Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Environ Sci Health B ; : 1-11, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192720

RESUMEN

The aim of this study was to evaluate the phytotoxic, genotoxic, cytotoxic and antimicrobial effects of the Mentha arvensis L. essential oil (EO). The biological activity of M. arvensis EO depended on the analyzed variable and the tested oil concentration. Higher concentrations of EO (20 and 30 µg mL-1) showed a moderate inhibitory effect on the germination and growth of seedlings of tested weed species (Bellis perennis, Cyanus segetum, Daucus carota, Leucanthemum vulgare, Matricaria chamomilla, Nepeta cataria, Taraxacum officinale, Trifolium repens and Verbena × hybrida). The results obtained also indicate that the EO of M. arvensis has some genotoxic, cytotoxic and proliferative potential in both plant and human in vitro systems. Similar results were obtained for antimicrobial activity against eight bacteria, including multidrug-resistant (MDR) strains [Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Escherichia coli, extended-spectrum beta-lactamase-producing (ESBL) E. coli, Pseudomonas aeruginosa and Salmonella enterica subsp. enterica serovar Enteritidis], with the effect on multidrug-resistant bacterial strains. Research indicates that the EO of M. arvensis shows phytotoxic, genotoxic, cytotoxic and antimicrobial effects, as well as its potential application as a herbicide and against various human diseases.

2.
Prev Nutr Food Sci ; 29(2): 154-161, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38974592

RESUMEN

Skeletal muscle atrophy, which is characterized by diminished muscle mass, strength, and function, is caused by malnutrition, physical inactivity, aging, and diseases. Korean mint (Agastache rugosa Kuntze) possesses various biological functions, including anti-inflammatory, antioxidant, anticancer, and antiosteoporosis activities. Moreover, it contains tilianin, which is a glycosylated flavone that exerts antioxidant, anti-inflammatory, antidiabetic, and neuroprotective activities. However, no studies have analyzed the inhibitory activity of A. rugosa extract (ARE) and tilianin on muscle atrophy. Thus, the present study investigated the potential of ARE and tilianin on muscle atrophy and their underlying mechanisms of action in C2C12 myotubes treated with tumor necrosis factor-α (TNF-α). The results showed that ARE and tilianin promoted the phosphatidylinositol 3-kinase/protein kinase B pathway, thereby activating mammalian target of rapamycin (a protein anabolism-related factor) and its downstream factors. Moreover, ARE and tilianin inhibited the mRNA expression of muscle RING-finger protein-1 and atrogin-1 (protein catabolism-related factors) by blocking Forkhead box class O3 translocation. ARE and tilianin also mitigated inflammatory responses by downregulating nuclear factor-kappa B expression levels, thereby diminishing the expression levels of inflammatory cytokines, including TNF-α and interleukin-6. Additionally, ARE and tilianin enhanced the expression levels of antioxidant enzymes, including catalase, superoxide dismutase, and glutathione peroxidase. Overall, these results suggest that ARE and tilianin are potential functional ingredients for preventing or improving muscle atrophy.

3.
Foods ; 13(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928799

RESUMEN

This investigation aimed to identify the most favorable cultivar based on plant metabolites for potential targeted cultivation in the pharmaceutical industry. The analysis revealed the presence of 19 individual phenolics and 80 individual volatiles across the cultivars, a breadth of data not previously explored to such an extent. Flavones emerged as the predominant phenolic group in all mint-scented cultivars, except for peppermint, where hydroxycinnamic acids dominated. Peppermint exhibited high concentrations of phenolic acids, particularly caffeic acid derivatives and rosmarinic acid, which are known for their anti-inflammatory and antioxidant properties. Luteolin-rich concentrations were found in several mint varieties, known for their antioxidative, antitumor, and cardio-protective properties. Swiss mint and spearmint stood out with elevated levels of flavanones, particularly eriocitrin, akin to citrus fruits. Monoterpene volatiles, including menthol, camphor, limonene, and carvone, were identified across all cultivars, with Swiss mint and spearmint exhibiting the highest amounts. The study underscores the potential for targeted cultivation to enhance volatile yields and reduce agricultural land use. Notably, chocolate mint demonstrated promise for volatile content, while apple mint excelled in phenolics, suggesting their potential for broader agricultural, pharmaceutical, and food industry production.

4.
Bioprocess Biosyst Eng ; 47(9): 1471-1482, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38874619

RESUMEN

The present study optimized pre-treatment conditions for bioenzyme-mediated hydro-distillation (BMHD) for extraction of mint oil from mentha leaves and the results were compared with those of traditional hydro-distillation (HD) method using response surface methodology. The bio-enzymes produced from moringa leaves had maximum pectinase activity (287.04 µg of sugar/min/ml) followed by xylanase (87.78 µg of sugar/min/ml) while endoglucanase, exoglucanase and amylase activities were comparatively low. The optimized conditions for HD were 69.08 temperature for 173.70 min with water:sample of 10.0. The optimized conditions for enzyme pre-treatment of mentha leaves by BMHD were enzyme concentration of 8%, for a period of 120 min at an incubation period of 40 â„ƒ. The yield (%) and menthol content (%) of the oil at optimized conditions by HD were 1.55 ml/100 g of sample and 56.40% menthol content, respectively, and for BMHD the yield and menthol content (%) of the oil at optimized conditions were 3.69% and 72.80%, respectively. It was found that BMHD leads to a 130% increase in the yield of mint oil and a 10% increase in menthol content as compared to the HD method. No significant difference in physical parameters was observed in mint oil extracted via both methods. Therefore, BMHD is a cost-effective and sustainable approach having an edge over the HD method without compromising the quality and could be a viable approach for commercial purposes.


Asunto(s)
Destilación , Mentha , Mentol , Hojas de la Planta , Mentha/química , Mentol/química , Hojas de la Planta/química , Destilación/métodos , Aceites de Plantas/química
5.
Int J Biol Macromol ; 268(Pt 1): 131558, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614166

RESUMEN

Water contamination caused by toxic compounds has emerged as one of the most severe challenges worldwide. Biomass-based nanocomposites offer a sustainable and renewable alternative to conventional materials. In this study, a nanocomposite of mint and cellulose acetate (Mint-CA) was prepared and employed as a supportive material for Cu nanoparticles (CuNPs) and Ag nanoparticles (AgNPs). The selectivity of CuNPs@mint-CA and AgNPs@mint-CA was assessed by comparing their performance in the reduction reaction of various dyes solutions. AgNPs@mint-CA exhibited superior catalytic performance, with a removal of 95.2 % for methyl orange (MO) compared to 68 % with CuNPs@mint-CA. The absorption spectra of MO exhibited a distinct peak at 464 nm. The reduction reaction of MO by AgNPs@mint-CA followed pseudo-first-order-kinetic with a rate constant of k = 0.0063 min-1 (R2 = 0.928). The highest removal of MO was achieved under the following conditions: a catalyst weight of 40 mg, an initial MO concentration of 0.07 mM, the addition of 0.5 mL of 0.1 M NaBH4, and a temperature of 25 °C. Furthermore, the AgNPs@mint-CA catalyst exhibited exceptional reducibility even after five use cycles, highlighting its potential for efficiently removing MO.


Asunto(s)
Compuestos Azo , Celulosa , Nanopartículas del Metal , Compuestos Azo/química , Celulosa/química , Celulosa/análogos & derivados , Nanopartículas del Metal/química , Catálisis , Plata/química , Nanocompuestos/química , Mentha/química , Oxidación-Reducción , Contaminantes Químicos del Agua/química , Cinética , Cobre/química
6.
Drug Alcohol Depend ; 256: 111110, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38359606

RESUMEN

BACKGROUND: Menthol cigarette smoking has remained stable or increased in certain groups, despite an overall decline in cigarette smoking rates in the U.S. Understanding whether e-cigarettes alter patterns of menthol cigarette use is critical to informing efforts for reducing the public health burden of menthol cigarette smoking. This 2019-2020 laboratory pilot study evaluated whether self-administration of mint-, menthol-, or tobacco-flavored e-cigarettes would differentially impact tobacco withdrawal symptoms in e-cigarette-naïve adults who smoke menthol cigarettes daily. METHODS: Participants (N=17; 35.3% Female; mean age=51.8) attended three laboratory sessions after 16-hours of tobacco abstinence. Participants self-administered a study-provided JUUL e-cigarette (0.7mL with 5% nicotine by weight) at each session in which flavor was manipulated (mint vs. menthol vs. tobacco; order randomized). Participants completed pre- and post-e-cigarette administration self-report assessments on smoking urges, nicotine withdrawal, and positive and negative affect states. Multilevel linear regression models tested differences between the three flavor conditions for individual study outcomes. RESULTS: Following overnight tobacco abstinence, vaping either a mint or menthol (vs. tobacco) flavored e-cigarette led to significantly greater reductions in smoking urges over time; menthol (vs. tobacco) flavored e-cigarettes also suppressed urges to smoke for pleasure. Notably, no differences in nicotine withdrawal, positive affect, or negative affect were observed. CONCLUSIONS: In this laboratory pilot study, mint and menthol (vs. tobacco) flavored e-cigarettes provided some negative reinforcement effects via acute reductions in smoking urges during tobacco abstinence, yet only menthol flavored e-cigarettes demonstrated suppressive effects on smoking urges for pleasure in adults who smoke menthol cigarettes daily.


Asunto(s)
Fumar Cigarrillos , Sistemas Electrónicos de Liberación de Nicotina , Mentha , Síndrome de Abstinencia a Sustancias , Productos de Tabaco , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mentol , Nicotina , Proyectos Piloto
7.
Fitoterapia ; 174: 105875, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417678

RESUMEN

Grapefruit mint (Mentha suaveolens × piperita) is a hybrid, perennial, and aromatic plant widely cultivated all over the world and used in the food, cosmetics, and pharmaceutical industries mostly for its valuable essential oil. Herein, we evaluated the anticancer activity of the grapefruit mint essential oil, cultivated in Iran. For the chemical composition analysis of essential oil, GC-MS was used. MTT assay was utilized for assessing the cytotoxic activity of the essential oil. The type of cell death was determined by annexin V/PI staining. Essential oil effect on the expression of maternally expressed gene 3 (MEG3), a regulatory lncRNA involved in cell growth, proliferation, and metastasis, was studied using qRT-PCR. Linalool (43.9%) and linalool acetate (40.1%) were identified as the dominant compounds of essential oil. Compared with MCF-7, the MDA-MB-231 cells were more sensitive to essential oil (IC50 = 7.6 µg/ml in MCF-7 and 5.9 µg/ml in MDA-MB-231 after 48 h). Essential oil induced cell death by apoptosis. Wound healing scratch assay confirmed the anti-invasive effect of essential oil. In addition, essential oil upregulated the tumor suppressor MEG3 in breast cancer cells. These results provide new insights into grapefruit mint essential oil potential application as an anticancer adjuvant in combination treatments for breast cancer patients.


Asunto(s)
Monoterpenos Acíclicos , Neoplasias de la Mama , Citrus paradisi , Mentha , Aceites Volátiles , Humanos , Femenino , Aceites Volátiles/farmacología , Aceites Volátiles/química , Mentha/química , Estructura Molecular , Neoplasias de la Mama/tratamiento farmacológico , Mentha piperita
8.
Sci Rep ; 14(1): 4445, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396087

RESUMEN

Cigarette smoke (CS) exposure is known to cause injury to respiratory tract epithelial cells and is a contributing factor in the development of chronic obstructive pulmonary disease and lung cancer. Electronic cigarettes (e-cigarettes) are gaining popularity as a potential substitute for conventional cigarettes due to their potential for aiding smoking cessation. However, the safety of e-cigarettes remains uncertain, and scientific evidence on this topic is still limited. In this study, we aimed to investigate the effects of CS and e-cigarette smoke (ECS) of different flavors on human lung bronchial epithelial cells. Real-time smoke exposure was carried out using an air-liquid interface system, and cell viability was assessed. RNA-Seq transcriptome analysis was performed to compare the differences between CS and ECS. The transcriptome analysis revealed a significantly higher number of differentially expressed genes in CS than in ECS. Moreover, the impact of mint-flavored e-cigarettes on cells was found to be greater than that of tobacco-flavored e-cigarettes, as evidenced by the greater number of differentially expressed genes. These findings provide a reference for future safety research on traditional cigarettes and e-cigarettes, particularly those of different flavors. The use of omics-scale methodologies has improved our ability to understand the biological effects of CS and ECS on human respiratory tract epithelial cells, which can aid in the development of novel approaches for smoking cessation and lung disease prevention.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Humanos , Células Epiteliales , Pulmón
9.
Food Environ Virol ; 16(2): 159-170, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38294673

RESUMEN

SARS-CoV-2 infects the oral mucosa and is shed in salivary fluids. Traditionally, tea has been used by various cultures to treat respiratory ailments. The objective of this study was to identify commercially available teas that can rapidly inactivate infectious SARS-CoV-2 in saliva. Initially, tea (n = 24) was prepared as 40 mg/mL infusions and incubated with SARS-CoV-2 resuspended in water, for 5 min at 37 °C. Then, five teas that showed >3 log reduction in virus infectivity were further investigated at 40 and 10 mg/mL infusions for 60 and 10 s contact time with SARS-CoV-2 resuspended in saliva. Tea polyphenols were measured using the Folin-Ciocalteu assay. SARS-CoV-2 infectivity was quantified on Vero-E6 cell line using TCID50 assay. At 10 mg/mL infusion, black tea showed the highest reduction (3 log, i.e., 99.9%) of infectious SARS-CoV-2 within 10 s. Green, mint medley, eucalyptus-mint, and raspberry zinger teas showed similar inactivation of SARS-CoV-2 (1.5-2 log, i.e., 96-99% reduction). At 40 mg/mL infusions, all five teas showed >3 log reduction in virus infectivity within 10 s. Tea polyphenol but not pH was significantly correlated to virus reduction. Time-of-addition assay revealed that the five teas displayed preventive effects (0.5-1 log, i.e., 68-90% reduction) against SARS-CoV-2 infection of Vero-E6 cells as well as during post-virus infection (1.2-1.9 log, i.e., 94-98%). However, the highest inhibitory effect was observed when the teas were added at the time of virus infection (2-3 log, i.e., 99-99.9%). Our results provide insights into a rapid at-home intervention (tea drinking or gargling) to reduce infectious SARS-CoV-2 load in the oral cavity which might also mitigate infection of the oral mucosa.


Asunto(s)
COVID-19 , SARS-CoV-2 , Saliva , , Saliva/virología , Té/química , SARS-CoV-2/efectos de los fármacos , Animales , Chlorocebus aethiops , Humanos , Células Vero , COVID-19/virología , COVID-19/prevención & control , Polifenoles/farmacología , Inactivación de Virus/efectos de los fármacos , Camellia sinensis/química
10.
J Biol Chem ; 300(1): 105541, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072052

RESUMEN

Munc18-interacting proteins (Mints) are multidomain adaptors that regulate neuronal membrane trafficking, signaling, and neurotransmission. Mint1 and Mint2 are highly expressed in the brain with overlapping roles in the regulation of synaptic vesicle fusion required for neurotransmitter release by interacting with the essential synaptic protein Munc18-1. Here, we have used AlphaFold2 to identify and then validate the mechanisms that underpin both the specific interactions of neuronal Mint proteins with Munc18-1 as well as their wider interactome. We found that a short acidic α-helical motif within Mint1 and Mint2 is necessary and sufficient for specific binding to Munc18-1 and binds a conserved surface on Munc18-1 domain3b. In Munc18-1/2 double knockout neurosecretory cells, mutation of the Mint-binding site reduces the ability of Munc18-1 to rescue exocytosis, and although Munc18-1 can interact with Mint and Sx1a (Syntaxin1a) proteins simultaneously in vitro, we find that they have mutually reduced affinities, suggesting an allosteric coupling between the proteins. Using AlphaFold2 to then examine the entire cellular network of putative Mint interactors provides a structural model for their assembly with a variety of known and novel regulatory and cargo proteins including ADP-ribosylation factor (ARF3/ARF4) small GTPases and the AP3 clathrin adaptor complex. Validation of Mint1 interaction with a new predicted binder TJAP1 (tight junction-associated protein 1) provides experimental support that AlphaFold2 can correctly predict interactions across such large-scale datasets. Overall, our data provide insights into the diversity of interactions mediated by the Mint family and show that Mints may help facilitate a key trigger point in SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) complex assembly and vesicle fusion.


Asunto(s)
Mentha , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Membrana Celular/metabolismo , Mentha/metabolismo , Proteínas Munc18/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Unión Proteica , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sintaxina 1/metabolismo , Humanos , Animales , Ratas , Células PC12
11.
Contact Dermatitis ; 90(1): 74-78, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37915267

RESUMEN

BACKGROUND: Contact allergy to the mint-tasting flavour carvone has been observed in patients with oral lichenoid lesions (OLL). Mint-flavoured products such as toothpaste frequently contain carvone. Snuff is a smokeless tobacco product that is chewed or placed in the mouth rather than smoked. In Sweden, the use of snuff and its flavoured versions is extremely common. OBJECTIVES: To investigate whether the consumption of mint-flavoured snuff is associated with contact allergy to carvone and subsequently plays a role in the aetiology of OLL. METHODS: Regarding the two patients, patch testing with snuff pouches was performed. High-performance liquid chromatography and gas chromatography-mass spectrometry analysis were used for identification of carvone in different snuff samples. RESULTS: Two patients with OLL were contacted allergic to carvone when patch tested. Both were using mint-flavoured snuffs several hours a day for many years. One patient was contacted allergic to the snuff pouch tested as is. Carvone was detected in the snuff samples of both patients. CONCLUSIONS: The patients were recommended to avoid the use of mint-flavoured snuffs, toothpaste and foodstuffs. At follow-up 3 months later, the patients had a dramatic clinical improvement of the OLL and oral symptoms. Exposure to mint-flavoured snuffs can be overlooked as a possible aggravating/provoking factor in OLL.


Asunto(s)
Dermatitis Alérgica por Contacto , Tabaco sin Humo , Humanos , Dermatitis Alérgica por Contacto/diagnóstico , Dermatitis Alérgica por Contacto/etiología , Tabaco sin Humo/efectos adversos , Pastas de Dientes , Monoterpenos Ciclohexánicos
12.
Adv Colloid Interface Sci ; 321: 103023, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37863014

RESUMEN

Mint essential oil (MEO) is an outstanding antibacterial and antioxidant agent, that can be considered as a promising natural preservative, flavor, insecticide, coolant, and herbal medicine. However, the low solubility and volatility of MEO limits its extensive applications. In order to utilize MEO in different products, it is essential to develop treatments that can overcome these limitations. More recently, encapsulation technology has been developed as a promising method to overcome the shortcomings of MEO. In which, sensitive compounds such as essential oils (EOs) are entrapped in a carrier to produce micro or nanoparticles with increased stability against environmental conditions. Additionally, encapsulation of EOs makes transportation and handling easier, reduces their volatility, controls their release and consequently improves the efficiency of these bioactive compounds and extends their industrial applications. Several encapsulation techniques, such as emulsification, coacervation, ionic gelation, inclusion complexation, spray drying, electrospinning, melt dispersion, melt homogenization, and so on, have been emerged to improve the stability of MEO. These encapsulated MEOs can be also used in a variety of food, bioagricultural, pharmaceutical, and health care products with excellent performance. Therefore, this review aims to summarize the physicochemical and functional properties of MEO, recent advances in encapsulation techniques for MEO, and the application of micro/nanocapsulated MEO in different products.


Asunto(s)
Mentha , Nanopartículas , Aceites Volátiles , Aceites Volátiles/química , Antioxidantes , Nanopartículas/química , Solubilidad
13.
Heliyon ; 9(9): e20029, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809425

RESUMEN

While sponge cake is one of the most well-liked cookies in the world, mint and cocoa have both been shown to be excellent sources of antioxidant compounds. Therefore, the aim of the study was to create functional sponge cakes with the addition of Dutch cocoa powder and different types of mint, with proven increased total antioxidant and polyphenol content. Additionally, made an effort to produce functional sponge cakes enhanced with cocoa powder and dried, ground mint leaves. To accomplish this, the cakes with cocoa addition were also added 1, 3, and 5% of the ground mint variety, and then the changes in their antioxidant and polyphenol content were assessed. To prove the functionality of cakes, total polyphenol content was detected by Folin-Ciocalteu, while all antioxidant content was measured by the FRAP method. The spectrophotometric analysis supported the functionality of sponge cakes and the baking losses of identified components. The total polyphenol content of baked goods ranged from 1.37 to 1.66 mg GAE/g for peppermint cakes, from 1.66 to 1.87 mg GAE/g for spearmint cakes, and from 1.20 to 1.68 mg GAE/g for strawberry mint sponge cakes. The total antioxidant content of the functional cakes changed between 1.84 and 2.82 mg AAE/g for peppermint cakes, from 1.84 to 4.00 mg AAE/g for spearmint cakes, and from 1.56 to 2.94 mg GAE/g for strawberry mint sponge cakes. The natural control samples, and control sponge cakes made without mint addition with only cocoa powder always had lower levels of polyphenols and antioxidants. All samples had baking loss (control samples had the highest in all cases), but strawberry mint samples had the least of it when it came to antioxidant content and spearmint samples had the least in the case of polyphenol content. Overall, mints and Dutch cocoa powder are appropriate for the production of functional bakery goods because they give the final product a tasty flavor and provide a significant amount of antioxidants and polyphenols despite baking.

14.
Eur J Nutr ; 62(8): 3411-3422, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37665425

RESUMEN

PURPOSE: This study aimed to evaluate the capacity of peppermint essential oil to improve the physical performance of runners in running protocol until exhaustion. METHODS: In a clinical, randomized, double-blind, cross-over and controlled study, fourteen male recreational runners (37.1 ± 2.0 years; 24 ± 1.1 kg/m2; 53.1 ± 1.7 mL kg min) performed two runs to exhaustion at 70% of VO2max, after intake of 500 mL of water added with 0.05 mL of peppermint essential oil (PEO) or placebo (PLA), plus 400 mL of the drink during the initial part of the exercise. Records were made of body temperature (BT), thermal sensation (TS), thermal comfort (TC), subjective perception of effort (SPE), sweat rate (SR), and urine volume and density. RESULTS: Time to exhaustion was 109.9 ± 6.9 min in PEO and 98.5 ± 6.2 min in PLA (p = 0.009; effect size: 0.826). No significant changes were observed in the values of BT, TS, TC, SPE, SR, lost body mass, and urine volume and density (p > 0.05). CONCLUSION: Peppermint essential oil added to water before and during a race significantly increases the time to exhaustion of recreational runners but without altering BT, TS, TC, or hydration status, so the mechanisms involved were not clarified in this study. BRAZILIAN REGISTRY OF CLINICAL TRIALS (REBEC): RBR-75zt25z.


Asunto(s)
Mentha piperita , Aceites Volátiles , Resistencia Física , Carrera , Ejercicio Físico , Mentha piperita/química , Aceites Volátiles/administración & dosificación , Agua , Humanos , Masculino , Resistencia Física/efectos de los fármacos , Adulto
15.
Molecules ; 28(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37570659

RESUMEN

Helicobacter pylori infections are highly common amongst the global population. Such infections have been shown to be the cause of gastric ulcers and stomach carcinoma and, unfortunately, most cases are asymptomatic. Standard treatment requires antibiotics such as metronidazole or azithromycin to which many strains are now resistant. Mentha species have been used as a natural treatment for gastrointestinal diseases throughout history and essential oils (EOs) derived from these plants show promising results as potential antimicrobial agents. In this study, EOs obtained from the leaves and flowers of five cultivars of Mentha × piperita and M. spicata were examined by GC-MS. The investigated mints are representatives of four chemotypes: the menthol chemotype (M. × piperita 'Multimentha' and M. × piperita 'Swiss'), the piperitenone oxide chemotype (M. × piperita 'Almira'), the linalool chemotype (M. × piperita 'Granada'), and the carvone chemotype (M. spicata 'Moroccan'). The chemical composition of EOs from mint flowers and leaves was comparable with the exception of the Swiss cultivar. Menthol was the most abundant component in the leaves while menthone was highest in flowers. The H. pylori ATCC 43504 reference strain and 10 other H. pylori clinical strains were examined for their sensitivity to the EOs in addition to their major monoterpenoid components (menthol, menthone, carvone, dihydrocarvone, linalool, 1,8-cineole, and limonene). All tested mint EOs showed inhibitory activity against both the reference H. pylori ATCC 43504 strain (MIC 15.6-31.3 mg/L) and clinical H. pylori strains (MIC50/90 31.3-250 mg/L/62.5-500 mg/L). Among the reference monoterpenes, menthol (MIC50/90 7.8/31.3 mg/L) and carvone (MIC50/90 31.3/62.5 mg/L) had the highest anti-H. pylori activity, which also correlated with a higher activity of EOs containing these compounds (M. × piperita 'Swiss' and M. spicata 'Moroccan'). A synergistic and additive interaction between the most active EOs/compounds and antibiotics possibly points to a new plant-based anti-H. pylori treatment.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Mentha , Aceites Volátiles , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Mentol/farmacología , Mentol/química , Mentha/química , Mentha piperita/química , Antibacterianos/farmacología
16.
Orv Hetil ; 164(26): 1020-1025, 2023 Jul 02.
Artículo en Húngaro | MEDLINE | ID: mdl-37393544

RESUMEN

Life- and health-expectancies are very much dependent on the level of aerobic fitness. Measuring cardiorespiratory fitness, maximal oxygen uptake in spiroergometric labs is an expensive and time-consuming task. At least two dozens of illnesses could be avoided or at least postponed by this means, among them the most widespread cardiovascular pathologies, obesity, diabetes, some tumors, locomotor pathologies. Having a fit population is advantageous also from economical point of view for a country. A healthy way of life includes at least 3-5 hours a week with the recommended amount and type of exercise: endurance- (aerobic) and resistance- (muscle volume and force) tasks. There are relatively simple and reliable methods for estimating the aerobic capacity of population samples, to initiate and follow the rehabilitation of heart and lung patients, etc. Walking tests are discussed here. Orv Hetil. 2023; 164(26): 1020-1025.


Asunto(s)
Capacidad Cardiovascular , Humanos , Ejercicio Físico , Tolerancia al Ejercicio , Prueba de Esfuerzo , Estado de Salud , Consumo de Oxígeno , Aptitud Física
17.
Environ Res ; 236(Pt 1): 116718, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37481060

RESUMEN

In ancient times, herbal plants were considered one of the greatest gifts from nature that human beings could receive, and about 80% of these plants have medicinal uses. In traditional medicine, Mentha arvensis, commonly known as mint, has many applications, and in the present study, the mint leaf extract has been used to synthesis nanoparticles using the mint leaf extract as a biosource for the extraction of nanoparticles. In addition to having a wide range of applications in various fields, calcium oxide (CaO) nanoparticles are also considered to be safe for human use. In order to assess the characteristics of the abstracted CaO nanoparticles, UV-visible absorption spectrophotometers, Fourier Transform Infrared spectrophotometers (FTIR), Scanning Electron Microscopes (SEMs), Dynamic Light Scattering (DLS), and X-ray Diffraction Spectrophotometers (XRDs) were used. By conducting a protein denaturation assay and nitric oxide scavenging assay, mint leaf mediated CaO nanoparticles were evaluated for their therapeutic applications. MTT assays were used to prove that the CaO nanoparticles mediated by mint leaf had anti-cancer properties. By examining the ability of mint leaf mediated CaO nanoparticles to degrade various dyes such as methyl red, methyl orange, and methylene blue, which are the most used azo dyes in textile industries resulting in water contamination, the ability of these nanoparticles to act as a photocatalytic agent was examined.


Asunto(s)
Mentha , Nanopartículas del Metal , Nanopartículas , Humanos , Extractos Vegetales/farmacología , Colorantes , Difracción de Rayos X , Antiinflamatorios , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos
18.
Front Plant Sci ; 14: 1188922, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324667

RESUMEN

Mentha canadensis L. is an important spice crop and medicinal herb with high economic value. The plant is covered with peltate glandular trichomes, which are responsible for the biosynthesis and secretion of volatile oils. Plant non-specific lipid transfer proteins (nsLTPs) belong to a complex multigenic family involved in various plant physiological processes. Here, we cloned and identified a non-specific lipid transfer protein gene (McLTPII.9) from M. canadensis, which may positively regulate peltate glandular trichome density and monoterpene metabolism. McLTPII.9 was expressed in most M. canadensis tissues. The GUS signal driven by the McLTPII.9 promoter in transgenic Nicotiana tabacum was observed in stems, leaves, and roots; it was also expressed in trichomes. McLTPII.9 was associated with the plasma membrane. Overexpression of McLTPII.9 in peppermint (Mentha piperita. L) significantly increased the peltate glandular trichome density and total volatile compound content compared with wild-type peppermint; it also altered the volatile oil composition. In McLTPII.9-overexpressing (OE) peppermint, the expression levels of several monoterpenoid synthase genes and glandular trichome development-related transcription factors-such as limonene synthase (LS), limonene-3-hydroxylase (L3OH), geranyl diphosphate synthase (GPPS), HD-ZIP3, and MIXTA-exhibited varying degrees of alteration. McLTPII.9 overexpression resulted in both a change in expression of genes for terpenoid biosynthetic pathways which corresponded with an altered terpenoid profile in OE plants. In addition, peltate glandular trichome density was altered in the OE plants as well as the expression of genes for transcription factors that were shown to be involved in trichome development in plants.

19.
Food Sci Nutr ; 11(6): 3442-3449, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37324831

RESUMEN

Fermentation of fruits offers a diverse range of flavors, smells, and colors. Colored fruits are rich in naturally occurring pigments, such as betacyanin. Hence, they are considered to possess powerful antioxidant activities. However, in wine production, such pigments often diversify the flavor and color of the wine. The objective of this study was to compare the quality of two types of wines: a single-fruit (pitaya) wine and a mixed-fruit wine that contains watermelon (Citrullus lanatus), mint (Mintha spicata), and pitaya (Hylocereus costaricensis). In this study, fresh pitaya, watermelon, and mint leaves were fermented using Saccharomyces cerevisiae. Juice extracts underwent fermentation at room temperature for 7 days under dark conditions. Physicochemical changes, such as pH, sugar content, specific gravity, and alcohol content, were observed daily. The antioxidant activities were measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, the ferric reducing antioxidant power (FRAP) assay, and total phenolic contents (TPCs). After 14 days of fermentation, the alcohol contents of mixed and pitaya wine were 11.22% (v/v) and 11.25%, respectively. The total sugar content of the mixed wine was 8.0 °Brix, while that of pitaya wine was 7.0 °Brix. Moreover, pitaya wine exhibited a higher TPC (22.7 mg GAE/100 g D.W.), and better FRAP (3578 µmole/L) and DPPH scavenging ability (80.2%) compared to the mixed wine with a TPC of 21.4 mg GAE/100 g D.W., FRAP of 2528 µmole/L, and DPPH of 75.6%., while the addition of watermelon and mint did not change the alcohol percentage contents of wine.

20.
Plants (Basel) ; 12(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299156

RESUMEN

The green synthesis of nanoparticles (NPs) is attracting enormous attention as a new area of study that encompasses the development and discovery of new agents for their utilization in different fields, such as pharmaceuticals and food. Nowadays, the use of plants, particularly medicinal plants, for the creation of NPs has emerged as a safe, ecofriendly, rapid, and simple approach. Therefore, the present study aimed to use the Saudi mint plant as a medicinal plant for the synthesis of silver nanoparticles (AgNPs) and to evaluate the antimicrobial and antioxidant activities of AgNPs compared to mint extract (ME). A phenolic and flavonoid analysis that was conducted by using HPLC indicated the presence of numerous compounds in the ME. Through an HPLC analysis, chlorogenic acid at a concentration of 7144.66 µg/mL was the main detected component in the ME, while catechin, gallic acid, naringenin, ellagic acid, rutin, daidzein, cinnamic acid, and hesperetin were identified in varying concentrations. AgNPs were synthesized by using ME and were confirmed via UV-visible spectroscopy at 412 nm of the maximum absorption. The mean diameter of the synthesized AgNPs was measured by TEM to be 17.77 nm. Spectra obtained by using energy-dispersive X-ray spectroscopy indicated that silver was the main element formation in the created AgNPs. The presence of various functional groups, analyzed by using Fourier transform infrared spectroscopy (FTIR), indicated that the mint extract was responsible for reducing Ag+ to Ag0. The spherical structure of the synthesized AgNPs was confirmed by X-ray diffraction (XRD). Furthermore, the ME showed reduced antimicrobial activity (a zone of inhibition of 30, 24, 27, 29, and 22 mm) compared with the synthesized AgNPs (a zone of inhibition of 33, 25, 30, 32, 32, and 27 mm) against B. subtilis, E. faecalis, E. coli, P. vulgaris, and C. albicans, respectively. The minimum inhibitory concentration of the AgNPs was lower than that of the ME for all of the tested micro-organisms, except for P. vulgaris. The MBC/MIC index suggested that the AgNPs revealed a higher bactericidal effect compared to the ME. The synthesized AgNPs exhibited antioxidant activity with a reduced IC50 (IC50 of 8.73 µg/mL) compared to that of the ME (IC50 of 13.42 µg/mL). These findings demonstrate that ME could be applied as a mediator for AgNPs synthesis and natural antimicrobial and antioxidant agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA