Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 452
Filtrar
1.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38980277

RESUMEN

Many animals share a lifelong capacity to adapt their growth rates and body sizes to changing environmental food supplies. However, the cellular and molecular basis underlying this plasticity remains only poorly understood. We therefore studied how the sea anemones Nematostella vectensis and Aiptasia (Exaiptasia pallida) respond to feeding and starvation. Combining quantifications of body size and cell numbers with mathematical modelling, we observed that growth and shrinkage rates in Nematostella are exponential, stereotypic and accompanied by dramatic changes in cell numbers. Notably, shrinkage rates, but not growth rates, are independent of body size. In the facultatively symbiotic Aiptasia, we show that growth and cell proliferation rates are dependent on the symbiotic state. On a cellular level, we found that >7% of all cells in Nematostella juveniles reversibly shift between S/G2/M and G1/G0 cell cycle phases when fed or starved, respectively. Furthermore, we demonstrate that polyp growth and cell proliferation are dependent on TOR signalling during feeding. Altogether, we provide a benchmark and resource for further investigating the nutritional regulation of body plasticity on multiple scales using the genetic toolkit available for Nematostella.


Asunto(s)
Tamaño Corporal , Proliferación Celular , Anémonas de Mar , Animales , Anémonas de Mar/citología , Anémonas de Mar/fisiología , Ciclo Celular/fisiología , Conducta Alimentaria/fisiología , Transducción de Señal , Simbiosis , Serina-Treonina Quinasas TOR/metabolismo
2.
Cell Transplant ; 33: 9636897241259723, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38877676

RESUMEN

Stem cells in vivo can transit between quiescence and activation, two metabolically distinct states. It is increasingly appreciated that cell metabolism assumes profound roles in stem cell maintenance and tissue homeostasis. However, the lack of suitable models greatly hinders our understanding of the metabolic control of stem cell quiescence and activation. In the present study, we have utilized classical signaling pathways and developed a cell culture system to model reversible NSC quiescence and activation. Unlike activated ones, quiescent NSCs manifested distinct morphology characteristics, cell proliferation, and cell cycle properties but retained the same cell proliferation and differentiation potentials once reactivated. Further transcriptomic analysis revealed that extensive metabolic differences existed between quiescent and activated NSCs. Subsequent experimentations confirmed that NSC quiescence and activation transition was accompanied by a dramatic yet coordinated and dynamic shift in RNA metabolism, protein synthesis, and mitochondrial and autophagy activity. The present work not only showcases the broad utilities of this powerful in vitro NSC quiescence and activation culture system but also provides timely insights for the field and warrants further investigations.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células-Madre Neurales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Animales , Ratones , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Ciclo Celular/fisiología , Autofagia
3.
Mol Oncol ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38922758

RESUMEN

Persistence of quiescent leukemia stem cells (LSCs) after treatment most likely contributes to chemotherapy resistance and poor prognosis of leukemia patients. Identification of this quiescent cell population would facilitate eradicating LSCs. Here, using a cell-tracing PKH26 (PKH) dye that can be equally distributed to daughter cells following cell division in vivo, we identify a label-retaining slow-cycling leukemia cell population from AML1-ETO9a (AE9a) leukemic mice. We find that, compared with cells not maintaining PKH-staining, a higher proportion of PKH-retaining cells are in G0 phase, and PKH-retaining cells exhibit increased colony formation ability and leukemia initiation potential. In addition, PKH-retaining cells possess high chemo-resistance and are more likely to be localized to the endosteal bone marrow region. Based on the transcriptional signature, HLA class II histocompatibility antigen gamma chain (Cd74) is highly expressed in PKH-retaining leukemia cells. Furthermore, cell surface CD74 was identified to be highly expressed in LSCs of AE9a mice and CD34+ human leukemia cells. Compared to Lin-CD74- leukemia cells, Lin-CD74+ leukemia cells of AE9a mice exhibit higher stemness properties. Collectively, our findings reveal that the identified slow-cycling leukemia cell population represents an LSC population, and CD74+ leukemia cells possess stemness properties, suggesting that CD74 is a candidate LSC surface marker.

4.
Pigment Cell Melanoma Res ; 37(4): 480-495, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38613320

RESUMEN

Melanocyte stem cells (McSCs) of the hair follicle are a rare cell population within the skin and are notably underrepresented in whole-skin, single-cell RNA sequencing (scRNA-seq) datasets. Using a cell enrichment strategy to isolate KIT+/CD45- cells from the telogen skin of adult female C57BL/6J mice, we evaluated the transcriptional landscape of quiescent McSCs (qMcSCs) at high resolution. Through this evaluation, we confirmed existing molecular signatures for qMcCS subpopulations (e.g., Kit+, Cd34+/-, Plp1+, Cd274+/-, Thy1+, Cdh3+/-) and identified novel qMcSC subpopulations, including two that differentially regulate their immune privilege status. Within qMcSC subpopulations, we also predicted melanocyte differentiation potential, neural crest potential, and quiescence depth. Taken together, the results demonstrate that the qMcSC population is heterogeneous and future studies focused on investigating changes in qMcSCs should consider changes in subpopulation composition.


Asunto(s)
Melanocitos , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Células Madre , Animales , Melanocitos/metabolismo , Melanocitos/citología , Células Madre/metabolismo , Células Madre/citología , Femenino , Ratones , Diferenciación Celular , Folículo Piloso/citología , Folículo Piloso/metabolismo , Heterogeneidad Genética
5.
Pharmaceutics ; 16(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675189

RESUMEN

During the last years, there has been an increased effort in the discovery of selective and potent kinase inhibitors for targeted cancer therapy. Kinase inhibitors exhibit less toxicity compared to conventional chemotherapy, and several have entered the market. Mirk/Dyrk1B kinase is a promising pharmacological target in cancer since it is overexpressed in many tumors, and its overexpression is correlated with patients' poor prognosis. Mirk/Dyrk1B acts as a negative cell cycle regulator, maintaining the survival of quiescent cancer cells and conferring their resistance to chemotherapies. Many studies have demonstrated the valuable therapeutic effect of Mirk/Dyrk1B inhibitors in cancer cell lines, mouse xenografts, and patient-derived 3D-organoids, providing a perspective for entering clinical trials. Since the majority of Mirk/Dyrk1B inhibitors target the highly conserved ATP-binding site, they exhibit off-target effects with other kinases, especially with the highly similar Dyrk1A. In this review, apart from summarizing the data establishing Dyrk1B as a therapeutic target in cancer, we highlight the most potent Mirk/Dyrk1B inhibitors recently reported. We also discuss the limitations and perspectives for the structure-based design of Mirk/Dyrk1B potent and highly selective inhibitors based on the accumulated structural data of Dyrk1A and the recent crystal structure of Dyrk1B with AZ191 inhibitor.

6.
bioRxiv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38617357

RESUMEN

Ascorbate (vitamin C) limits hematopoietic stem cell (HSC) function and suppresses leukemia development by promoting the function of the Tet2 tumor suppressor. In humans, ascorbate is obtained from the diet while in mice it is synthesized in the liver. In this study, we show that deletion of the Slc23a2 ascorbate transporter severely depleted ascorbate from hematopoietic cells. Slc23a2 deficiency increased HSC reconstituting potential and self-renewal potential upon transplantation into irradiated mice. Slc23a2 deficiency also increased the reconstituting and self-renewal potential of multipotent hematopoietic progenitors (MPPs), conferring the ability to long-term reconstitute irradiated mice. Slc23a2-deficient HSCs and MPPs divided much less frequently than control HSCs and MPPs. Increased self-renewal and reconstituting potential were observed particularly in quiescent Slc23a2-deficient HSCs and MPPs. The effect of Slc23a2 deficiency on MPP self-renewal was not mediated by reduced Tet2 function. Ascorbate thus regulates quiescence and restricts self-renewal potential in HSCs and MPPs such that ascorbate depletion confers MPPs with long-term self-renewal potential.

7.
Trends Cancer ; 10(5): 393-406, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38429144

RESUMEN

The persistence of drug-sensitive tumors poses a significant challenge in cancer treatment. The concept of bacterial persisters, which are a subpopulation of bacteria that survive lethal antibiotic doses, is frequently used to compare to residual disease in cancer. Here, we explore drug tolerance of cancer cells and bacteria. We highlight the fact that bacteria, in contrast to cancer cells, have been selected for survival at the population level and may therefore possess contingency mechanisms that cancer cells lack. The precise mechanisms of drug-tolerant cancer cells and bacterial persisters are still being investigated. Undoubtedly, by understanding common features as well as differences, we, in the cancer field, can learn from microbiology to find strategies to eradicate persisting cancer cells.


Asunto(s)
Antibacterianos , Bacterias , Neoplasias , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Bacterias/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasia Residual , Neoplasias/tratamiento farmacológico , Neoplasias/patología
8.
Cancer Sci ; 115(5): 1576-1586, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38468443

RESUMEN

While loss of function (LOF) of retinoblastoma 1 (RB1) tumor suppressor is known to drive initiation of small-cell lung cancer and retinoblastoma, RB1 mutation is rarely observed in breast cancers at their initiation. In this study, we investigated the impact on untransformed mammary epithelial cells given by RB1 LOF. Depletion of RB1 in anon-tumorigenic MCF10A cells induced reversible growth arrest (quiescence) featured by downregulation of multiple cyclins and MYC, upregulation of p27KIP1, and lack of expression of markers which indicate cellular senescence or epithelial-mesenchymal transition (EMT). We observed a similar phenomenon in human mammary epithelial cells (HMEC) as well. Additionally, we found that RB1 depletion attenuated the activity of RAS and the downstream MAPK pathway in an RBL2/p130-dependent manner. The expression of farnesyltransferase ß, which is essential for RAS maturation, was found to be downregulated following RB1 depletion also in an RBL2/p130-dependent manner. These findings unveiled an unexpected mechanism whereby normal mammary epithelial cells resist to tumor initiation upon RB1 LOF.


Asunto(s)
Regulación hacia Abajo , Células Epiteliales , Proteínas de Unión a Retinoblastoma , Transducción de Señal , Proteínas ras , Humanos , Células Epiteliales/metabolismo , Femenino , Proteínas de Unión a Retinoblastoma/metabolismo , Proteínas de Unión a Retinoblastoma/genética , Proteínas ras/metabolismo , Proteínas ras/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Transición Epitelial-Mesenquimal/genética , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Glándulas Mamarias Humanas/citología , Línea Celular Tumoral , Proteína de Retinoblastoma/metabolismo , Proteína de Retinoblastoma/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética
9.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542334

RESUMEN

The BMP pathway is one of the major signaling pathways in embryonic development, ontogeny and homeostasis, identified many years ago by pioneers in developmental biology. Evidence of the deregulation of its activity has also emerged in many cancers, with complex and sometimes opposing effects. Recently, its role has been suspected in Diffuse Midline Gliomas (DMG), among which Diffuse Intrinsic Pontine Gliomas (DIPG) are one of the most complex challenges in pediatric oncology. Genomic sequencing has led to understanding part of their molecular etiology, with the identification of histone H3 mutations in a large proportion of patients. The epigenetic remodeling associated with these genetic alterations has also been precisely described, creating a permissive context for oncogenic transcriptional program activation. This review aims to describe the new findings about the involvement of BMP pathway activation in these tumors, placing their appearance in a developmental context. Targeting the oncogenic synergy resulting from this pathway activation in an H3K27M context could offer new therapeutic perspectives based on targeting treatment-resistant cell states.


Asunto(s)
Glioma Pontino Intrínseco Difuso , Glioma , Humanos , Niño , Glioma/metabolismo , Histonas/metabolismo , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/metabolismo , Glioma Pontino Intrínseco Difuso/patología , Mutación , Transducción de Señal , Proteínas Morfogenéticas Óseas/metabolismo
10.
Cells ; 13(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474411

RESUMEN

Tumors are composed of heterogeneous populations of dysregulated cells that grow in specialized niches that support their growth and maintain their properties. Tumor heterogeneity and metastasis are among the major hindrances that exist while treating cancer patients, leading to poor clinical outcomes. Although the factors that determine tumor complexity remain largely unknown, several genotypic and phenotypic changes, including DNA mutations and metabolic reprograming provide cancer cells with a survival advantage over host cells and resistance to therapeutics. Furthermore, the presence of a specific population of cells within the tumor mass, commonly known as cancer stem cells (CSCs), is thought to initiate tumor formation, maintenance, resistance, and recurrence. Therefore, these CSCs have been investigated in detail recently as potential targets to treat cancer and prevent recurrence. Understanding the molecular mechanisms involved in CSC proliferation, self-renewal, and dormancy may provide important clues for developing effective therapeutic strategies. Autophagy, a catabolic process, has long been recognized to regulate various physiological and pathological processes. In addition to regulating cancer cells, recent studies have identified a critical role for autophagy in regulating CSC functions. Autophagy is activated under various adverse conditions and promotes cellular maintenance, survival, and even cell death. Thus, it is intriguing to address whether autophagy promotes or inhibits CSC functions and whether autophagy modulation can be used to regulate CSC functions, either alone or in combination. This review describes the roles of autophagy in the regulation of metabolic functions, proliferation and quiescence of CSCs, and its role during therapeutic stress. The review further highlights the autophagy-associated pathways that could be used to regulate CSCs. Overall, the present review will help to rationalize various translational approaches that involve autophagy-mediated modulation of CSCs in controlling cancer progression, metastasis, and recurrence.


Asunto(s)
Neoplasias , Humanos , Neoplasias/metabolismo , Autofagia , Muerte Celular , Células Madre Neoplásicas/patología
11.
Cancer Sci ; 115(5): 1370-1377, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38413370

RESUMEN

Cancer stem cells (CSCs) are a long-lived and self-renewing cancer cell population that drives tumor propagation and maintains cancer heterogeneity. They are also implicated in the therapeutic resistance of various types of cancer. Recent studies of CSCs in colorectal cancer (CRC) have uncovered fundamental paradigms that have increased understanding of CSC systems in solid tumors. Colorectal CSCs share multiple biological properties with normal intestinal stem cells (ISCs), including expression of the stem cell marker Lgr5. New evidence suggests that colorectal CSCs manifest substantial heterogeneity, as exemplified by the existence of both actively cycling Lgr5+ CSCs as well as quiescent Lgr5+ CSCs that are resistant to conventional anticancer therapies. The classical view of a rigid cell hierarchy and irreversible cell differentiation trajectory in normal and neoplastic tissues is now challenged by the finding that differentiated cells have the capacity to revert to stem cells through dynamic physiological reprogramming events. Such plasticity of CSC systems likely underlies both carcinogenesis and therapeutic resistance in CRC. Further characterization of the mechanisms underpinning the heterogeneity and plasticity of CSCs should inform future development of eradicative therapeutic strategies for CRC.


Asunto(s)
Ciclo Celular , Plasticidad de la Célula , Neoplasias Colorrectales , Células Madre Neoplásicas , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Animales , Resistencia a Antineoplásicos , Diferenciación Celular , Receptores Acoplados a Proteínas G/metabolismo
12.
PNAS Nexus ; 3(1): pgae013, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38292544

RESUMEN

Quiescence, a temporary withdrawal from the cell cycle, plays a key role in tissue homeostasis and regeneration. Quiescence is increasingly viewed as a continuum between shallow and deep quiescence, reflecting different potentials to proliferate. The depth of quiescence is altered in a range of diseases and during aging. Here, we leveraged genome-scale metabolic modeling (GEM) to define the metabolic and epigenetic changes that take place with quiescence deepening. We discovered contrasting changes in lipid catabolism and anabolism and diverging trends in histone methylation and acetylation. We then built a multi-cell type machine learning model that accurately predicts quiescence depth in diverse biological contexts. Using both machine learning and genome-scale flux simulations, we performed high-throughput screening of chemical and genetic modulators of quiescence and identified novel small molecule and genetic modulators with relevance to cancer and aging.

13.
Mol Cell Biochem ; 479(2): 313-323, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37067732

RESUMEN

Indole-3-carboxaldehyde (I3A), one of tryptophan metabolites derived from gut microbiota, extends the lifespan of mice after high-dose ionizing radiation exposure. Persistent myelosuppression is the most common and fatal complication for victims of nuclear accidents and patients undergoing radiotherapy, with few therapeutic options available. However, whether and how I3A protects ionizing radiation-induced hematopoietic toxicity remain unknown. In this study, we demonstrated that I3A treatment effectively ameliorated radiation-induced hematopoietic injury through accelerating peripheral blood cells recovery, promoting bone marrow cellularity restoration and enhancing functional HSPC regeneration. Additionally, I3A also suppressed intracellular reactive oxygen species production and inhibited apoptosis in irradiated HSPCs. Mechanistically, I3A treatment significantly increased HSPC quiescence, thus conferring HSPCs with resistance against radiation injury. Finally, I3A treatment could improve survival of lethally irradiated mice. Taken together, our data suggest that I3A acts as a gut microbiota-derived paracrine factor that regulates HSPC regeneration and may serve as a promising therapeutic agent for ionizing radiation-induced myelosuppression.


Asunto(s)
Indoles , Células Madre , Humanos , Animales , Ratones , Indoles/farmacología , Células de la Médula Ósea , Radiación Ionizante
14.
Stem Cells ; 42(2): 158-171, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37962865

RESUMEN

Hematopoietic stem cells (HSC) from cord blood can be applied as an alternative to bone marrow in transplantation to treat hematological diseases. Umbilical cord blood (UCB) consists of cycling and non-cycling CD34+/CD45low cells needed for long-term and short-term engraftment. After sorting and subsequent in vitro culture, quiescent HSCs enter the cell cycle. This enables the analysis of HSCs in 2 different cell cycle stages and the comparison of their responses to different genotoxic noxae. To analyze different mechanisms of DNA damage induction in cells, 2 different genotoxins were compared: etoposide, a topoisomerase II inhibitor that targets mitosis in the S/G2-phase of the cell cycle and the alkylating nitrosamine N-Nitroso-N-methylurea (MNU), which leads to the formation of methyl DNA adducts resulting in DNA double breaks during DNA replication and persistent mutations. Cycling cells recovered after treatment even with higher concentrations of etoposide (1.5µM/ 5µM/10µM), while sorted cells treated with MNU (0.1mM/0.3mM/0.5mM/1mM/3Mm/ 5mM) recovered after treatment with the lower MNU concentrations whereas high MNU concentrations resulted in apoptosis activation. Quiescent cells were not affected by etoposide treatment showing no damage upon entry into the cell cycle. Treatment with MNU, similarly to the cycling cells, resulted in a dose-dependent cell death. In conclusion, we found that depending on the genotoxic trigger and the cycling status, CD34+cells have distinct responses to DNA damage. Cycling cells employ both DDR and apoptosis mechanisms to prevent damage accumulation. Quiescent cells predominantly undergo apoptosis upon damage, but their cell cycle status protects them from certain genotoxic insults.


Asunto(s)
Sangre Fetal , Células Madre Hematopoyéticas , Sangre Fetal/metabolismo , Etopósido/farmacología , Etopósido/metabolismo , Células Madre Hematopoyéticas/metabolismo , Daño del ADN , Reparación del ADN , Noxas/metabolismo
15.
Adv Sci (Weinh) ; 11(10): e2303388, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145956

RESUMEN

Regular quiescence and activation are important for the function of bone marrow mesenchymal stem cells (BMMSC), multipotent stem cells that are widely used in the clinic due to their capabilities in tissue repair and inflammatory disease treatment. TNF-α is previously reported to regulate BMMSC functions, including multilineage differentiation and immunoregulation. The present study demonstrates that TNF-α impedes quiescence and promotes the activation of BMMSC in vitro and in vivo. Mechanistically, the TNF-α-induced expression of KAT2A promotes the succinylation of VCP at K658, which inhibits the interaction between VCP and MFN1 and thus inhibits mitophagy. Furthermore, activated BMMSC exhibits stronger fracture repair and immunoregulation functions in vivo. This study contributes to a better understanding of the mechanisms of BMMSC quiescence and activation and to improving the effectiveness of BMMSC in clinical applications.


Asunto(s)
Células Madre Mesenquimatosas , Factor de Necrosis Tumoral alfa , Factor de Necrosis Tumoral alfa/metabolismo , Mitofagia , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular
16.
Stem Cells Dev ; 33(3-4): 79-88, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38115601

RESUMEN

The quiescence and activation of adult stem cells are regulated by many kinds of molecular mechanisms, and RNA alternative splicing participates in regulating many cellular processes. However, the relationship between stem cell quiescence and activation regulation and gene alternative splicing has yet to be studied. In this study, we aimed to elucidate the regulation of stem cell quiescence and activation by RNA alternative splicing. The upregulated genes in activated mouse neural stem cells (NSCs), muscle stem cells, and hematopoietic stem cells were collected for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. The genes from three tissue stem cells underwent Venn analysis. The mouse NSCs were used for quiescence and reactivation induction. The immunostaining of cell-specific markers was performed to identify cell properties. The reverse transcription-polymerase chain reaction and western blotting were used to detect the gene expression and protein expression, respectively. We found that the upregulated genes in activated stem cells from three tissues were all enriched in RNA splicing-related biological processes; the upregulated RNA splicing-related genes in activated stem cells displayed tissue differences; mouse NSCs were successfully induced into quiescence and reactivation in vitro without losing differentiation potential; serine and arginine-rich splicing factor 3 (Srsf3) was highly expressed in the activated mouse NSCs, and the overexpression of SRSF3 protein promoted the activation of quiescent mouse NSCs and increased the neural cell production. Our data indicate that the alternative splicing change may underline the transition of quiescence and activation of stem cells. The manipulation of the splicing factor may benefit tissue repair by promoting the activation of quiescent stem cells.


Asunto(s)
Arginina , Células-Madre Neurales , Animales , Ratones , Células-Madre Neurales/metabolismo , ARN/metabolismo , Factores de Empalme de ARN/metabolismo , Serina
17.
Biochem Soc Trans ; 51(5): 1847-1856, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37800560

RESUMEN

Diapause is a protective mechanism that many organisms deploy to overcome environmental adversities. Diapause extends lifespan and fertility to enhance the reproductive success and survival of the species. Although diapause states have been known and employed for commercial purposes, for example in the silk industry, detailed molecular and cell biological studies are an exciting frontier. Understanding diapause-like protective mechanisms will shed light on pathways that steer organisms through adverse conditions. One hope is that an understanding of the mechanisms that support diapause might be leveraged to extend the lifespan and/or health span of humans as well as species threatened by climate change. In addition, recent findings suggest that cancer cells that persist after treatment mimic diapause-like states, implying that these programs may facilitate cancer cell survival from chemotherapy and cause relapse. Here, we review the molecular mechanisms underlying diapause programs in a variety of organisms, and we discuss pathways supporting diapause-like states in tumor persister cells.


Asunto(s)
Diapausa , Animales , Humanos , Reproducción , Longevidad
18.
Cell Stem Cell ; 30(11): 1403-1420, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37865087

RESUMEN

Hematopoietic stem cells (HSCs), which govern the production of all blood lineages, transition through a series of functional states characterized by expansion during fetal development, functional quiescence in adulthood, and decline upon aging. We describe central features of HSC regulation during ontogeny to contextualize how adaptive responses over the life of the organism ultimately form the basis for HSC functional degradation with age. We particularly focus on the role of cell cycle regulation, inflammatory response pathways, epigenetic changes, and metabolic regulation. We then explore how the knowledge of age-related changes in HSC regulation can inform strategies for the rejuvenation of old HSCs.


Asunto(s)
Epigénesis Genética , Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo
19.
Artículo en Chino | MEDLINE | ID: mdl-37828888

RESUMEN

Objective:To compare the clinical effect of surgical treatment of congenital preauricular fistulas in children during the local infection period and static inflammatory period. Methods:Forty children with congenital preauricular fistula infection treated in our hospital from January 2020 to December 2022 were selected as the experimental group, and 39 children with congenital preauricular fistula inflammation at static period were selected as the control group. The fistula of the two groups of children aged between 1-14 years old was located in front of the foot of the ear wheel or the foot of the ear wheel, and all were unilateral fistulas. The postoperative follow-up was 6 months to 2 years, and the efficacy of the two groups was compared. Results:There was no significant difference in the healing rate of stage Ⅰ and stage Ⅱ between the two groups(P>0.05). There was no significant difference in fistula recurrence rate and satisfaction with the preauricular scar between the two groups after treatment(P>0.05). There was no significant difference in postoperative hospital stay between the experimental group and the control group(P>0.05). Conclusion:The effect of surgical treatment of congenital preauricular fistula in the infected period is similar to that of surgical treatment in the static period of inflammation, and it can reduce the pain of dressing change under local anesthesia in children, avoid the second operation in children, and reduce the economic cost. This treatment method is worthy of clinical promotion. Appropriate incision and resection method were designed according to the fistula and infection sites.


Asunto(s)
Anomalías Craneofaciales , Fístula , Humanos , Niño , Lactante , Preescolar , Adolescente , Fístula/cirugía , Inflamación , Anomalías Craneofaciales/cirugía , Cicatriz , Resultado del Tratamiento
20.
Enzymes ; 53: 113-196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37748835

RESUMEN

The desired outcome of cancer therapies is the eradication of disease. This can be achieved when therapy exposure leads to therapy-induced cancer cell death as the dominant outcome. Theoretically, a permanent therapy-induced growth arrest could also contribute to a complete response, which has the potential to lead to remission. However, preclinical models have shown that therapy-induced growth arrest is not always durable, as recovering cancer cell populations can contribute to the recurrence of cancer. Significant research efforts have been expended to develop strategies focusing on the prevention of recurrence. Recovery of cells from therapy exposure can occur as a result of several cell stress adaptations. These include cytoprotective autophagy, cellular quiescence, a reversable form of senescence, and the suppression of apoptosis and necroptosis. It is well documented that microRNAs regulate the response of cancer cells to anti-cancer therapies, making targeting microRNAs therapeutically a viable strategy to sensitization and the prevention of recovery. We propose that the use of microRNA-targeting therapies in prolonged sequence, that is, a significant period after initial therapy exposure, could reduce toxicity from the standard combination strategy, and could exploit new epigenetic states essential for cancer cells to recover from therapy exposure. In a step toward supporting this strategy, we survey the available scientific literature to identify microRNAs which could be targeted in sequence to eliminate residual cancer cell populations that were arrested as a result of therapy exposure. It is our hope that by successfully identifying microRNAs which could be targeted in sequence we can prevent disease recurrence.


Asunto(s)
MicroARNs , Neoplasias , MicroARNs/genética , Neoplasias/genética , Neoplasias/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA