Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 686
Filtrar
1.
EJHaem ; 5(4): 698-708, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39157631

RESUMEN

Somatic hypermutations (SHMs) in the variable region (VH) of the immunoglobulin heavy chain (IgH) gene are common in diffuse large B-cell lymphoma (DLBCL). Recently, IgH VH SHMs have become known as immunogenic neoantigens, but few studies have evaluated the prognostic impact of the frequency of VH SHMs in DLBCL. The BIOMED-2 protocol is the gold standard polymerase chain reaction (PCR) for clonality analysis in lymphoid malignancies, but can produce false negatives due to the presence of IgH VH SHMs. To overcome this problem, three primer sets were designed for the three framework regions (FR1, FR2, and FR3). We evaluated the predictive value of this PCR pattern in patients with DLBCL. To evaluate the prognostic impact of complete detection of the clonal amplifications (VHFR1-JH, VHFR2-JH, and VHFR3-JH) in the BIOMED-2 protocol, we retrospectively analyzed 301 DLBCL patients who were initially treated with anthracycline-based immunochemotherapy. Complete detection of the FR1 to FR3 primer-based IgH VH PCR patterns in the BIOMED-2 protocol was associated with low frequency of VH SHMs (p < 0.001). Patients who were positive for all these three PCRs (n = 79) were significantly associated with shorter 5-year overall survival (OS; 54.2% vs. 73.2%; p = 0.002) and progression-free survival (PFS; 34.3% vs. 59.3%; p < 0.001) compared to patients with other PCR patterns (n = 202). Specifically, the successful FR3-JH detection was associated with significantly worse OS (p < 0.001) and PFS (p < 0.001). PCR patterns of complete IgH rearrangement using the BIOMED-2 protocol are clinically meaningful indicators for prognostic stratification of DLBCL patients.

2.
Front Immunol ; 15: 1437961, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170614

RESUMEN

A patient with a PD-L1-negative, TMB-low, KEAP1/STK11 co-mutated metastatic non-small cell lung cancer (NSCLC) experienced a multisite radiological progression at 3 months after initiation of chemoimmunotherapy as first-line treatment for metastatic disease. After the radiological progression, while she was not undergoing treatment, the patient had spontaneous lesions shrinkage and further achieved a prolonged complete response. Genomic and transcriptomic data collected at baseline and at the time of pseudoprogression allowed us to biologically characterize this rare response pattern. We observed the presence of a tumor-specific T-cell response against tumor-specific neoantigens (TNAs). Endogenous retroviruses (ERVs) expression following chemoimmunotherapy was also observed, concurrent with biological features of an anti-viral-like innate immune response with type I IFN signaling and production of CXCR3-associated chemokines. This is the first biological characterization of a NSCLC pseudoprogression under chemoimmunotherapy followed by a prolonged complete response in a PD-L1-negative, TMB-low, KEAP1/STK11 co-mutated NSCLC. These clinical and biological data underline that even patients with multiple factors of resistance to immune checkpoint inhibitors could trigger a tumor-specific immune response to tumor neoantigen, leading to complete eradication of the tumor and probably a vaccinal immune response.


Asunto(s)
Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas , Progresión de la Enfermedad , Proteína 1 Asociada A ECH Tipo Kelch , Neoplasias Pulmonares , Mutación , Humanos , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Antígeno B7-H1/genética , Femenino , Persona de Mediana Edad , Biomarcadores de Tumor
3.
Front Immunol ; 15: 1423212, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39136021

RESUMEN

Background: Nanovaccine treatment is an exciting area of research in immunology and personalized medicine, holding great promise for enhancing immune responses and targeting specific diseases. Their small size allows efficient uptake by immune cells, leading to robust immune activation. They can incorporate immune-stimulating molecules to boost vaccine efficacy. Therefore, nanovaccine can be personalized to target tumor-specific antigens, activating the immune system against cancer cells. Currently, there have been ample evidence showing the effectiveness and potential of nanovaccine as a treatment for cancer. However, there was rare bibliometric analysis of nanovaccine for cancer. Here we performed a bibliometric and visual analysis of published studies related to nanovaccine treatment for cancer, providing the trend of future development of nanovaccine. Methods: We collected the literatures based on the Web of Science Core Collection SCI-Expanded database. The bibliometric analysis was performed via utilizing visualization analysis tools VOSviewer, Co-Occurrence (COOC), Citespace, Bibliometrix (R-Tool of R-Studio), and HitCite. Results: A total of 517 literatures were included in this study. China is the country with the most publications and the highest total local citation score (TLCS). The Chinese Academy of Sciences holds the largest research count in this field and the most prolific author is Deling Kong from Nankai University. The most prominent journal for publishing in this area is Biomaterials. The researches mainly focus on the therapeutic process of tumor nanovaccines, the particle composition and the application of nanovaccines, suggesting the potential hotspots and trends of nanovaccine. Conclusion: In this study, we summarized the characteristics and variation trends of publications involved in nanovaccine, and categorized the most influential countries, institutions, authors, journals, hotspots and trends regarding the nanovaccine for cancer. With the continuous development of nanomaterials and tumor immunotherapy, nanovaccine for cancer provides a research field of significant clinical value and potential application.


Asunto(s)
Bibliometría , Vacunas contra el Cáncer , Neoplasias , Humanos , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/uso terapéutico , Vacunas contra el Cáncer/inmunología , Neoplasias/terapia , Neoplasias/inmunología , Nanopartículas , Animales , Nanovacunas
4.
Future Oncol ; : 1-16, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101448

RESUMEN

We describe in this review the historical evidence leading up to the concept and design of Vigil and subsequent clinical applications including safety and efficacy in a randomized, controlled Phase IIB trial. Vigil (gemogenovatucel-T) is a unique triple function targeted immunotherapy that demonstrates preclinical and clinical systemic anticancer activity. Construction of Vigil involves harvest of autologous malignant tissue for neoantigen targeting (ideally containing clonal neoantigens) followed by a two-day process involving transfection with a plasmid to provide a permissive 'training environment' for the patient's immune system. Transfected plasmid components contain an expressive human GMCSF DNA segment to enhance anticancer immune functional response and a second component expressing bi-shRNAfurin which reduces TGFß isomers (TGFß1 and TGFß2) thereby reducing cancer inhibition of the targeted immune response. Results generated to date justify advancement to confirmatory clinical trials supporting product regulatory approval.


Vigil is an anticancer treatment that employs three methods of enhancing the body's immune system to identify and kill cancer cells. The construction of Vigil involves cancer cells from the same person being treated (personalized therapy) in combination with added anticancer genetic signals to enhance the number and function anti-anticancer immune cells and to guide the immune cells to the cancer and not to normal organs of the body. In this manner, an army of immune cells are created that can move to attacking the cancer using blood vessels to get to the cancer anywhere it tries to grow in the body. One study (Phase I) performed with this product to determine safety and dose range demonstrated an optimal dose and schedule. Another study (Phase IIA) showed initial clinical benefit. A third more complex study (Phase IIB) in patients treated with Vigil compared with standard of care without Vigil demonstrated the ability to prolong the patients life and time without their cancer getting worse without any significant side effects associated with the treatment in a unique subset of ovarian cancer patients, those with the ability to repair their DNA. Based on the composite of these results, Vigil is an attractive targeted immunotherapy justified for late-stage clinical testing.

5.
Anticancer Res ; 44(9): 3713-3724, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39197920

RESUMEN

Cancer immunotherapy activates the host immune system against tumor cells and has the potential to lead to the development of innovative strategies for cancer treatment. Neoantigens are non-self-antigens produced by genetic mutations in tumor cells that induce a strong immune response against tumor cells without central immune tolerance. Along with advances in neoantigen analysis technology, the development of vaccines focusing on neoantigens is being accelerated. Whereas there are various platforms for neoantigen vaccines, combined immuno-therapies are being developed simultaneously with the clinical application of synthetic long peptides and mRNA and dendritic-cell (DC)-based vaccines. Personalized DC-based vaccines not only can load various antigens including neoantigens, but also have the potential to elicit a strong immune response in T cells as antigen-presenting cells. In this review, we describe the properties of neoantigens and the basic characteristics of DCs. We also discuss the clinical applications of neoantigen vaccines, focusing on personalized DC-based vaccines, as well as future research and development directions and challenges.


Asunto(s)
Antígenos de Neoplasias , Vacunas contra el Cáncer , Células Dendríticas , Neoplasias , Medicina de Precisión , Humanos , Células Dendríticas/inmunología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Antígenos de Neoplasias/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Medicina de Precisión/métodos , Inmunoterapia/métodos , Animales
6.
Cancer Lett ; 599: 217134, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094824

RESUMEN

Despite many studies focusing on the prognostic biomarkers in pancreatic adenocarcinomas (PAADs), there is ill-informed about the relationships between their genomic features and immune characteristics. Herein, we deeply investigated the involvement of major driver mutation subtypes with immunophenotypes impacting PAAD outcomes. Based on public data analyses of RNA expression-based immune subtypes in PAAD, in contrast to KRAS G12D & TP53 co-mutant patients with poor outcomes, the best immune subtype C3 (inflammatory) characterized by high Th1/Th2 ratio was relatively enriched in KRASnon-G12DTP53wt patients with better survival, whereas the inferior subtype C2 (IFN-γ dominant) with low Th1/Th2 ratio was more common in the former than in the latter. Moreover, contrary to the highly immunosuppressive microenvironment (high Treg, high ratio of Treg to tumor-specific CD4+ T cell) in KRASG12DTP53mut patients, KRASG12VTP53wt individuals exhibited an inflamed context profiled by multiplex immunohistochemistry. It could be responsible for their outstanding survival advantage over others in postsurgical PAAD patients receiving adjuvant chemotherapy as shown by our cohort. Together, KRASG12VTP53wt may be a promising biomarker for prognostic evaluation and screening certain candidates with PAAD to get desirable survival benefit from adjuvant chemotherapy.


Asunto(s)
Biomarcadores de Tumor , Inmunofenotipificación , Mutación , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Microambiente Tumoral , Proteína p53 Supresora de Tumor , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/mortalidad , Proteínas Proto-Oncogénicas p21(ras)/genética , Microambiente Tumoral/inmunología , Proteína p53 Supresora de Tumor/genética , Pronóstico , Biomarcadores de Tumor/genética , Adenocarcinoma/genética , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Adenocarcinoma/mortalidad , Masculino , Femenino
7.
Mol Cell Proteomics ; 23(9): 100825, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111711

RESUMEN

Personalized cancer immunotherapies such as therapeutic vaccines and adoptive transfer of T cell receptor-transgenic T cells rely on the presentation of tumor-specific peptides by human leukocyte antigen class I molecules to cytotoxic T cells. Such neoepitopes can for example arise from somatic mutations and their identification is crucial for the rational design of new therapeutic interventions. Liquid chromatography mass spectrometry (LC-MS)-based immunopeptidomics is the only method to directly prove actual peptide presentation and we have developed a parameter optimization workflow to tune targeted assays for maximum detection sensitivity on a per peptide basis, termed optiPRM. Optimization of collision energy using optiPRM allows for the improved detection of low abundant peptides that are very hard to detect using standard parameters. Applying this to immunopeptidomics, we detected a neoepitope in a patient-derived xenograft from as little as 2.5 × 106 cells input. Application of the workflow on small patient tumor samples allowed for the detection of five mutation-derived neoepitopes in three patients. One neoepitope was confirmed to be recognized by patient T cells. In conclusion, optiPRM, a targeted MS workflow reaching ultra-high sensitivity by per peptide parameter optimization, makes the identification of actionable neoepitopes possible from sample sizes usually available in the clinic.

8.
Cancers (Basel) ; 16(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39199689

RESUMEN

Lung cancer continues to contribute to the highest percentage of cancer-related deaths worldwide. Advancements in the treatment of non-small cell lung cancer like immune checkpoint inhibitors have dramatically improved survival and long-term disease response, even in curative and perioperative settings. Unfortunately, resistance develops either as an initial response to treatment or more commonly as a progression after the initial response. Several modalities have been utilized to combat this. This review will focus on the various combination treatments with immune checkpoint inhibitors including the addition of chemotherapy, various immunotherapies, radiation, antibody-drug conjugates, bispecific antibodies, neoantigen vaccines, and tumor-infiltrating lymphocytes. We discuss the status of these agents when used in combination with immune checkpoint inhibitors with an emphasis on lung cancer. The early toxicity signals, tolerability, and feasibility of implementation are also reviewed. We conclude with a discussion of the next steps in treatment.

9.
Nano Lett ; 24(33): 10114-10123, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39109634

RESUMEN

Personalized cancer vaccines targeting specific neoantigens have been envisioned as one of the most promising approaches in cancer immunotherapy. However, the physicochemical variability of the identified neoantigens limits their efficacy as well as vaccine manufacturing in a uniform format. Herein, we developed a uniform nanovaccine platform based on poly(2-oxazoline)s (POx) to chemically conjugate neoantigen peptides, regardless of their physicochemical properties. This vaccine system could self-assemble into nanoparticles with uniform size (around 50 nm) and improve antigen accumulation as well as infiltration in the lymph node to increase antigen presentation. In vivo vaccination using this system conjugated with three predicted peptide neoantigen peptides from the MC38 tumor cell line induced 100% robust CD8+ T cell responses and superior tumor clearance compared to free peptides. This POx-based vaccine carrier represents a generalizable approach to increase the availability and efficacy of screened neoantigen peptides for a personalized cancer vaccine.


Asunto(s)
Antígenos de Neoplasias , Vacunas contra el Cáncer , Nanopartículas , Péptidos , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/química , Péptidos/química , Péptidos/inmunología , Animales , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/química , Ratones , Nanopartículas/química , Humanos , Línea Celular Tumoral , Linfocitos T CD8-positivos/inmunología , Oxazoles/química , Polímeros/química , Inmunoterapia/métodos , Nanovacunas
10.
Transl Oncol ; 49: 102094, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39163760

RESUMEN

OBJECTIVE: PARPi offers less clinical benefit for HRP patients compared to HRD patients. PARPi has an immunomodulatory function. NRT therapy targets tumor neoantigens without off-target immune toxicity. We explored the synergy between Niraparib and NRT in enhancing antitumor activity in an HRP ovarian cancer mouse model. METHODS: In the C57BL/6 mouse ID8 ovarian cancer model, the effect of Niraparib on reshaping TIME was evaluated by immune cell infiltration analysis of transcriptomic data. The antitumor effects of Niraparib, NRT, and their combined use were systematically evaluated. To corroborate alterations in TILs, TAMs, and chemokine profiles within the TIME, we employed immunofluorescence imaging and transcriptome sequencing analysis. RESULTS: Niraparib increased the M1-TAMs and activated CD8+ T cells in tumor tissues of C57BL/6 mice with ID8 ovarian cancer. GSEA showed that gene set associated with immature DC and INFα, cytokines and chemokines were significantly enriched in immune feature, KEGG and GO gene sets, meanwhile CCL5, CXCL9 and CXCL10 play dominant roles together. In the animal trials, combined group had a tumor growth delay compared with Niraparib group (P < 0.01) and control group (P < 0.001), and longer survival compared with the single agent group (P<0.01) . CONCLUSIONS: Niraparib could exert immune-reshaping effects, then acts synergistic antitumor effects with NRT in HRP ovarian cancer model. Our findings provide new ideas and rationale for combined immunotherapy in HRP ovarian cancer.

11.
Cell Genom ; 4(9): 100641, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39216476

RESUMEN

Colorectal cancer (CRC) ranks as the second leading cause of cancer deaths globally. In recent years, short-read single-cell RNA sequencing (scRNA-seq) has been instrumental in deciphering tumor heterogeneities. However, these studies only enable gene-level quantification but neglect alterations in transcript structures arising from alternative end processing or splicing. In this study, we integrated short- and long-read scRNA-seq of CRC samples to build an isoform-resolution CRC transcriptomic atlas. We identified 394 dysregulated transcript structures in tumor epithelial cells, including 299 resulting from various combinations of splicing events. Second, we characterized genes and isoforms associated with epithelial lineages and subpopulations exhibiting distinct prognoses. Among 31,935 isoforms with novel junctions, 330 were supported by The Cancer Genome Atlas RNA-seq and mass spectrometry data. Finally, we built an algorithm that integrated novel peptides derived from open reading frames of recurrent tumor-specific transcripts with mass spectrometry data and identified recurring neoepitopes that may aid the development of cancer vaccines.


Asunto(s)
Neoplasias Colorrectales , Análisis de la Célula Individual , Transcriptoma , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Humanos , Análisis de la Célula Individual/métodos , Isoformas de Proteínas/genética , Análisis de Secuencia de ARN/métodos , Regulación Neoplásica de la Expresión Génica , Empalme Alternativo/genética
12.
ACS Nano ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196858

RESUMEN

Engineering nanovaccines capable of targeting dendritic cells (DCs) is desperately required to maximize antigen cross-presentation to effector immune cells, elicit strong immune responses, and avoid adverse reactions. Here, we showed that glucose transporter 1 (Glut-1) on DCs is a reliable target for delivering antigens to DCs, and thus, a versatile antigen delivery strategy using glucosylated nanovaccines was developed for DC-targeted antigen delivery and tumor immunotherapy. The developed glucosylated ovalbumin-loaded nanovaccines highly accumulated in lymph nodes and efficiently engaged with Glut-1 on DCs to accelerate intracellular antigen delivery and promote DC maturation and antigen presentation, which elicited potent antitumor immunity to prevent and inhibit ovalbumin-expressing melanoma. Moreover, immunotherapeutic experiments in DC- and macrophage-depleted animal models confirmed that the glucosylated nanovaccines functioned mainly through DCs. In addition, the neoantigen-delivering glucosylated nanovaccines were further engineered to elicit tumor-specific immune responses against MC38 tumors. This study offers a DC-targeted antigen delivery strategy for cancer immunotherapy.

13.
EMBO Mol Med ; 16(9): 2170-2187, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39164472

RESUMEN

The CLDN18-ARHGAP fusion gene is an oncogenic driver newly discovered in gastric cancer. It was detected in 9% (8/87) of gastric cancer patients in our center. An immunogenic peptide specifically targeting CLDN18-ARHGAP fusion gene was generated to induce neoantigen-reactive T cells, which was proved to have specific and robust anti-tumor capacity both in in vitro coculture models and in vivo xenograft gastric cancer models. Apart from the immunogenic potential, CLDN18-ARHGAP fusion gene was also found to contribute to immune suppression by inducing a regulatory T (Treg) cell-enriched microenvironment. Mechanistically, gastric cancer cells with CLDN18-ARHGAP fusion activate PI3K/AKT-mTOR-FAS signaling, which enhances free fatty acid production of gastric cancer cells to favor the survival of Treg cells. Furthermore, PI3K inhibition could effectively reverse Treg cells upregulation to enhance anti-tumor cytotoxicity of neoantigen-reactive T cells in vitro and reduce tumor growth in the xenograft gastric cancer model. Our study identified the CLDN18-ARHGAP fusion gene as a critical source of immunogenic neoepitopes, a key regulator of the tumor immune microenvironment, and immunotherapeutic applications specific to this oncogenic fusion.


Asunto(s)
Claudinas , Inmunoterapia , Neoplasias Gástricas , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Humanos , Animales , Inmunoterapia/métodos , Claudinas/genética , Claudinas/metabolismo , Ratones , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Microambiente Tumoral/inmunología , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Fusión Oncogénica/inmunología , Línea Celular Tumoral , Linfocitos T Reguladores/inmunología
14.
Front Immunol ; 15: 1437774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055714

RESUMEN

Alternative splicing (AS) functions as a crucial program in transcriptional modulation, leading to proteomic diversity and functional alterations of proteins. These splicing actions induce various neoantigens that hold prognostic significance and contribute to various aspects of cancer progression, including immune responses against cancer. The advent of immunotherapy has remarkably revolutionized tumor therapy. In this regard, AS-derived neoantigens are potent targets for cancer vaccines and chimeric antigen receptor (CAR) T cell therapies. In this review, we outline that AS-derived neoantigens serve as promising immunotherapeutic targets and guide immunotherapy strategies. This evidence contributes to a deeper comprehension of the complexity of proteomic diversity and provides novel perspectives and techniques for precision medicine in immunotherapy. Moreover, we underscore the obstacles that are awaited to be addressed for this novel approach to become clinically applicable.


Asunto(s)
Empalme Alternativo , Antígenos de Neoplasias , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/genética , Animales , Inmunoterapia/métodos , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Inmunoterapia Adoptiva/métodos , Medicina de Precisión/métodos
15.
Vaccines (Basel) ; 12(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066355

RESUMEN

Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRASG12D), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies.

16.
MedComm (2020) ; 5(8): e667, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39081513

RESUMEN

mRNA vaccines are regarded as a highly promising avenue for next-generation cancer therapy. Nevertheless, the intricacy of production, inherent instability, and low expression persistence of linear mRNA significantly restrict their extensive utilization. Circular RNAs (circRNAs) offer a novel solution to these limitations due to their efficient protein expression ability, which can be rapidly generated in vitro without the need for extra modifications. Here, we present a novel neoantigen vaccine based on circRNA that induces a potent anti-tumor immune response by expressing hepatocellular carcinoma-specific tumor neoantigens. By cyclizing linearRNA molecules, we were able to enhance the stability of RNA vaccines and form highly stable circRNA molecules with the capacity for sustained protein expression. We confirmed that neoantigen-encoded circRNA can promote dendritic cell (DC) activation and enhance DC-induced T-cell activation in vitro, thereby enhancing T-cell killing of tumor cells. Encapsulating neoantigen-encoded circRNA within lipid nanoparticles for in vivo expression has enabled the creation of a novel circRNA vaccine platform. This platform demonstrates superior tumor treatment and prevention in various murine tumor models, eliciting a robust T-cell immune response. Our circRNA neoantigen vaccine offers new options and application prospects for neoantigen immunotherapy in solid tumors.

17.
Hematol Oncol Clin North Am ; 38(5): 1045-1060, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39079791

RESUMEN

Personalized neoantigen vaccines have achieved major advancements in recent years, with studies in melanoma leading progress in the field. Early clinical trials have demonstrated their feasibility, safety, immunogenicity, and potential efficacy. Advances in sequencing technologies and neoantigen prediction algorithms have substantively improved the identification and prioritization of neoantigens. Innovative delivery platforms now support the rapid and flexible production of vaccines. Several ongoing efforts in the field are aimed at improving the integration of large datasets, refining the training of prediction models, and ensuring the functional validation of vaccine immunogenicity.


Asunto(s)
Antígenos de Neoplasias , Vacunas contra el Cáncer , Melanoma , Humanos , Melanoma/inmunología , Melanoma/terapia , Vacunas contra el Cáncer/uso terapéutico , Vacunas contra el Cáncer/inmunología , Antígenos de Neoplasias/inmunología , Inmunoterapia/métodos , Medicina de Precisión/métodos
18.
J Integr Bioinform ; 21(2)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960869

RESUMEN

Cancer immunology offers a new alternative to traditional cancer treatments, such as radiotherapy and chemotherapy. One notable alternative is the development of personalized vaccines based on cancer neoantigens. Moreover, Transformers are considered a revolutionary development in artificial intelligence with a significant impact on natural language processing (NLP) tasks and have been utilized in proteomics studies in recent years. In this context, we conducted a systematic literature review to investigate how Transformers are applied in each stage of the neoantigen detection process. Additionally, we mapped current pipelines and examined the results of clinical trials involving cancer vaccines.


Asunto(s)
Antígenos de Neoplasias , Neoplasias , Humanos , Antígenos de Neoplasias/inmunología , Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Procesamiento de Lenguaje Natural , Inteligencia Artificial
19.
J Gastrointest Oncol ; 15(3): 1179-1197, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38989416

RESUMEN

Background: Pancreatic adenocarcinoma (PAAD) is referred to as an immunologically "cold" tumor that responds poorly to immunotherapy. A fundamental theory that explains the low immunogenicity of PAAD is the dramatically low tumor mutation burden (TMB) of PAAD tumors, which fails to induce sufficient immune response. Alternative splicing of pre-mRNA, which could alter the proteomic diversity of many cancers, has been reported to be involved in neoantigen production. Therefore, we aim to identify novel PAAD antigens and immune subtypes through systematic bioinformatics research. Methods: Data for splicing analysis were downloaded from The Cancer Genome Atlas (TCGA) SpliceSeq database. Among the available algorithms, we chose CIBERSORT to evaluate the immune cell distribution among PAADs. The TCGA-PAAD expression matrix was used to construct a co-expression network. Single-cell analysis was performed based on the Seurat workflow. Results: Integrated analysis of aberrantly upregulated genes, alternatively spliced genes, genes associated with nonsense-mediated RNA decay (NMD) factors, antigen presentation and overall survival (OS) in TCGA-PAAD revealed that PLEC is a promising neoantigen for PAAD-targeted therapy. We identified a C2 TCGA-PAAD subtype that had better prognosis and more CD8+ T-cell infiltration. We propose a novel immune subtyping system for PAAD to indicate patient prognosis and opportunities for immunotherapy, such as immune checkpoint (ICP) inhibitors. Conclusions: In conclusion, the present study used a transcriptome-guided approach to screen neoantigen candidates based on alternative splicing, NMD factors, and antigen-presenting signatures for PAAD. A prognosis model with guidance of immunotherapy will aid in patient selection for appropriate treatment.

20.
Oncoimmunology ; 13(1): 2371556, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952674

RESUMEN

Isolation of tumor-specific T cells and their antigen receptors (TCRs) from malignant pleural effusions (MPE) may facilitate the development of TCR-transduced adoptive cellular immunotherapy products for advanced lung cancer patients. However, the characteristics and markers of tumor-specific T-cells in MPE are largely undefined. To this end, to establish the phenotypes and antigen specificities of CD8+ T cells, we performed single-cell RNA and TCR sequencing of samples from three advanced lung cancer patients. Dimensionality reduction on a total of 4,983 CD8+ T cells revealed 10 clusters including naïve, memory, and exhausted phenotypes. We focused particularly on exhausted T cell clusters and tested their TCR reactivity against neoantigens predicted from autologous cancer cell lines. Four different TCRs specific for the same neoantigen and one orphan TCR specific for the autologous cell line were identified from one of the patients. Differential gene expression analysis in tumor-specific T cells relative to the other T cells identified CXCL13, as a candidate gene expressed by tumor-specific T cells. In addition to expressing CXCL13, tumor-specific T cells were present in a higher proportion of T cells co-expressing PDCD1(PD-1)/TNFRSF9(4-1BB). Furthermore, flow cytometric analyses in advanced lung cancer patients with MPE documented that those with high PD-1/4-1BB expression have a better prognosis in the subset of 57 adenocarcinoma patients (p = .039). These data suggest that PD-1/4-1BB co-expression might identify tumor-specific CD8+ T cells in MPE, which are associated with patients' prognosis. (233 words).


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Pulmonares , Derrame Pleural Maligno , Receptores de Antígenos de Linfocitos T , Análisis de la Célula Individual , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Derrame Pleural Maligno/inmunología , Derrame Pleural Maligno/patología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Anciano , Antígenos de Neoplasias/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA