Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.197
Filtrar
1.
J Colloid Interface Sci ; 675: 74-83, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964126

RESUMEN

Chiral Plasmonic nanomaterials have gradually illustrated intriguing circularly polarized light (CPL)-dependent properties in photocatalysis due to their unique chiral optical activity. However, the connection between chiral characteristics and catalytic performance of these materials in cooperative systems is rarely reported and remains a challenge task. In this work, branched AgAuPt nanoparticles induced by L/d-cysteine (Cys) with strong and perfectly symmetric circular dichroism (CD) signals are synthesized. Chiral branched AgAuPt nanoparticles firstly exhibit superior typical electrocatalytic performance. In the photoelectrocatalytic system, chiral branched AgAuPt nanoparticles demonstrate selective catalytic water splitting performance. Specifically, chiral branched AgAuPt with related CPL irradiation exhibits enhanced acidic hydrogen evolution reaction (HER) performance. Under the continuous irradiation of related CPL, the chiral catalyst generates more heat, which further increases the catalytic activity. This contribution of heat is supported by density functional theory (DFT) calculation results. The changes in chiroptical activity during this process are recorded by variable temperature CD spectra. This work provides a novel paradigm for designing chiral catalysis systems and emphasizes the profound promise of chiral plasmonic nanomaterials as chiral catalysts.

2.
Annu Rev Biomed Eng ; 26(1): 273-306, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38959389

RESUMEN

Nanomaterials are becoming important tools for vaccine development owing to their tunable and adaptable nature. Unique properties of nanomaterials afford opportunities to modulate trafficking through various tissues, complement or augment adjuvant activities, and specify antigen valency and display. This versatility has enabled recent work designing nanomaterial vaccines for a broad range of diseases, including cancer, inflammatory diseases, and various infectious diseases. Recent successes of nanoparticle vaccines during the coronavirus disease 2019 (COVID-19) pandemic have fueled enthusiasm further. In this review, the most recent developments in nanovaccines for infectious disease, cancer, inflammatory diseases, allergic diseases, and nanoadjuvants are summarized. Additionally, challenges and opportunities for clinical translation of this unique class of materials are discussed.


Asunto(s)
COVID-19 , Nanoestructuras , SARS-CoV-2 , Desarrollo de Vacunas , Humanos , Nanoestructuras/química , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunas contra la COVID-19/química , Animales , Adyuvantes Inmunológicos/química , Neoplasias/inmunología , Neoplasias/prevención & control , Nanopartículas/química , Vacunas , Pandemias/prevención & control
3.
Chirality ; 36(7): e23698, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961803

RESUMEN

Chirality, the property of molecules having mirror-image forms, plays a crucial role in pharmaceutical and biomedical research. This review highlights its growing importance, emphasizing how chiral drugs and nanomaterials impact drug effectiveness, safety, and diagnostics. Chiral molecules serve as precise diagnostic tools, aiding in accurate disease detection through unique biomolecule interactions. The article extensively covers chiral drug applications in treating cardiovascular diseases, CNS disorders, local anesthesia, anti-inflammatories, antimicrobials, and anticancer drugs. Additionally, it explores the emerging field of chiral nanomaterials, highlighting their suitability for biomedical applications in diagnostics and therapeutics, enhancing medical treatments.


Asunto(s)
Nanoestructuras , Nanoestructuras/química , Humanos , Estereoisomerismo , Preparaciones Farmacéuticas/química , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología
4.
Health Care Sci ; 3(3): 181-202, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38947365

RESUMEN

The exploration of newer antibacterial strategies is driven by antibiotic-resistant microbes that cause serious public health issues. In recent years, nanoscale materials have developed as an alternative method to fight infections. Despite the fact that many nanomaterials have been discovered to be harmful, numerous researchers have shown a keen interest in nanoparticles (NPs) made of noble metals like silver, gold and platinum. To make environmentally safe NPs from plants, green chemistry and nanotechnology have been combined to address the issue of toxicity. The study of bimetallic nanoparticles (BNPs) has increased tremendously in the past 10 years. The production of BNPs mediated by natural extracts is straightforward, low cost and environmentally friendly. Due to their low toxicity, safety and biological stability, noble BNPs with silver, gold, platinum and palladium have the potential to be used in biomedical applications. They have a significant impact on human health and are used in medicine and pharmacy due to their biological characteristics, which include catalytic, antioxidant, antibacterial, antidiabetic, anticancer, hepatoprotective and regenerative activity.

5.
Crit Rev Anal Chem ; : 1-20, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978228

RESUMEN

Bladder cancer (BC) is the tenth most common cancer globally, predominantly affecting men. Early detection and treatment are crucial due to high recurrence rates and poor prognosis for advanced stages. Traditional diagnostic methods like cystoscopy and imaging have limitations, leading to the exploration of noninvasive methods such as liquid biopsy. This review highlights the application of biosensors in BC, including electrochemical and optical sensors for detecting tumor markers like proteins, nucleic acids, and other biomolecules, noting their clinical relevance. Emerging therapeutic approaches, such as antibody-drug conjugates, targeted therapy, immunotherapy, and gene therapy, are also explored, the role of biosensors in detecting corresponding biomarkers to guide these treatments is examined. Finally, the review addresses the current challenges and future directions for biosensor applications in BC, highlighting the need for large-scale clinical trials and the integration of advanced technologies like deep learning to enhance diagnostic accuracy and treatment efficacy.

6.
Adv Healthc Mater ; : e2401525, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978444

RESUMEN

Lung cancer remains a major global health concern with high mortality rates and poor prognosis. Bridging the gap between the chemical and cellular understanding of cell-decorated biomimetic nanocomposites and their clinical translation is crucial for developing effective therapies. Nanocomposites show promise in targeted drug delivery and diagnostics, but their clinical application is hindered by biocompatibility and clearance issues. To overcome these challenges, biomimetic approaches utilizing cell membrane-coated nanomaterials emerge. By camouflaging nanomaterials with cell membranes, the biointerfaces are enhanced, and the inherent properties of the donor cell membranes are acquired. This review provides an overview of recent advancements on cell membrane-coated nanocomposites for lung cancer diagnosis and treatment. It discusses fabrication techniques, biomedical applications, challenges, and future prospects. The incorporation of cell membranes into nanocomposites holds potential for improved lung cancer therapy, but further development and refinement are needed for precise tumor targeting. Addressing the identified challenges will pave the way for clinical translation of these biomimetic nanoplatforms and advance lung cancer diagnosis and treatment.

7.
ACS Appl Mater Interfaces ; 16(27): 34783-34797, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38949260

RESUMEN

Trauma is the leading cause of death for adults under the age of 44. Internal bleeding remains a significant challenge in medical emergencies, necessitating the development of effective hemostatic materials that could be administered by paramedics before a patient is in the hospital and treated by surgeons. In this study, we introduce a graphene oxide (GO)-based PEGylated synthetic hemostatic nanomaterial with an average size of 211 ± 83 nm designed to target internal bleeding by mimicking the role of fibrinogen. Functionalization of GO-g-PEG with peptides derived from the α-chain of fibrinogen, such as GRGDS, or the γ-chain of fibrinogen, such as HHLGGAKQAGDV:H12, was achieved with peptide loadings of 72 ± 6 and 68 ± 15 µM, respectively. In vitro studies with platelet-rich plasma (PRP) under confinement demonstrated aggregation enhancement of 39 and 24% for GO-g-PEG-GRGDS and GO-g-PEG-H12, respectively, compared to buffer, while adenosine diphosphate (ADP) alone induced a 5% aggregation. Compared to the same materials in the absence of ADP, GO-g-PEG-GRGDS achieved a 47% aggregation enhancement, while GO-g-PEG-H12 a 25% enhancement. This is particularly important for injectable hemostats and highlights the fact that our nanographene-based materials can only act as hemostats in the presence of agonists, reducing the possibility of unwanted clotting during circulation. Further studies on collagen-coated wells under dynamic flow revealed statistically significant augmentation of PRP fluorescence signal using GRGDS- or H12-coated GO-g-PEG compared to controls. Hemolysis studies showed <1% lysis of red blood cells (RBCs) at the highest PEGylated nanographene concentration. Finally, whole human blood coagulation studies reveal faster and more pronounced clotting using our nanohemostats vs PBS control from 3 min and below (blood is clotted with 10% CaCl2 within 4-5 min), with the biggest differences to be shown at 2 and 1 min. At 1 min, the clot weight was found to be ∼45% of that between 4 and 5 min, while no clot was formed in PBS-treated blood. Reduction of CaCl2 to 5 and 3%, or utilization of prostaglandin E1, an anticoagulant, still leads to clots but of smaller weight. The findings highlight the potential of our fibrinogen-mimic PEGylated nanographene as a promising non-hemolytic injectable scaffold for targeting internal bleeding, offering insights into its platelet aggregation capabilities under confinement and under dynamic flow as well as its pronounced coagulation abilities.


Asunto(s)
Fibrinógeno , Grafito , Hemostáticos , Grafito/química , Hemostáticos/química , Hemostáticos/farmacología , Humanos , Fibrinógeno/química , Fibrinógeno/metabolismo , Polietilenglicoles/química , Coagulación Sanguínea/efectos de los fármacos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Hemorragia/tratamiento farmacológico
8.
Colloids Surf B Biointerfaces ; 242: 114074, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38972257

RESUMEN

As the field of cancer therapeutics evolves, integrating two-dimensional (2D) nanomaterials with photo-immunotherapy has emerged as a promising approach with significant potential to augment cancer treatment efficacy. These 2D nanomaterials include graphene-based 2D nanomaterials, 2D MXenes, 2D layered double hydroxides, black phosphorus nanosheets, 2D metal-organic frameworks, and 2D transition metal dichalcogenides. They exhibit high load capacities, multiple functionalization pathways, optimal biocompatibility, and physiological stability. Predominantly, they function as anti-tumor delivery systems, amalgamating diverse therapeutic modalities, most notably phototherapy and immunotherapy, and the former is a recognized non-invasive treatment modality, and the latter represents the most promising anti-cancer strategy presently accessible. Thus, integrating phototherapy and immunotherapy founded on 2D nanomaterials unveils a novel paradigm in the war against cancer. This review delineates the latest developments in 2D nanomaterials as delivery systems for synergistic photo-immunotherapy in cancer treatment. We elaborate on the burgeoning realm of photo-immunotherapy, exploring the interplay between phototherapy and enhanced immune cells, immune response modulation, or immunosuppressive tumor microenvironments. Notably, the strategies to augment photo-immunotherapy have also been discussed. Finally, we discuss the challenges and future perspectives of these 2D nanomaterials in photo-immunotherapy.

9.
Macromol Biosci ; : e2400181, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980997

RESUMEN

Hypoxia, cancer, tissue damage, and acidic pH conditions are interrelated, as chronic hypoxic conditions enhance the malignant phenotype of cancer cells, causing more aggressive tissue destruction, and hypoxic cells rely on anaerobic glycolysis, leading to the accumulation of lactic acid. Therefore, the administration of oxygen is necessary to support the functions of healthy cells until the formation of new blood vessels and to increase the oxygen supply to cancerous tissues to improve the efficacy of antitumor drugs on tumor cells. In addition to O2 supply, pH-dependent delivery of anticancer drugs is desired to target cancer cells and reduce drug side effects on healthy cells. However, the simultaneous delivery of O2 and pH-dependent anticancer drugs via nanomaterials and their effects on the viability of normal and cancer cells under hypoxic conditions have not been studied in sufficient numbers. This study describes the synthesis of a pH-responsive nanomaterial containing oxygen and anticancer drugs that exhibits sustained O2 release over a 14 d period under hypoxic conditions and pH-dependent sustained release of anticancer drugs over 30 d. The simultaneous administration of O2 and anticancer drugs results in higher cell survival of normal cells than that of cancer cells under hypoxic and normoxic conditions.

10.
Asian J Pharm Sci ; 19(3): 100910, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38948397

RESUMEN

The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a topic of intense research interest in recent years. Nucleic acid, as a type of tumor biomarker, contains vital genetic information, which is of great significance for the occurrence and development of cancer. Currently, living cell nucleic acid probes, which enable the in situ imaging and dynamic monitoring of nucleic acids, have become a rapidly developing field. This review focuses on living cell nucleic acid probes that can be used for the early diagnosis of tumors. We describe the fundamental design of the probe in terms of three units and focus on the roles of different nanomaterials in probe delivery.

11.
Int J Nanomedicine ; 19: 6757-6776, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983132

RESUMEN

Glioma is a primary malignant tumor in the central nervous system. In recent years, the treatment of glioma has developed rapidly, but the overall survival of glioma patients has not significantly improved. Due to the presence of the blood-brain barrier and intracranial tumor barrier, many drugs with good effects to cure glioma in vitro cannot be accurately transported to the corresponding lesions. In order to enable anti-tumor drugs to overcome the barriers and target glioma, nanodrug delivery systems have emerged recently. It is gratifying that liposomes, as a multifunctional nanodrug delivery carrier, which can be compatible with hydrophilic and hydrophobic drugs, easily functionalized by various targeted ligands, biodegradable, and hypoimmunogenic in vivo, has become a quality choice to solve the intractable problem of glioma medication. Therefore, we focused on the liposome nanodrug delivery system, and summarized its current research progress in glioma. Hopefully, this review may provide new ideas for the research and development of liposome-based nanomaterials for the clinical treatment of glioma.


Asunto(s)
Antineoplásicos , Barrera Hematoencefálica , Neoplasias Encefálicas , Glioma , Liposomas , Nanoestructuras , Glioma/tratamiento farmacológico , Liposomas/química , Humanos , Neoplasias Encefálicas/tratamiento farmacológico , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Animales , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Nanomedicina/métodos , Portadores de Fármacos/química
12.
J Control Release ; 372: 751-777, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38909701

RESUMEN

Despite significant advances, cancer remains a leading global cause of death. Current therapies often fail due to incomplete tumor removal and nonspecific targeting, spurring interest in alternative treatments. Hyperthermia, which uses elevated temperatures to kill cancer cells or boost their sensitivity to radio/chemotherapy, has emerged as a promising alternative. Recent advancements employ nanoparticles (NPs) as heat mediators for selective cancer cell destruction, minimizing damage to healthy tissues. This approach, known as NP hyperthermia, falls into two categories: photothermal therapies (PTT) and magnetothermal therapies (MTT). PTT utilizes NPs that convert light to heat, while MTT uses magnetic NPs activated by alternating magnetic fields (AMF), both achieving localized tumor damage. These methods offer advantages like precise targeting, minimal invasiveness, and reduced systemic toxicity. However, the efficacy of NP hyperthermia depends on many factors, in particular, the NP properties, the tumor microenvironment (TME), and TME-NP interactions. Optimizing this treatment requires accurate heat monitoring strategies, such as nanothermometry and biologically relevant screening models that can better mimic the physiological features of the tumor in the human body. This review explores the state-of-the-art in NP-mediated cancer hyperthermia, discussing available nanomaterials, their strengths and weaknesses, characterization methods, and future directions. Our particular focus lies in preclinical NP screening techniques, providing an updated perspective on their efficacy and relevance in the journey towards clinical trials.

13.
Part Fibre Toxicol ; 21(1): 28, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943182

RESUMEN

BACKGROUND: Today, nanomaterials are broadly used in a wide range of industrial applications. Such large utilization and the limited knowledge on to the possible health effects have raised concerns about potential consequences on human health and safety, beyond the environmental burden. Given that inhalation is the main exposure route, workers exposed to nanomaterials might be at risk of occurrence of respiratory morbidity and/or reduced pulmonary function. However, epidemiological evidence regarding the association between cumulative exposure to nanomaterials and respiratory health is still scarce. This study focused on the association between cumulative exposure to nanomaterials and pulmonary function among 136 workers enrolled in the framework of the European multicentric NanoExplore project. RESULTS: Our findings suggest that, independently of lifelong tobacco smoking, ethnicity, age, sex, body mass index and physical activity habits, 10-year cumulative exposure to nanomaterials is associated to worse FEV1 and FEF25 - 75%, which might be consistent with the involvement of both large and small airway components and early signs of airflow obstruction. We further explored the hypothesis of a mediating effect via airway inflammation, assessed by interleukin (IL-)10, IL-1ß and Tumor Necrosis Factor alpha (TNF-α), all quantified in the Exhaled Breath Condensate of workers. The mediation analysis results suggest that IL-10, TNF-α and their ratio (i.e., anti-pro inflammatory ratio) may fully mediate the negative association between cumulative exposure to nanomaterials and the FEV1/FVC ratio. This pattern was not observed for other pulmonary function parameters. CONCLUSIONS: Safeguarding the respiratory health of workers exposed to nanomaterials should be of primary importance. The observed association between cumulative exposure to nanomaterials and worse pulmonary function parameters underscores the importance of implementing adequate protective measures in the nanocomposite sector. The mitigation of harmful exposures may ensure that workers can continue to contribute productively to their workplaces while preserving their respiratory health over time.


Asunto(s)
Exposición por Inhalación , Pulmón , Nanoestructuras , Exposición Profesional , Humanos , Masculino , Nanoestructuras/toxicidad , Femenino , Exposición Profesional/efectos adversos , Adulto , Exposición por Inhalación/efectos adversos , Persona de Mediana Edad , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Pulmón/inmunología , Neumonía/inducido químicamente , Volumen Espiratorio Forzado , Pruebas de Función Respiratoria , Citocinas/metabolismo , Contaminantes Ocupacionales del Aire/toxicidad , Europa (Continente)
14.
Talanta ; 278: 126431, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38943764

RESUMEN

The enzyme-like properties of nanozymes may be considerably affected by the structure and surface groups, which thus need to be optimized. Here, through a simple NaOH chemical corrosion method, the chemical structure similar to N-Methylpyrrolidone (NMP), which possessed intrinsic oxidase-like activity, was introduced into polypyrrole (PPy), and then this nanomaterial became oxygen-functionalized PPy (o-PPy) with excellent oxidase-like activity from PPy without this property. Furthermore, after compounding magnetic Fe3O4, the obtained nanocomposites Fe3O4@o-PPy nanoparticles (Fe3O4@o-PPy NPs) showed superiorities in separation during synthesis and real-time control of enzyme catalysis. Studies have found that the enzymatic activity of Fe3O4@o-PPy NPs depended on the amount of functionalized oxygen and the conjugation extent of o-PPy. Fe3O4@o-PPy NPs had efficient oxidase-like activity under a wide range of pH and temperature. Based on the oxidase-like activity of Fe3O4@o-PPy NPs, a colorimetric sensor for glutathione (GSH), which presented rich color changes and satisfactory colorimetric resolution by adding the amaranth, was realized. We believe that the functional modification and structural regulation of PPy can not only realize its wider application but also promote the discovery of novel and efficient nanozymes.

15.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38931400

RESUMEN

This study assessed the effectiveness of a trastuzumab-targeted 177Lu-labeled mesoporous Carbon@Silica nanostructure (DOTA@TRA/MC@Si) for HER2-positive breast cancer treatment, focusing on its uptake, internalization, and efflux in breast cancer cells. The synthesized PEI-MC@Si nanocomposite was reacted with DOTA-NHS-ester, confirmed by the Arsenazo(III) assay. Following this, TRA was conjugated to the DOTA@PEI-MC@Si for targeting. DOTA@PEI-MC@Si and DOTA@TRA/MC@Si nanocomposites were labeled with 177Lu, and their efficacy was evaluated through in vitro radiolabeling experiments. According to the results, the DOTA@TRA/MC@Si nanocomposite was successfully labeled with 177Lu, yielding a radiochemical yield of 93.0 ± 2.4%. In vitro studies revealed a higher uptake of the [177Lu]Lu-DOTA@TRA/MC@Si nanocomposite in HER2-positive SK-BR-3 cells (44.0 ± 4.6% after 24 h) compared to MDA-MB-231 cells (21.0 ± 2.3%). The IC50 values for TRA-dependent uptake in the SK-BR-3 and BT-474 cells were 0.9 µM and 1.3 µM, respectively, indicating affinity toward HER-2 receptor-expressing cells. The lipophilic distribution coefficients of the radiolabeled nanocomposites were determined to be 1.7 ± 0.3 for [177Lu]Lu-DOTA@TRA/MC@Si and 1.5 ± 0.2 for [177Lu]Lu-DOTA@PEI-MC@Si, suggesting sufficient passive transport through the cell membrane and increased accumulation in target tissues. The [177Lu]Lu-DOTA@TRA/MC@Si nanocomposite showed an uptake into HER2-positive cell lines, marking a valuable step toward the development of a nanoparticle-based therapeutic agent for an improved treatment strategy for HER2-positive breast cancer.

16.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891819

RESUMEN

Photothermal therapy (PTT) is a promising cancer therapy modality with significant advantages such as precise targeting, convenient drug delivery, better efficacy, and minimal adverse effects. Photothermal therapy effectively absorbs the photothermal transducers in the near-infrared region (NIR), which induces the photothermal effect to work. Although PTT has a better role in tumor therapy, it also suffers from low photothermal conversion efficiency, biosafety, and incomplete tumor elimination. Therefore, the use of nanomaterials themselves as photosensitizers, the targeted modification of nanomaterials to improve targeting efficiency, or the combined use of nanomaterials with other therapies can improve the therapeutic effects and reduce side effects. Notably, noble metal nanomaterials have attracted much attention in PTT because they have strong surface plasmon resonance and an effective absorbance light at specific near-infrared wavelengths. Therefore, they can be used as excellent photosensitizers to mediate photothermal conversion and improve its efficiency. This paper provides a comprehensive review of the key role played by noble metal nanomaterials in tumor photothermal therapy. It also describes the major challenges encountered during the implementation of photothermal therapy.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Terapia Fototérmica , Humanos , Terapia Fototérmica/métodos , Neoplasias/terapia , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Animales , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico
17.
ACS Sens ; 9(6): 2728-2776, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38828988

RESUMEN

The escalating development and improvement of gas sensing ability in industrial equipment, or "machine olfactory", propels the evolution of gas sensors toward enhanced sensitivity, selectivity, stability, power efficiency, cost-effectiveness, and longevity. Two-dimensional (2D) materials, distinguished by their atomic-thin profile, expansive specific surface area, remarkable mechanical strength, and surface tunability, hold significant potential for addressing the intricate challenges in gas sensing. However, a comprehensive review of 2D materials-based gas sensors for specific industrial applications is absent. This review delves into the recent advances in this field and highlights the potential applications in industrial machine olfaction. The main content encompasses industrial scenario characteristics, fundamental classification, enhancement methods, underlying mechanisms, and diverse gas sensing applications. Additionally, the challenges associated with transitioning 2D material gas sensors from laboratory development to industrialization and commercialization are addressed, and future-looking viewpoints on the evolution of next-generation intelligent gas sensory systems in the industrial sector are prospected.


Asunto(s)
Gases , Gases/análisis , Gases/química , Olfato , Industrias , Odorantes/análisis
18.
Adv Drug Deliv Rev ; 211: 115362, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38906478

RESUMEN

The cytoskeleton, an intricate network of protein fibers within cells, plays a pivotal role in maintaining cell shape, enabling movement, and facilitating intracellular transport. Its involvement in various pathological states, ranging from cancer proliferation and metastasis to the progression of neurodegenerative disorders, underscores its potential as a target for therapeutic intervention. The exploration of nanotechnology in this realm, particularly the use of nanomaterials for cytoskeletal modulation, represents a cutting-edge approach with the promise of novel treatments. Inorganic nanomaterials, including those derived from gold, metal oxides, carbon, and black phosphorus, alongside organic variants such as peptides and proteins, are at the forefront of this research. These materials offer diverse mechanisms of action, either by directly interacting with cytoskeletal components or by influencing cellular signaling pathways that, in turn, modulate the cytoskeleton. Recent advancements have introduced magnetic field-responsive and light-responsive nanomaterials, which allow for targeted and controlled manipulation of the cytoskeleton. Such precision is crucial in minimizing off-target effects and enhancing therapeutic efficacy. This review explores the importance of research into cytoskeleton-targeting nanomaterials for developing therapeutic interventions for a range of diseases. It also addresses the progress made in this field, the challenges encountered, and future directions for using nanomaterials to modulate the cytoskeleton. The continued exploration of nanomaterials for cytoskeleton modulation holds great promise for advancing therapeutic strategies against a broad spectrum of diseases, marking a significant step forward in the intersection of nanotechnology and medicine.

19.
Sci Total Environ ; 946: 174165, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925379

RESUMEN

Oil-contaminated soil posed serious threats to the ecosystems and human health. The unique and tunable properties of engineered nanomaterials (ENMs) enable new technologies for removing and repairing oil-contaminated soil. However, few studies systematically examined the linkage between the change of physicochemical properties and the removal efficiency and environmental functions (e.g., potential risk) of ENMs, which is vital for understanding the ENMs environmental sustainability and utilization as a safety product. Thus, this review briefly summarized the environmental applications of ENMs to removing petroleum oil from complex soil systems: Theoretical and practical fundamentals (e.g., excellent physicochemical properties, environmental stability, controlled release, and recycling technologies), and various ENMs (e.g., iron-based, carbon-based, and metal oxides nanomaterials) remediation case studies. Afterward, this review highlights the removing mechanism (e.g., adsorption, photocatalysis, oxidation/reduction, biodegradation) and the impact factor (e.g., nanomaterials species, natural organic matter, and soil matrix) of ENMs during the remediation process in soil ecosystems. Both positive and negative effects of ENMs on terrestrial organisms have been identified, which are mainly derived from their diverse physicochemical properties. In linking nanotechnology applications for repairing oil-contaminated soil back to the physical and chemical properties of ENMs, this critical review aims to raise the research attention on using ENMs as a fundamental guide or even tool to advance soil treatment technologies.

20.
J Nanobiotechnology ; 22(1): 336, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38880905

RESUMEN

Oxygen is necessary for life and plays a key pivotal in maintaining normal physiological functions and treat of diseases. Hemoglobin-based oxygen carriers (HBOCs) have been studied and developed as a replacement for red blood cells (RBCs) in oxygen transport due to their similar oxygen-carrying capacities. However, applications of HBOCs are hindered by vasoactivity, oxidative toxicity, and a relatively short circulatory half-life. With advancements in nanotechnology, Hb encapsulation, absorption, bioconjugation, entrapment, and attachment to nanomaterials have been used to prepare nanomaterial-related HBOCs to address these challenges and pend their application in several biomedical and therapeutic contexts. This review focuses on the progress of this class of nanomaterial-related HBOCs in the fields of hemorrhagic shock, ischemic stroke, cancer, and wound healing, and speculates on future research directions. The advancements in nanomaterial-related HBOCs are expected to lead significant breakthroughs in blood substitutes, enabling their widespread use in the treatment of clinical diseases.


Asunto(s)
Sustitutos Sanguíneos , Hemoglobinas , Liposomas , Nanoestructuras , Oxígeno , Humanos , Hemoglobinas/química , Hemoglobinas/metabolismo , Sustitutos Sanguíneos/química , Oxígeno/química , Animales , Nanoestructuras/química , Liposomas/química , Nanocápsulas/química , Cicatrización de Heridas/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Choque Hemorrágico/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA