Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
1.
Hum Mol Genet ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39251229

RESUMEN

α9-nAChR, a subtype of nicotinic acetylcholine receptor, is significantly overexpressed in female breast cancer tumor tissues compared to normal tissues. Previous studies have proposed that specific single nucleotide polymorphisms (SNPs) in the CHRNA9 (α9-nAChR) gene are associated with an increased risk of breast cancer in interaction with smoking. The study conducted a breast cancer risk assessment of the α9-nAChR SNP rs10009228 (NM_017581.4:c.1325A > G) in the Taiwanese female population, including 308 breast cancer patients and 198 healthy controls revealed that individuals with the heterozygous A/G or A/A wild genotype have an increased susceptibility to developing breast cancer in the presence of smoking compared to carriers of the G/G variant genotype. Our investigation confirmed the presence of this missense variation, resulting in an alteration of the amino acid sequence from asparagine (N442) to serine (S442) to facilitate phosphorylation within the α9-nAchR protein. Additionally, overexpression of N442 (A/A) in breast cancer cells significantly enhanced cell survival, migration, and cancer stemness compared to S442 (G/G). Four-line triple-negative breast cancer patient-derived xenograft (TNBC-PDX) models with distinct α9-nAChR rs10009228 SNP genotypes (A/A, A/G, G/G) further demonstrated that chronic nicotine exposure accelerated tumor growth through sustained activation of the α9-nAChR downstream oncogenic AKT/ERK/STAT3 pathway, particularly in individuals with the A/G or A/A genotype. Collectively, our study established the links between genetic variations in α9-nAChR and smoking exposure in promoting breast tumor development. This emphasizes the need to consider gene-environment interactions carefully while developing effective breast cancer prevention and treatment strategies.

2.
Mol Neurobiol ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212875

RESUMEN

Depression is a serious disabling disease worldwide. Accumulating evidence supports that there is a close relationship between depression and inflammation, and then inhibition of neuroinflammation may be another mechanism for the treatment of depression. Transcutaneous auricular vagus stimulation (taVNS), as a noninvasive transcutaneous electrical stimulation, could effectively treat depression, but its mechanism is unclear. In this study, rats with depression-like behavior were induced by intraperitoneal injection of lipopolysaccharide (LPS). The rats were randomly divided to control group, LPS group, taVNS + LPS group, and the same as the α7 nicotinic acetylcholine chloride receptor (α7nAChR) (- / -) gene knockout rats. The expressions of tumor necrosis factor alpha (TNF-ɑ) and phosphorylated-Janus kinase2 (p-JAK2), phosphorylated-signal transducer and activator of transcription3(p-STAT3) in the hypothalamus, amygdala, and hippocampus were detected by Western blot. We observed that LPS significantly decreased the sucrose preference, the time of into the open arms in the elevated plus maze, and the number of crossing and reaping in the open field test. TaVNS treatment improves these depression-like behaviors, but taVNS is not effective in α7nAChR (- / -) gene knockout rats. The expression of TNF-ɑ significantly increased, and the expression of p-Jak2 and p-STAT3 markedly decreased in the hypothalamus and amygdala induced by LPS. TaVNS could significantly reverse the abovementioned phenomena but had rare improvement effect for α7nAChR (- / -) rats. We conclude that the antidepressant effect of taVNS for LPS-induced depressive rats is related to α7nAchR/JAK2 signal pathway in the hypothalamus and amygdala.

3.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063099

RESUMEN

Wrinkles, one of the most common signs of aging, are primarily caused by the continuous contraction of muscles. Muscle contraction is induced by the binding of acetylcholine (ACh), released at the neuromuscular junction, to nicotinic acetylcholine receptor (nAChR) present on the muscle cell surface. In this study, we aimed to develop a wrinkle-improving peptide that inhibits the binding of ACh to nAChR using peptide phage display technology. Our peptide showed a remarkably high binding affinity to nAChR subunit α1, with a value below 1 µM, and was found to inhibit the action of ACh through its interaction with these receptors. Furthermore, it increased collagen synthesis in skin cells and upregulated the expression of the aquaporin-3 (AQP3) and hyaluronan synthase-2 (HAS2) genes. These results confirm that the peptide effectively inhibits muscle contraction and enhances skin elasticity and hydration, contributing to its wrinkle-reducing effects. Clinical studies on humans observed significant improvement in wrinkles after three weeks of use, with substantial reduction observed after six weeks. In conclusion, these findings demonstrate the efficacy of the peptide (named Medipep) in reducing wrinkles.


Asunto(s)
Péptidos , Receptores Nicotínicos , Envejecimiento de la Piel , Receptores Nicotínicos/metabolismo , Envejecimiento de la Piel/efectos de los fármacos , Humanos , Péptidos/farmacología , Péptidos/metabolismo , Acetilcolina/metabolismo , Acetilcolina/farmacología , Femenino , Colágeno/metabolismo , Unión Proteica , Piel/metabolismo , Piel/efectos de los fármacos , Animales , Persona de Mediana Edad , Adulto
4.
Exp Neurol ; 379: 114879, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38942266

RESUMEN

Traumatic brain injury (TBI) leads to changes in the neural circuitry of the hippocampus that result in chronic learning and memory deficits. However, effective therapeutic strategies to ameliorate these chronic learning and memory impairments after TBI are limited. Two pharmacological targets for enhancing cognition are nicotinic acetylcholine receptors (nAChRs) and GABAA receptors (GABAARs), both of which regulate hippocampal network activity to form declarative memories. A promising compound, 522-054, both allosterically enhances α7 nAChRs and inhibits α5 subunit-containing GABAARs. Administration of 522-054 enhances long-term potentiation (LTP) and cognitive functioning in non-injured animals. In this study, we assessed the effects of 522-054 on hippocampal synaptic plasticity and learning and memory deficits in the chronic post-TBI recovery period. Adult male Sprague Dawley rats received moderate parasagittal fluid-percussion brain injury or sham surgery. At 12 wk after injury, we assessed basal synaptic transmission and LTP at the Schaffer collateral-CA1 synapse of the hippocampus. Bath application of 522-054 to hippocampal slices reduced deficits in basal synaptic transmission and recovered TBI-induced impairments in LTP. Moreover, treatment of animals with 522-054 at 12 wk post-TBI improved cue and contextual fear memory and water maze acquisition and retention without a measurable effect on cortical or hippocampal atrophy. These results suggest that dual allosteric modulation of α7 nAChR and α5 GABAAR signaling may be a potential therapy for treating cognitive deficits during chronic recovery from TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Ratas Sprague-Dawley , Receptores de GABA-A , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Masculino , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Ratas , Receptores de GABA-A/metabolismo , Regulación Alostérica/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología
5.
Front Cell Infect Microbiol ; 14: 1394713, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38836054

RESUMEN

The rabies virus enters the nervous system by interacting with several molecular targets on host cells to modify behavior and trigger receptor-mediated endocytosis of the virion by poorly understood mechanisms. The rabies virus glycoprotein (RVG) interacts with the muscle acetylcholine receptor and the neuronal α4ß2 subtype of the nicotinic acetylcholine receptor (nAChR) family by the putative neurotoxin-like motif. Given that the neurotoxin-like motif is highly homologous to the α7 nAChR subtype selective snake toxin α-bungarotoxin (αBTX), other nAChR subtypes are likely involved. The purpose of this study is to determine the activity of the RVG neurotoxin-like motif on nAChR subtypes that are expressed in brain regions involved in rabid animal behavior. nAChRs were expressed in Xenopus laevis oocytes, and two-electrode voltage clamp electrophysiology was used to collect concentration-response data to measure the functional effects. The RVG peptide preferentially and completely inhibits α7 nAChR ACh-induced currents by a competitive antagonist mechanism. Tested heteromeric nAChRs are also inhibited, but to a lesser extent than the α7 subtype. Residues of the RVG peptide with high sequence homology to αBTX and other neurotoxins were substituted with alanine. Altered RVG neurotoxin-like peptides showed that residues phenylalanine 192, arginine 196, and arginine 199 are important determinants of RVG peptide apparent potency on α7 nAChRs, while serine 195 is not. The evaluation of the rabies ectodomain reaffirmed the observations made with the RVG peptide, illustrating a significant inhibitory impact on α7 nAChR with potency in the nanomolar range. In a mammalian cell culture model of neurons, we confirm that the RVG peptide binds preferentially to cells expressing the α7 nAChR. Defining the activity of the RVG peptide on nAChRs expands our understanding of basic mechanisms in host-pathogen interactions that result in neurological disorders.


Asunto(s)
Glicoproteínas , Virus de la Rabia , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa 7 , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Virus de la Rabia/fisiología , Virus de la Rabia/metabolismo , Humanos , Glicoproteínas/metabolismo , Glicoproteínas/genética , Oocitos/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Interacciones Huésped-Patógeno , Unión Proteica , Rabia/metabolismo , Rabia/virología , Acetilcolina/metabolismo , Acetilcolina/farmacología , Neurotoxinas/metabolismo , Neurotoxinas/farmacología
6.
Fitoterapia ; 177: 106102, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38945494

RESUMEN

As the main effect substances of tobacco products, the physiological effects of nicotine have attracted the attention of researchers, especially in recent years, the discussion on the benefits and harms of nicotine (or tobacco products) has become increasingly fierce. In this review, the structure, distribution and physiological effects of nicotinic acetylcholine receptor (nAchR) are summarized. The absorption, distribution, metabolism and excretion of nicotine in the body were introduced. Further, the positive effects of low-dose and short-term nicotine exposure on mitochondrial function regulation, stem cell proliferation and differentiation, nervous system protection and analgesia were elucidated. At the same time, it is also discussed that high-dose and long-term nicotine exposure can activate the oxidative stress effect, mediate abnormal epigenetic modification, and enhance the immune inflammatory response, and then produce negative effects on the body. To sum up, this review suggests that there is a "double-edged sword" effect of nicotine, which on the one hand helps people to understand the physiological effects of nicotine more comprehensively and carefully, and on the other hand provides some theoretical basis for the rational use of nicotine and the innovative development of related products.


Asunto(s)
Nicotina , Receptores Nicotínicos , Nicotina/efectos adversos , Humanos , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Animales , Estrés Oxidativo/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos
7.
J Agric Food Chem ; 72(23): 12967-12974, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38814790

RESUMEN

Structure-activity relationships of diazinoyl nicotinic insecticides (diazinoyl isomers and 5- or 6-substituted pyrazin-2-oyl analogues) are considered in terms of affinity to the insect nicotinic acetylcholine receptor (nAChR) and insecticidal activity against the imidacloprid-resistant brown planthopper. Among the test compounds, 3-(6-chloropyridin-3-ylmethyl)-2-(pyrazinoyl)iminothiazoline shows the highest potency in nAChR affinity and insecticidal activity. Aplysia californica acetylcholine binding protein (AChBP) mutants (Y55W + Q57R and Y55W + Q57T) are utilized to compare molecular recognition of nicotinic insecticides with diverse pharmacophores. N-nitro- or N-cyanoimine imidacloprid or acetamiprid, respectively, exhibits a high affinity to these AChBP mutants at a similar potency level. Intriguingly, the pyrazin-2-oyl analogue has a higher affinity to AChBP Y55W + Q57R than that to Y55W + Q57T, thereby indicating that pyrazine nitrogen atoms contact Arg57 guanidinium and Trp55 indole NH. Furthermore, nicotine prefers AChBP Y55W + Q57T over Y55W + Q57R, conceivably suggesting that the protonated nicotine is repulsed by Arg57 guanidinium, consistent with its inferior potency to insect nAChR.


Asunto(s)
Hemípteros , Proteínas de Insectos , Insecticidas , Neonicotinoides , Receptores Nicotínicos , Animales , Insecticidas/química , Insecticidas/farmacología , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Hemípteros/química , Hemípteros/genética , Hemípteros/efectos de los fármacos , Hemípteros/metabolismo , Relación Estructura-Actividad , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Neonicotinoides/química , Neonicotinoides/farmacología , Neonicotinoides/metabolismo , Nitrocompuestos/química , Nitrocompuestos/farmacología , Nitrocompuestos/metabolismo , Aplysia/química , Aplysia/metabolismo , Aplysia/genética , Nicotina/química , Nicotina/metabolismo , Nicotina/análogos & derivados , Nicotina/farmacología
8.
J Neuromuscul Dis ; 11(3): 613-623, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578899

RESUMEN

Background/Objective: Myasthenia Gravis (MG) is an autoimmune disorder characterized by pathogenic autoantibodies (AAbs) targeting nicotinic acetylcholine receptors (AChR), disrupting neuromuscular communication. RadioImmunoPrecipitation Assay (RIPA) is recommended to detect AChR AAbs, but its complexity and radioactive requirements limit widespread use. We compare non-RIPA anti-AChR immunoassays, including Cell-Based Assay (CBA) and two ELISA kits, against the gold standard RIPA. Methods/Results: 145 samples were included with medical indication for anti-AChR testing. By the RIPA method, 63 were negative (RIPA-Neg < 0.02 nmol/L), 18 were classified as Borderline (≥0.02 -1 nmol/L), and 64 were positive (RIPA-Pos > 1 nmol/L). The competitive ELISA showed poor agreement with RIPA (Kappa = 0.216). The indirect ELISA demonstrated substantial agreement with RIPA (Kappa = 0.652), with ∼76% sensitivity and ∼94% specificity for MG diagnostic. The CBA, where fixed cells expressing clustered AChR were used as substrate, exhibited almost perfect agreement with RIPA (Kappa = 0.984), yielding ∼98% sensitivity and 96% specificity for MG. In addition, a semiquantitative analysis showed a strong correlation between CBA titration, indirect ELISA, and RIPA levels (r = 0.793 and r = 0.789, respectively). Conclusions: The CBA displayed excellent analytical performance for MG diagnostic when compared to RIPA, making it a potential replacement for RIPA in clinical laboratories. Some solid-phase assays (such as the indirect ELISA applied here), as well as CBA titration, offer reliable options to estimate anti-AChR AAb levels after confirming positivity by the CBA.∥.


Asunto(s)
Autoanticuerpos , Ensayo de Inmunoadsorción Enzimática , Miastenia Gravis , Ensayo de Radioinmunoprecipitación , Humanos , Ensayo de Inmunoadsorción Enzimática/métodos , Miastenia Gravis/inmunología , Miastenia Gravis/diagnóstico , Sensibilidad y Especificidad , Receptores Colinérgicos/inmunología , Femenino , Masculino , Persona de Mediana Edad , Adulto , Anciano , Adulto Joven
9.
Mar Drugs ; 22(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38667758

RESUMEN

Nemertean worms contain toxins that are used to paralyze their prey and to deter potential predators. Hoplonemerteans often contain pyridyl alkaloids like anabaseine that act through nicotinic acetylcholine receptors and crustacean chemoreceptors. The chemical reactivity of anabaseine, the first nemertean alkaloid to be identified, has been exploited to make drug candidates selective for alpha7 subtype nAChRs. GTS-21, a drug candidate based on the anabaseine scaffold, has pro-cognitive and anti-inflammatory actions in animal models. The circumpolar chevron hoplonemertean Amphiporus angulatus contains a multitude of pyridyl compounds with neurotoxic, anti-feeding, and anti-fouling activities. Here, we report the isolation and structural identification of five new compounds, doubling the number of pyridyl alkaloids known to occur in this species. One compound is an isomer of the tobacco alkaloid anatabine, another is a unique dihydroisoquinoline, and three are analogs of the tetrapyridyl nemertelline. The structural characteristics of these ten compounds suggest several possible pathways for their biosynthesis.


Asunto(s)
Alcaloides , Isoquinolinas , Animales , Alcaloides/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Isoquinolinas/farmacología , Isoquinolinas/química , Isoquinolinas/aislamiento & purificación , Invertebrados/química , Piridinas/farmacología , Piridinas/química , Piridinas/aislamiento & purificación , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Estructura Molecular
10.
Mar Drugs ; 22(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38667764

RESUMEN

Nicotine binds to nicotinic acetylcholine receptors (nAChRs) that are overexpressed in different cancer cells, promoting tumor growth and resistance to chemotherapy. In this study, we aimed to investigate the potential of APS7-2 and APS8-2, synthetic analogs of a marine sponge toxin, to inhibit nicotine-mediated effects on A549 human lung cancer cells. Our electrophysiological measurements confirmed that APS7-2 and APS8-2 act as α7 nAChR antagonists. APS8-2 showed no cytotoxicity in A549 cells, while APS7-2 showed concentration-dependent cytotoxicity in A549 cells. The different cytotoxic responses of APS7-2 and APS8-2 emphasize the importance of the chemical structure in determining their cytotoxicity on cancer cells. Nicotine-mediated effects include increased cell viability and proliferation, elevated intracellular calcium levels, and reduced cisplatin-induced cytotoxicity and reactive oxygen species production (ROS) in A549 cells. These effects of nicotine were effectively attenuated by APS8-2, whereas APS7-2 was less effective. Our results suggest that APS8-2 is a promising new therapeutic agent in the chemotherapy of lung cancer.


Asunto(s)
Antineoplásicos , Supervivencia Celular , Neoplasias Pulmonares , Nicotina , Especies Reactivas de Oxígeno , Receptor Nicotínico de Acetilcolina alfa 7 , Humanos , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Células A549 , Nicotina/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Animales , Antagonistas Nicotínicos/farmacología , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Calcio/metabolismo , Poríferos/química
11.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 499-506, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38597441

RESUMEN

OBJECTIVE: To investigate the effects of α7 nicotinic acetylcholine receptor (nAChR) agonist on ß3-adrenoceptor agonist-induced impairment of white fat homeostasis and beige adipose formation and heat production in obese mice. METHODS: Forty obese C57BL/6J mice were randomized into high-fat feeding group, ß3-adrenoceptor agonist-treated model group, α7 nAChR agonist group, and α7 nAChR inhibitor group (n=10), with another 10 mice with normal feeding as the blank control group. White adipose tissue from the epididymis of the mice were sampled for HE staining of the adipocytes. The expression levels of TNF-α, IL-1ß, IL-10 and TGF-ß in the white adipose tissue were determined by ELISA, and the mRNA levels of iNOS, Arg1, UCP-1, PRDM-16 and PGC-1α were detected using RT-qPCR. Western blotting was performed to detect the expression levels of NF-κB P65, p-JAK2, p-STAT3 in the white adipose tissue. RESULTS: Compared with those in the blank control group, the mice with high-fat feeding showed significantly increased body weight, more fat vacuoles in the white adipose tissue, increased volume of lipid droplets in the adipocytes, upregulated iNOS mRNA expression and protein expression of TNF-α and IL-1ß, and lowered expression of Arg-1 mRNA and IL-10 and TGF-ß proteins (P < 0.01). Treatment with α7 nAChR significantly reduced mRNA levels of PRDM-16, PGC-1α and UCP-1, lowered TNF-α and IL-1ß expressions, increased IL-10 and TGF-ß expressions, and reduced M1/M2 macrophage ratio in the white adipose tissues (P < 0.05 or 0.01). CONCLUSION: Activation of α7 nAchR improves white adipose tissue homeostasis impairment induced by ß3 agonist, promotes transformation of M1 to M2 macrophages, reduces inflammatory response in white adipose tissue, and promote beige adipogenesis and thermogenesis in obese mice.


Asunto(s)
Interleucina-10 , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Masculino , Ratones , Adipogénesis , Tejido Adiposo Blanco/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Homeostasis , Ratones Endogámicos C57BL , Ratones Obesos , Receptores Adrenérgicos/metabolismo , ARN Mensajero/metabolismo , Termogénesis , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
12.
Biochem Biophys Res Commun ; 709: 149825, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38537599

RESUMEN

SARS-Cov-2, the virus causing COVID-19, penetrates host target cells via the receptor of angiotensin-converting enzyme 2 (ACE2). Disrupting the virus interaction with ACE2 affords a plausible mechanism for prevention of cell penetration and inhibiting dissemination of the virus. Our studies demonstrate that ACE2 interaction with the receptor binding domain of SARS-Cov-2 spike protein (RBD) can be impaired by modulating the α7 nicotinic acetylcholine receptor (α7 nAChR) contiguous with ACE2. U373 cells of human astrocytoma origin were shown to bind both ACE2-specific antibody and recombinant RBD in Cell-ELISA. ACE2 was found to interact with α7 nAChR in U373 cell lysates studied by Sandwich ELISA. Our studies demonstrate that inhibition of RBD binding to ACE2-expressing U373 cells were defined with α7 nAChR agonists choline and PNU282987, but not a competitive antagonist methyllicaconitine (MLA). Additionally, the type 2 positive allosteric modulator (PAM2) PNU120596 and hydroxyurea (HU) also inhibited the binding. Our studies demonstrate that activation of α7 AChRs has efficacy in inhibiting the SARS-Cov-2 interaction with the ACE2 receptor and in such a way can prevent virus target cell penetration. These studies also help to clarify the consistent efficacy and positive outcomes for utilizing HU in treating COVID-19.


Asunto(s)
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa 7 , Humanos , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19 , Unión Proteica , Receptores Nicotínicos/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química
13.
Acta Pharmacol Sin ; 45(6): 1160-1174, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38438581

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) regulate pain pathways with various outcomes depending on receptor subtypes, neuron types, and locations. But it remains unknown whether α4ß2 nAChRs abundantly expressed in the substantia nigra pars reticulata (SNr) have potential to mitigate hyperalgesia in pain states. We observed that injection of nAChR antagonists into the SNr reduced pain thresholds in naïve mice, whereas injection of nAChR agonists into the SNr relieved hyperalgesia in mice, subjected to capsaicin injection into the lower hind leg, spinal nerve injury, chronic constriction injury, or chronic nicotine exposure. The analgesic effects of nAChR agonists were mimicked by optogenetic stimulation of cholinergic inputs from the pedunculopontine nucleus (PPN) to the SNr, but attenuated upon downregulation of α4 nAChRs on SNr GABAergic neurons and injection of dihydro-ß-erythroidine into the SNr. Chronic nicotine-induced hyperalgesia depended on α4 nAChRs in SNr GABAergic neurons and was associated with the reduction of ACh release in the SNr. Either activation of α4 nAChRs in the SNr or optogenetic stimulation of the PPN-SNr cholinergic projection mitigated chronic nicotine-induced hyperalgesia. Interestingly, mechanical stimulation-induced ACh release was significantly attenuated in mice subjected to either capsaicin injection into the lower hind leg or SNI. These results suggest that α4 nAChRs on GABAergic neurons mediate a cholinergic analgesic circuit in the SNr, and these receptors may be effective therapeutic targets to relieve hyperalgesia in acute and chronic pain, and chronic nicotine exposure.


Asunto(s)
Neuronas GABAérgicas , Hiperalgesia , Ratones Endogámicos C57BL , Receptores Nicotínicos , Animales , Receptores Nicotínicos/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/fisiología , Masculino , Hiperalgesia/metabolismo , Hiperalgesia/tratamiento farmacológico , Ratones , Porción Reticular de la Sustancia Negra/metabolismo , Porción Reticular de la Sustancia Negra/efectos de los fármacos , Nicotina/farmacología , Analgésicos/farmacología , Agonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/farmacología , Capsaicina/farmacología , Acetilcolina/metabolismo , Optogenética , Umbral del Dolor/efectos de los fármacos
14.
J Physiol Sci ; 74(1): 18, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491428

RESUMEN

The olfactory bulb receives cholinergic basal forebrain inputs as does the neocortex. With a focus on nicotinic acetylcholine receptors (nAChRs), this review article provides an overview and discussion of the following findings: (1) the nAChRs-mediated regulation of regional blood flow in the neocortex and olfactory bulb, (2) the nAChR subtypes that mediate their responses, and (3) their activity in old rats. The activation of the α4ß2-like subtype of nAChRs produces vasodilation in the neocortex, and potentiates olfactory bulb vasodilation induced by olfactory stimulation. The nAChR activity producing neocortical vasodilation was similarly maintained in 2-year-old rats as in adult rats, but was clearly reduced in 3-year-old rats. In contrast, nAChR activity in the olfactory bulb was reduced already in 2-year-old rats. Thus, age-related impairment of α4ß2-like nAChR function may occur earlier in the olfactory bulb than in the neocortex. Given the findings, the vasodilation induced by α4ß2-like nAChR activation may be beneficial for neuroprotection in the neocortex and the olfactory bulb.


Asunto(s)
Neocórtex , Receptores Nicotínicos , Ratas , Animales , Nicotina/farmacología , Bulbo Olfatorio/metabolismo , Receptores Nicotínicos/metabolismo , Colinérgicos , Neocórtex/metabolismo
15.
Neurotox Res ; 42(2): 16, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376791

RESUMEN

Acetamiprid (ACE) and Imidacloprid (IMI) are widely-used neonicotinoid insecticides (NNIs) with functional activity at human acetylcholine nicotinic receptors and, therefore, with putative toxic effects. The objective of this study was the evaluation of the interactions between NNIs and α7-nAChR, as this receptor keeps intracellular Ca2+ ([Ca2+]i) to an optimum for an adequate neuronal functioning. Possible interactions between NNIs and the cryo-EM structure of the human α-7 nAChR were identified by molecular docking. Additionally, NNI effects were analyzed in neuroblastoma SH-SY5Y cells, as they naturally express α-7 nAChRs. Functional studies included proliferative/cytotoxic effects (MTT test) in undifferentiated SH-SY-5Y cells and indirect measurements of [Ca2+]i transients in retinoic acid-differentiated SH-SY-5Y cells loaded with Fluo-4 AM. Docking analysis showed that the binding of IMI and ACE occurred at the same aromatic cage that the specific α-7 nAChR agonist EVP-6124. IMI showed a better docking strength than ACE. According to the MTT assays, low doses (10-50 µM) of IMI better than ACE stimulated neuroblastoma cell proliferation. At higher doses (250-500 µM), IMI also prevailed over ACE and dose-dependently triggered more abrupt fluorescence changes due to [Ca2+]i mobilization in differentiated SH-SY5Y neurons. Indeed, only IMI blunted nicotine-evoked intracellular fluorescence stimulation (i.e., nicotine cross-desensitization). Summarizing, IMI demonstrated a superior docking strength and more robust cellular responses compared to ACE, which were likely associated with a stronger activity at α-7nAChRs. Through the interaction with α-7nAChRs, IMI would demonstrate its high neurotoxic potential for humans. More research is needed for investigating the proliferative effects of IMI in neuroblastoma cells.


Asunto(s)
Insecticidas , Neuroblastoma , Nitrocompuestos , Receptores Nicotínicos , Humanos , Calcio , Insecticidas/toxicidad , Simulación del Acoplamiento Molecular , Nicotina/farmacología , Neonicotinoides/toxicidad
16.
Exp Neurol ; 372: 114647, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38070724

RESUMEN

Traumatic brain injury (TBI) results in several pathological changes within the hippocampus that result in adverse effects on learning and memory. Therapeutic strategies to enhance learning and memory after TBI are still in the early stages of clinical development. One strategy is to target the α7 nicotinic acetylcholine receptor (nAChR), which is highly expressed in the hippocampus and contributes to the formation of long-term memory. In our previous study, we found that AVL-3288, a positive allosteric modulator of the α7 nAChR, improved cognitive recovery in rats after moderate fluid-percussion injury (FPI). However, whether AVL-3288 improved cognitive recovery specifically through the α7 nAChR was not definitively determined. In this study we utilized Chrna7 knockout mice and compared their recovery to wild-type mice treated with AVL-3288 after TBI. We hypothesized that AVL-3288 treatment would improve learning and memory in wild-type mice, but not Chrna7-/- mice after TBI. Adult male C57BL/6 wild-type and Chrna7-/- mice received sham surgery or moderate controlled cortical impact (CCI) and recovered for 3 months. Mice were then treated with vehicle or AVL-3288 at 30 min prior to contextual fear conditioning. At 3 months after CCI, expression of α7 nAChR, choline acetyltransferase (ChAT), high-affinity choline transporter (ChT), and vesicular acetylcholine transporter (VAChT) were found to be significantly decreased in the hippocampus. Treatment of wild-type mice at 3 months after CCI with AVL-3288 significantly improved cue and contextual fear conditioning, whereas no beneficial effects were observed in Chrna7-/- mice. Parietal cortex and hippocampal atrophy were not improved with AVL-3288 treatment in either wild-type or Chrna7-/- mice. Our results indicate that AVL-3288 improves cognition during the chronic recovery phase of TBI through modulation of the α7 nAChR.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Receptor Nicotínico de Acetilcolina alfa 7 , Ratas , Masculino , Ratones , Animales , Receptor Nicotínico de Acetilcolina alfa 7/genética , Ratones Endogámicos C57BL , Cognición , Hipocampo/metabolismo , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/metabolismo , Ratones Noqueados
17.
Biochimie ; 216: 108-119, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37871826

RESUMEN

Evidence to date indicates that activation of nicotinic acetylcholine receptors (nAChRs) can reduce cardiac injury from ischemia and subsequent reperfusion. The use of nAChR agonists in various animal models leads to a reduction in reperfusion injury. Earlier this effect was shown for the agonists of α7 nAChR subtype. In this work, we demonstrated the expression of mRNA encoding α4, α6 and ß2 nAChR subunits in the left ventricle of rat heart. In a rat model of myocardial ischemia, we studied the effect of α4ß2 nAChR agonists cytisine and varenicline, medicines used for the treatment of nicotine addiction, and found them to significantly reduce myocardium ischemia-reperfusion injury, varenicline manifesting a higher protection. Dihydro-ß-erythroidine, antagonist of α4ß2 nAChR, as well as methyllycaconitine, antagonist of α7 and α6ß2-containing nAChR, prevented protective effect of varenicline. This together with the presence of α4, α6 and ß2 subunit mRNA in the left ventricule of rat heart raises the possibility that the varenicline effect is mediated by α4ß2 as well as by α7 and/or α6ß2-containing receptors. Our results point to a new way for the use of cytisine and varenicline as cardioprotective agents.


Asunto(s)
Alcaloides , Isquemia Miocárdica , Receptores Nicotínicos , Daño por Reperfusión , Ratas , Animales , Vareniclina/farmacología , Antagonistas Nicotínicos/uso terapéutico , Agonistas Nicotínicos/farmacología , Agonistas Nicotínicos/uso terapéutico , Alcaloides/farmacología , Alcaloides/uso terapéutico , Receptores Nicotínicos/genética , Reperfusión , Isquemia Miocárdica/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , ARN Mensajero/genética
18.
Mol Carcinog ; 63(2): 253-265, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37921560

RESUMEN

Evidence has shown a strong relationship between smoking and epithelial mesenchymal transition (EMT). α5-nicotinic acetylcholine receptor (α5-nAChR) contributes to nicotine-induced lung cancer cell EMT. The cytoskeleton-associated protein PLEK2 is mainly involved in cytoskeletal protein recombination and cell stretch migration regulation, which is closely related to EMT. However, little is known about the link between nicotine/α5-nAChR and PLEK2 in lung adenocarcinoma (LUAD). Here, we identified a link between α5-nAChR and PLEK2 in LUAD. α5-nAChR expression was correlated with PLEK2 expression, smoking status and lower survival in vivo. α5-nAChR mediated nicotine-induced PLEK2 expression via STAT3. α5-nAChR/PLEK2 signaling is involved in LUAD cell migration, invasion and stemness. Moreover, PLEK2 was found to interact with CFL1 in nicotine-induced EMT in LUAD cells. Furthermore, the functional link among α5-nAChR, PLEK2 and CFL1 was confirmed in mouse xenograft tissues and human LUAD tissues. These findings reveal a novel α5-nAChR/PLEK2/CFL1 pathway involved in nicotine-induced LUAD progression.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Receptores Nicotínicos , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/inducido químicamente , Adenocarcinoma del Pulmón/genética , Línea Celular Tumoral , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de la Membrana/metabolismo , Nicotina/farmacología , Receptores Nicotínicos/metabolismo , Fumar
19.
Neurosci Res ; 203: 28-41, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38110001

RESUMEN

Epidemiological studies have shown that cigarette smoking increases the risk of Alzheimer disease. However, inconsistent results have been reported regarding the effects of smoking or nicotine on brain amyloid ß (Aß) deposition. In this study, we found that stimulation of the nicotinic acetylcholine receptor (nAChR) increased Aß production in mouse brains and cultured neuronal cells. nAChR activation triggered the MEK/ERK pathway, which then phosphorylated and stabilized nuclear SP1. Upregulated SP1 acted on two recognition motifs in the BACE1 gene to induce its transcription, resulting in enhanced Aß production. Mouse brain microdialysis revealed that nAChR agonists increased Aß levels in the interstitial fluid of the cerebral cortex but caused no delay of Aß clearance. In vitro assays indicated that nicotine inhibited Aß aggregation. We also found that nicotine modified the immunoreactivity of anti-Aß antibodies, possibly through competitive inhibition and Aß conformation changes. Using anti-Aß antibody that was carefully selected to avoid these effects, we found that chronic nicotine treatment in Aß precursor protein knockin mice increased the Aß content but did not visibly change the aggregated Aß deposition in the brain. Thus, nicotine influences brain Aß deposition in the opposite direction, thereby increasing Aß production and inhibiting Aß aggregation.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Péptidos beta-Amiloides , Ácido Aspártico Endopeptidasas , Nicotina , Receptores Nicotínicos , Factor de Transcripción Sp1 , Animales , Humanos , Masculino , Ratones , Péptidos beta-Amiloides/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Fosforilación/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Factor de Transcripción Sp1/metabolismo
20.
Sci Total Environ ; 912: 169301, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38103609

RESUMEN

The current view is that environmental levels of nicotine and cotinine, commonly in the ng/L range, are safe for aquatic organisms. In this study, 7 days post-fertilization zebrafish embryos have been exposed for 24 h to a range of environmental concentrations of nicotine (2.0 ng/L-2.5 µg/L) and cotinine (50 pg/L-10 µg/L), as well as to a binary mixture of these emerging pollutants. Nicotine exposure led to hyperactivity, decreased vibrational startle response and increased non-associative learning. However, the more consistent effect found for both nicotine and cotinine was a significant increase in light-off visual motor response (VMR). The effect of both pollutants on this behavior occurred through a similar mode of action, as the joint effects of the binary mixture of both chemicals were consistent with the concentration addition concept predictions. The results from docking studies suggest that the effect of nicotine and cotinine on light-off VMR could be mediated by zebrafish α7 nAChR expressed in retina. The results presented in this study emphasize the need to revisit the environmental risk assessment of chemicals including additional ecologically relevant sublethal endpoints.


Asunto(s)
Contaminantes Ambientales , Nicotina , Animales , Nicotina/toxicidad , Cotinina , Pez Cebra , Larva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA