot indicated no publication bias. Conclusion: Xuebijing injection may be an effective treatment for ALI. However, this needs to be further confirmed in well-designed, large-sample, randomised controlled trials.

19.
Asian J Transfus Sci ; 18(1): 141-143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39036696

RESUMEN

Although relatively rare among transfusion reactions, transfusion-related acute lung injury (TRALI) is a life-threatening condition, making its prevention, recognition, and early intervention extremely important. Although many etiological factors have been identified, the most common reasons are anti-human leukocyte antigen (anti-HLA) and anti-human neutrophil antigen antibodies that pass from the donor to the recipient during transfusion. TRALI was shown with transfusion of all kinds of blood products, however, it is rarely seen after stem cell infusion. Despite an adult case who developed TRALI after stem cell infusion, there is no pediatric case of TRALI associated with hematopoietic stem cell infusion in the previous literature. Here, we report a pediatric case with TRALI after infusion of the hematopoietic stem cell product from his female donor who has recently given birth 6 months ago. A 9-year-old patient with acquired aplastic anemia was admitted for hematopoietic stem cell transplantation (HSCT) from an ABO and 10/10 HLA compatible 21-year-old sister donor the unmanipulated stem cell product was planned to be infused in 4 h. At the last hour of infusion, the patient had acute hypoxemia, tachycardia, and bilateral pulmonary edema. He was diagnosed with TRALI and completely recovered with supportive therapy in 48 h. The anti-HLA antibody analysis of the donor showed positivity of anti-HLA-DPB1 antibodies. We wanted to emphasize the need for examination of anti-HLA antibodies of the donor and plasma depletion of the product to avoid TRALI in HSCTs from multiparous female donors.

20.
Artículo en Inglés | MEDLINE | ID: mdl-39051934

RESUMEN

The biological mediators which initiate lung injury in extremely preterm infants during early postnatal life remain largely unidentified, limiting opportunities for early treatment and diagnosis. This exploratory study used SWATH-mass spectrometry to identify bronchopulmonary dysplasia (BPD)-specific changes in protein abundance in plasma samples obtained in the first 72 hours of life from extremely preterm infants and bioinformatic analysis to identify BPD-related biological categories and pathways. Lasty, binary logistic regression analysis was used to test the BPD predictive potential of a base model alone (gestational age, birth weight, sex) and with the protein biomarker added, with bootstrap resampling used to internally validate protein predictors and adjust for overoptimism. We observed disturbance of key processes including coagulation, complement activation, development and extracellular matrix organisation in the first days of life in extremely preterm infants who were later diagnosed with BPD. In the BPD prediction analysis, 49 plasma proteins were identified which when each singularly was combined with birth characteristics had a C-index of 0.65-0.84 (optimism-adjusted C-index) suggesting predictive potential for BPD outcomes. Taken together, this study demonstrates that alterations in plasma proteins can be detected from 4 hours of age in extremely preterm infants who later develop BPD and that protein biomarkers when combined with three birth characteristics have the potential to predict BPD development within the first 72 hours of life.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA