Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.247
Filtrar
1.
Physiol Rep ; 12(13): e16103, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38946587

RESUMEN

Cancer cachexia is a multifactorial syndrome associated with advanced cancer that contributes to mortality. Cachexia is characterized by loss of body weight and muscle atrophy. Increased skeletal muscle mitochondrial reactive oxygen species (ROS) is a contributing factor to loss of muscle mass in cachectic patients. Mice inoculated with Lewis lung carcinoma (LLC) cells lose weight, muscle mass, and have lower muscle sirtuin-1 (sirt1) expression. Nicotinic acid (NA) is a precursor to nicotinamide dinucleotide (NAD+) which is exhausted in cachectic muscle and is a direct activator of sirt1. Mice lost body and muscle weight and exhibited reduced skeletal muscle sirt1 expression after inoculation with LLC cells. C2C12 myotubes treated with LLC-conditioned media (LCM) had lower myotube diameter. We treated C2C12 myotubes with LCM for 24 h with or without NA for 24 h. C2C12 myotubes treated with NA maintained myotube diameter, sirt1 expression, and had lower mitochondrial superoxide. We then used a sirt1-specific small molecule activator SRT1720 to increase sirt1 activity. C2C12 myotubes treated with SRT1720 maintained myotube diameter, prevented loss of sirt1 expression, and attenuated mitochondrial superoxide production. Our data provides evidence that NA may be beneficial in combating cancer cachexia by maintaining sirt1 expression and decreasing mitochondrial superoxide production.


Asunto(s)
Caquexia , Fibras Musculares Esqueléticas , Estrés Oxidativo , Sirtuina 1 , Animales , Caquexia/etiología , Caquexia/metabolismo , Caquexia/patología , Caquexia/prevención & control , Sirtuina 1/metabolismo , Sirtuina 1/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Ratones , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Carcinoma Pulmonar de Lewis/complicaciones , Masculino , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/patología , Línea Celular , Niacina/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
2.
Immun Inflamm Dis ; 12(7): e1301, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967361

RESUMEN

OBJECTIVE: Acute pancreatitis (AP) stands as a frequent cause for clinical emergency hospital admissions. The X-box binding protein 1 (XBP1) was found to be implicated in pancreatic acinar cell apoptosis. The objective is to unveil the potential mechanisms governed by XBP1 and SIRT6 in the context of AP. METHODS: Caerulein-treated human pancreatic duct epithelial (HPDE) cells to establish an in vitro research model. The levels and regulatory role of SIRT6 in the treated cells were evaluated, including its effects on inflammatory responses, oxidative stress, apoptosis, and endoplasmic reticulum stress. The relationship between XBP1 and SIRT6 was explored by luciferase and ChIP experiments. Furthermore, the effect of XBP1 overexpression on the regulatory function of SIRT6 on cells was evaluated. RESULTS: Caerulein promoted the decrease of SIRT6 and the increase of XBP1 in HPDE cells. Overexpression of SIRT6 slowed down the secretion of inflammatory factors, oxidative stress, apoptosis level, and endoplasmic reticulum stress in HPDE cells. However, XBP1 negatively regulated SIRT6, and XBP1 overexpression partially reversed the regulation of SIRT6 on the above aspects. CONCLUSION: Our study illuminates the role of XBP1 in downregulating SIRT6 in HPDE cells, thereby promoting cellular injury. Inhibiting XBP1 or augmenting SIRT6 levels holds promise in preserving cell function and represents a potential therapeutic avenue in the management of AP.


Asunto(s)
Apoptosis , Regulación hacia Abajo , Células Epiteliales , Conductos Pancreáticos , Pancreatitis , Sirtuinas , Proteína 1 de Unión a la X-Box , Humanos , Sirtuinas/metabolismo , Sirtuinas/genética , Células Epiteliales/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética , Pancreatitis/metabolismo , Pancreatitis/patología , Conductos Pancreáticos/metabolismo , Conductos Pancreáticos/patología , Estrés del Retículo Endoplásmico , Estrés Oxidativo , Línea Celular , Ceruletida/toxicidad
3.
Biochem Biophys Rep ; 39: 101746, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38910870

RESUMEN

Dermal fibroblasts play a crucial role in skin structure and function by producing hyaluronic acid. Piceatannol (PIC), a polyphenol abundant in passion fruit seeds, has been reported to activate sirtuin 1 (SIRT1). Clinical trials have demonstrated that PIC intake improves skin moisture and maintains skin elasticity, yet the underlying mechanism remains unclear. This study aimed to investigate the effects of PIC on hyaluronic acid biosynthesis and the involvement of SIRT1 in this process. Human dermal fibroblast Hs68 cells were stimulated with PIC, and the expression levels of HAS2 and HYAL2, key enzymes in hyaluronic acid biosynthesis, as well as SIRT1 expression, were assessed using quantitative real-time PCR. Additionally, the role of SIRT1 in the hyaluronic acid biosynthesis pathway during PIC stimulation was examined using a SIRT1 inhibitor. The results demonstrated that PIC increased HAS2 expression while decreasing HYAL2 expression in human dermal fibroblasts. Furthermore, PIC enhanced SIRT1 expression, and pre-treatment with a SIRT1 inhibitor mitigated PIC-induced upregulation of HAS2, suggesting that PIC promotes hyaluronic acid synthesis by inducing SIRT1. These findings suggest that PIC could serve as a beneficial food ingredient, enhancing skin structure and function by promoting hyaluronic acid biosynthesis via SIRT1 induction.

4.
Redox Biol ; 73: 103203, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823208

RESUMEN

Vascular smooth muscle cells (VSMCs), known for their remarkable lifelong phenotypic plasticity, play a pivotal role in vascular pathologies through their ability to transition between different phenotypes. Our group discovered that the deficiency of the mitochondrial protein Poldip2 induces VSMC differentiation both in vivo and in vitro. Further comprehensive biochemical investigations revealed Poldip2's specific interaction with the mitochondrial ATPase caseinolytic protease chaperone subunit X (CLPX), which is the regulatory subunit for the caseinolytic protease proteolytic subunit (ClpP) that forms part of the ClpXP complex - a proteasome-like protease evolutionarily conserved from bacteria to humans. This interaction limits the protease's activity, and reduced Poldip2 levels lead to ClpXP complex activation. This finding prompted the hypothesis that ClpXP complex activity within the mitochondria may regulate the VSMC phenotype. Employing gain-of-function and loss-of-function strategies, we demonstrated that ClpXP activity significantly influences the VSMC phenotype. Notably, both genetic and pharmacological activation of ClpXP inhibits VSMC plasticity and fosters a quiescent, differentiated, and anti-inflammatory VSMC phenotype. The pharmacological activation of ClpP using TIC10, currently in phase III clinical trials for cancer, successfully replicates this phenotype both in vitro and in vivo and markedly reduces aneurysm development in a mouse model of elastase-induced aortic aneurysms. Our mechanistic exploration indicates that ClpP activation regulates the VSMC phenotype by modifying the cellular NAD+/NADH ratio and activating Sirtuin 1. Our findings reveal the crucial role of mitochondrial proteostasis in the regulation of the VSMC phenotype and propose the ClpP protease as a novel, actionable target for manipulating the VSMC phenotype.


Asunto(s)
Endopeptidasa Clp , Mitocondrias , Músculo Liso Vascular , Miocitos del Músculo Liso , Fenotipo , Sirtuina 1 , Animales , Humanos , Ratones , Diferenciación Celular , Endopeptidasa Clp/metabolismo , Endopeptidasa Clp/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Sirtuina 1/metabolismo , Sirtuina 1/genética
5.
Biomed Pharmacother ; 177: 116917, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908209

RESUMEN

Sarcopenia is an aging-related skeletal disease characterized by decreased muscle mass, strength, and physical function, severely affecting the quality of life (QoL) of the elderly population. Sirtuin 1 (SIRT1), as a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, has been reported to participate in various aging-related signaling pathways and exert protective effect on many human diseases. SIRT1 functioned as an important role in the occurrence and progression of sarcopenia through regulating key pathways related to protein homeostasis, apoptosis, mitochondrial dysfunction, insulin resistance and autophagy in skeletal muscle, including SIRT1/Forkhead Box O (FoxO), AMP-activated protein kinase (AMPK)/SIRT1/nuclear factor κB (NF-κB), SIRT1/p53, AMPK/SIRT1/peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and SIRT1/live kinase B1 (LKB1)/AMPK pathways. However, the specific mechanisms of these processes have not been fully illuminated. Currently, several SIRT1-mediated interventions on sarcopenia have been preliminarily developed, such as SIRT1 activator polyphenolic compounds, exercising and calorie restriction. In this review, we summarized the predominant mechanisms of SIRT1 involved in sarcopenia and therapeutic modalities targeting the SIRT1 signaling pathways for the prevention and prognosis of sarcopenia.

6.
Drug Dev Res ; 85(4): e22224, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867474

RESUMEN

The mammalian cytoplasmic protein SIRT2, a class III histone deacetylase family member, possesses NAD+-dependent lysine deacetylase/deacylase activity. Dysregulation of SIRT2 has been implicated in the pathogenesis of several diseases, including neurological and metabolic disorders and cancer; thus, SIRT2 emerges as a potential therapeutic target. Herein, we identified a series of diaryl acetamides (ST61-ST90) by the structural optimization of our hit STH2, followed by enhanced SIRT2 inhibitory potency and selectivity. Among them, ST72, ST85, and ST88 selectively inhibited SIRT2 with IC50 values of 9.97, 5.74, and 8.92 µM, respectively. Finally, the entire study was accompanied by in silico prediction of binding modes of docked compounds and the stability of SIRT2-ligand complexes. We hope our findings will provide substantial information for designing selective inhibitors of SIRT2.


Asunto(s)
Acetamidas , Sirtuina 2 , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/química , Sirtuina 2/metabolismo , Humanos , Acetamidas/química , Acetamidas/farmacología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química
7.
J Thorac Dis ; 16(4): 2326-2340, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38738261

RESUMEN

Background: Chronic obstructive pulmonary disease (COPD) is a heterogeneous group of pathophysiological bases of airway inflammation and its anti-inflammatory response. Aberrant mitochondrial signaling and mitochondrial dysfunction underlie the pathomechanisms leading to COPD. This study aims to investigate the effects of the Yiqigubiao (YQGB) pill, a traditional Chinese medicine (TCM), on Sirtuin 5 (SIRT5) and mitochondrial function in patients with COPD. Methods: Thirty-four patients with COPD were randomized into oral YQGB or placebo groups concurrent with a 24-week routine treatment. The pulmonary function was assessed by examining the levels of forced expiratory volume in one second (FEV1)/forced vital capacity (FVC), FEV1, and FVC. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to detect SIRT5 expression in mitochondria isolated from peripheral blood. Flow cytometry was used to detect changes in mitochondrial membrane potential and reactive oxygen species (ROS) in peripheral blood lymphocytes. Human bronchial epithelial (HBE) cells stimulated by cigarette smoke extract (CSE) were treated with YQGB. After SIRT5 was knocked down in cells, the changes in mitochondrial membrane potential, levels of adenosine triphosphate (ATP), and ROS were detected. Results: YQGB treatment significantly improved lung function in patients with COPD. The expression of SIRT5 and the mitochondrial membrane potential significantly increased and ROS decreased in patients with COPD after YQGB treatment. The CSE decreased cell proliferation and SIRT5 expression, which was alleviated after YQGB treatment. Furthermore, SIRT5 was knocked down in CSE-stimulated HBE cells, and its expression was elevated upon YQGB treatment. The knockdown of SIRT5 significantly altered the CSE-stimulation-induced dysregulation of mitochondrial membrane potential, ATP levels, and ROS. This was also restored after YQGB treatment. Conclusions: YQGB treatment can elevate SIRT5 expression, restore mitochondrial function in COPD, and exert protective effects.

8.
Cardiovasc Res ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739545

RESUMEN

BACKGROUND: Obesity and type 2 diabetes (T2D) are major risk factors for cardiovascular diseases (CVD). Dysregulated pro-apoptotic ceramide synthesis reduces ß-cell insulin secretion, thereby promoting hyperglycemic states which may manifest as T2D. Pro-apoptotic ceramides modulate insulin sensitivity and glucose tolerance while being linked to poor cardiovascular outcomes. Sirtuin-1 (SIRT1) is a NAD + - dependent deacetylase that protects against pancreatic ß-cell dysfunction; however, systemic levels are decreased in obese T2D mice and may promote pro-apoptotic ceramide synthesis and hyperglycemia. Herein, we aimed to assess the effects of restoring circulating SIRT1 levels to prevent metabolic imbalance in obese and diabetic mice. METHODS AND RESULTS: Circulating SIRT1 levels were reduced in obese diabetic mice (db/db) as compared to age-matched non-diabetic db/+ controls. Restoration of SIRT1 plasma levels with recombinant murine SIRT1 for 4-weeks prevented body weight gain, improved glucose tolerance, insulin sensitivity and vascular function in mice models of obesity and T2D. Untargeted lipidomics revealed that SIRT1 restored insulin-secretory function of ß-cells by reducing synthesis and accumulation of pro-apoptotic ceramides. Molecular mechanisms involved direct binding to and deacetylation of Toll-like receptor 4 (TLR4) by SIRT1 in ß-cells thereby decreasing the rate limiting enzymes of sphingolipid synthesis SPTLC1/2 via AKT/NF-κB. Among T2D patients, those with high baseline plasma levels of SIRT1 prior to metabolic surgery displayed restored ß-cell function (HOMA2- ß) and were more likely to have T2D remission during follow-up. CONCLUSION: Acetylation of TLR4 promotes ß-cell dysfunction via ceramide synthesis in T2D, which is blunted by systemic SIRT1 replenishment. Hence, restoration of systemic SIRT1 may provide a novel therapeutic strategy to counteract toxic ceramide synthesis and mitigate cardiovascular complications of T2D.

9.
Pharmaceuticals (Basel) ; 17(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38794171

RESUMEN

Sirtuins (SIRTs) are classified as class III histone deacetylases (HDACs), a family of enzymes that catalyze the removal of acetyl groups from the ε-N-acetyl lysine residues of histone proteins, thus counteracting the activity performed by histone acetyltransferares (HATs). Based on their involvement in different biological pathways, ranging from transcription to metabolism and genome stability, SIRT dysregulation was investigated in many diseases, such as cancer, neurodegenerative disorders, diabetes, and cardiovascular and autoimmune diseases. The elucidation of a consistent number of SIRT-ligand complexes helped to steer the identification of novel and more selective modulators. Due to the high diversity and quantity of the structural data thus far available, we reviewed some of the different ligands and structure-based methods that have recently been used to identify new promising SIRT1/2 modulators. The present review is structured into two sections: the first includes a comprehensive perspective of the successful computational approaches related to the discovery of SIRT1/2 inhibitors (SIRTIs); the second section deals with the most interesting SIRTIs that have recently appeared in the literature (from 2017). The data reported here are collected from different databases (SciFinder, Web of Science, Scopus, Google Scholar, and PubMed) using "SIRT", "sirtuin", and "sirtuin inhibitors" as keywords.

10.
Autophagy ; : 1-20, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38726830

RESUMEN

The Atg8-family proteins (MAP1LC3/LC3A, LC3B, LC3C, GABARAP, GABARAPL1 and GABARAPL2) play a pivotal role in macroautophagy/autophagy through their ability to help form autophagosomes. Although autophagosomes form in the cytoplasm, nuclear levels of the Atg8-family proteins are significant. Recently, the nuclear/cytoplasmic shuttling of LC3B was shown to require deacetylation of two Lys residues (K49 and K51 in LC3B), which are conserved in Atg8-family proteins. To exit the nucleus, deacetylated LC3B must bind TP53INP2/DOR (tumor protein p53 inducible nuclear protein 2) through interaction with the LC3-interacting region (LIR) of TP53INP2 (TP53INP2LIR). To examine their selectivity for TP53INP2 and the role of the conserved Lys residues in Atg8-family proteins, we prepared the six human Atg8-family proteins and acetylated variants of LC3A and GABARAP for biophysical and structural characterization of their interactions with the TP53INP2LIR. Isothermal titration calorimetry (ITC) experiments demonstrate that this LIR binds preferentially to GABARAP subfamily proteins, and that only acetylation of the second Lys residue reduces binding to GABARAP and LC3A. Crystal structures of complexes with GABARAP and LC3A (acetylated and deacetylated) define a ß-sheet in the TP53INP2LIR that determines the GABARAP selectivity and establishes the importance of acetylation at the second Lys. The in vitro results were confirmed in cells using acetyl-mimetic variants of GABARAP and LC3A to examine nuclear/cytoplasmic shuttling and colocalization with TP53INP2. Together, the results demonstrate that TP53INP2 shows selectivity to the GABARAP subfamily and acetylation at the second Lys of GABARAP and LC3A disrupts key interactions with TP53INP2 required for their nuclear/cytoplasmic shuttling.

11.
Proc Natl Acad Sci U S A ; 121(20): e2318119121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709930

RESUMEN

Brain metastasis of advanced breast cancer often results in deleterious consequences. Metastases to the brain lead to significant challenges in treatment options, as the blood-brain barrier (BBB) prevents conventional therapy. Thus, we hypothesized that creation of a nanoparticle (NP) that distributes to both primary tumor site and across the BBB for secondary brain tumor can be extremely beneficial. Here, we report a simple targeting strategy to attack both the primary breast and secondary brain tumors utilizing a single NP platform. The nature of these mitochondrion-targeted, BBB-penetrating NPs allow for simultaneous targeting and drug delivery to the hyperpolarized mitochondrial membrane of the extracranial primary tumor site in addition to tumors at the brain. By utilizing a combination of such dual anatomical distributing NPs loaded with therapeutics, we demonstrate a proof-of-concept idea to combat the increased metabolic plasticity of brain metastases by lowering two major energy sources, oxidative phosphorylation (OXPHOS) and glycolysis. By utilizing complementary studies and genomic analyses, we demonstrate the utility of a chemotherapeutic prodrug to decrease OXPHOS and glycolysis by pairing with a NP loaded with pyruvate dehydrogenase kinase 1 inhibitor. Decreasing glycolysis aims to combat the metabolic flexibility of both primary and secondary tumors for therapeutic outcome. We also address the in vivo safety parameters by addressing peripheral neuropathy and neurobehavior outcomes. Our results also demonstrate that this combination therapeutic approach utilizes mitochondrial genome targeting strategy to overcome DNA repair-based chemoresistance mechanisms.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Neoplasias de la Mama , Nanopartículas , Fosforilación Oxidativa , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/patología , Animales , Humanos , Femenino , Nanopartículas/química , Ratones , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Fosforilación Oxidativa/efectos de los fármacos , Línea Celular Tumoral , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Glucólisis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Profármacos/farmacología , Profármacos/uso terapéutico
12.
J Biomed Sci ; 31(1): 49, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735943

RESUMEN

BACKGROUND: The impact of global overconsumption of simple sugars on bone health, which peaks in adolescence/early adulthood and correlates with osteoporosis (OP) and fracture risk decades, is unclear. Mesenchymal stromal/stem cells (MSCs) are the progenitors of osteoblasts/bone-forming cells, and known to decrease their osteogenic differentiation capacity with age. Alarmingly, while there is correlative evidence that adolescents consuming greatest amounts of simple sugars have the lowest bone mass, there is no mechanistic understanding on the causality of this correlation. METHODS: Bioinformatics analyses for energetics pathways involved during MSC differentiation using human cell information was performed. In vitro dissection of normal versus high glucose (HG) conditions on osteo-/adipo-lineage commitment and mitochondrial function was assessed using multi-sources of non-senescent human and murine MSCs; for in vivo validation, young mice was fed normal or HG-added water with subsequent analyses of bone marrow CD45- MSCs. RESULTS: Bioinformatics analyses revealed mitochondrial and glucose-related metabolic pathways as integral to MSC osteo-/adipo-lineage commitment. Functionally, in vitro HG alone without differentiation induction decreased both MSC mitochondrial activity and osteogenesis while enhancing adipogenesis by 8 h' time due to depletion of nicotinamide adenine dinucleotide (NAD+), a vital mitochondrial co-enzyme and co-factor to Sirtuin (SIRT) 1, a longevity gene also involved in osteogenesis. In vivo, HG intake in young mice depleted MSC NAD+, with oral NAD+ precursor supplementation rapidly reversing both mitochondrial decline and osteo-/adipo-commitment in a SIRT1-dependent fashion within 1 ~ 5 days. CONCLUSIONS: We found a surprisingly rapid impact of excessive glucose, a single dietary factor, on MSC SIRT1 function and osteogenesis in youthful settings, and the crucial role of NAD+-a single molecule-on both MSC mitochondrial function and lineage commitment. These findings have strong implications on future global OP and disability risks in light of current worldwide overconsumption of simple sugars.


Asunto(s)
Glucosa , Células Madre Mesenquimatosas , Mitocondrias , NAD , Osteogénesis , Sirtuina 1 , Células Madre Mesenquimatosas/metabolismo , Sirtuina 1/metabolismo , Sirtuina 1/genética , Osteogénesis/fisiología , Ratones , Humanos , Animales , Mitocondrias/metabolismo , Glucosa/metabolismo , NAD/metabolismo , Diferenciación Celular
13.
Theranostics ; 14(7): 2993-3013, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38773972

RESUMEN

The sirtuin (SIRT) family is well-known as a group of deacetylase enzymes that rely on nicotinamide adenine dinucleotide (NAD+). Among them, mitochondrial SIRTs (SIRT3, SIRT4, and SIRT5) are deacetylases located in mitochondria that regulate the acetylation levels of several key proteins to maintain mitochondrial function and redox homeostasis. Mitochondrial SIRTs are reported to have the Janus role in tumorigenesis, either tumor suppressive or oncogenic functions. Although the multi-faceted roles of mitochondrial SIRTs with tumor-type specificity in tumorigenesis, their critical functions have aroused a rising interest in discovering some small-molecule compounds, including inhibitors and activators for cancer therapy. Herein, we describe the molecular structures of mitochondrial SIRTs, focusing on elucidating their regulatory mechanisms in carcinogenesis, and further discuss the recent advances in developing their targeted small-molecule compounds for cancer therapy. Together, these findings provide a comprehensive understanding of the crucial roles of mitochondrial SIRTs in cancer and potential new therapeutic strategies.


Asunto(s)
Mitocondrias , Neoplasias , Sirtuinas , Sirtuinas/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinogénesis/metabolismo , Carcinogénesis/efectos de los fármacos
14.
World J Gastroenterol ; 30(11): 1588-1608, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38617450

RESUMEN

BACKGROUND: Acute liver failure (ALF) has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis. The silent information regulator sirtuin 1 (SIRT1)-mediated deacetylation affects multiple biological processes, including cellular senescence, apoptosis, sugar and lipid metabolism, oxidative stress, and inflammation. AIM: To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms. METHODS: This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) testing. C57BL/6 mice were also intraperitoneally pretreated with SIRT1, p53, or glutathione peroxidase 4 (GPX4) inducers and inhibitors and injected with lipopolysaccharide (LPS)/D-galactosamine (D-GalN) to induce ALF. Gasdermin D (GSDMD)-/- mice were used as an experimental group. Histological changes in liver tissue were monitored by hematoxylin and eosin staining. ALT, AST, glutathione, reactive oxygen species, and iron levels were measured using commercial kits. Ferroptosis- and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction. SIRT1, p53, and GSDMD were assessed by immunofluorescence analysis. RESULTS: Serum AST and ALT levels were elevated in patients with ALF. SIRT1, solute carrier family 7a member 11 (SLC7A11), and GPX4 protein expression was decreased and acetylated p5, p53, GSDMD, and acyl-CoA synthetase long-chain family member 4 (ACSL4) protein levels were elevated in human ALF liver tissue. In the p53 and ferroptosis inhibitor-treated and GSDMD-/- groups, serum interleukin (IL)-1ß, tumour necrosis factor alpha, IL-6, IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated. In mice with GSDMD knockout, p53 was reduced, GPX4 was increased, and ferroptotic events (depletion of SLC7A11, elevation of ACSL4, and iron accumulation) were detected. In vitro, knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels, the cytostatic rate, and GSDMD expression, restoring SLC7A11 depletion. Moreover, SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group, accompanied by reduced p53, GSDMD, and ACSL4, and increased SLC7A11 and GPX4. Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalN-induced in vitro and in vivo models. CONCLUSION: SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.


Asunto(s)
Fallo Hepático Agudo , Sirtuina 1 , Animales , Humanos , Ratones , Gasderminas , Hierro , Lipopolisacáridos , Fallo Hepático Agudo/inducido químicamente , Ratones Endogámicos C57BL , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Sirtuina 1/genética , Proteína p53 Supresora de Tumor
15.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673851

RESUMEN

Neutrophil elastase (NE) is taken up by macrophages, retains intracellular protease activity, and induces a pro-inflammatory phenotype. However, the mechanism of NE-induced pro-inflammatory polarization of macrophages is not well understood. We hypothesized that intracellular NE degrades histone deacetylases (HDAC) and Sirtuins, disrupting the balance of lysine acetylation and deacetylation and resulting in nuclear to cytoplasmic translocation of a major alarmin, High Mobility Group Box 1 (HMGB1), a pro-inflammatory response in macrophages. Human blood monocytes were obtained from healthy donors or from subjects with cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). Monocytes were differentiated into blood monocyte derived macrophages (BMDMs) in vitro. Human BMDMs were exposed to NE or control vehicle, and the abundance of HDACs and Sirtuins was determined by Western blotting of total cell lysates or nuclear extracts or determined by ELISA. HDAC, Sirtuin, and Histone acetyltransferase (HAT) activities were measured. NE degraded most HDACs and Sirtuin (Sirt)1, resulting in decreased HDAC and sirtuin activities, with minimal change in HAT activity. We then evaluated whether the NE-induced loss of Sirt activity or loss of HDAC activities would alter the cellular localization of HMGB1. NE treatment or treatment with Trichostatin A (TSA), a global HDAC inhibitor, both increased HMGB1 translocation from the nucleus to the cytoplasm, consistent with HMGB1 activation. NE significantly degraded Class I and II HDAC family members and Sirt 1, which shifted BMDMs to a pro-inflammatory phenotype.


Asunto(s)
Proteína HMGB1 , Histona Desacetilasas , Elastasa de Leucocito , Macrófagos , Sirtuina 1 , Humanos , Acetilación , Células Cultivadas , Fibrosis Quística/metabolismo , Histona Acetiltransferasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Proteína HMGB1/metabolismo , Ácidos Hidroxámicos , Elastasa de Leucocito/metabolismo , Macrófagos/metabolismo , Monocitos/metabolismo , Proteolisis , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Sirtuina 1/metabolismo
16.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38612678

RESUMEN

Sirt-3 is an important regulator of mitochondrial function and cellular energy homeostasis, whose function is associated with aging and various pathologies such as Alzheimer's disease, Parkinson's disease, cardiovascular diseases, and cancers. Many of these conditions show differences in incidence, onset, and progression between the sexes. In search of hormone-independent, sex-specific roles of Sirt-3, we performed mRNA sequencing in male and female Sirt-3 WT and KO mouse embryonic fibroblasts (MEFs). The aim of this study was to investigate the sex-specific cellular responses to the loss of Sirt-3. By comparing WT and KO MEF of both sexes, the differences in global gene expression patterns as well as in metabolic and stress responses associated with the loss of Sirt-3 have been elucidated. Significant differences in the activities of basal metabolic pathways were found both between genotypes and between sexes. In-depth pathway analysis of metabolic pathways revealed several important sex-specific phenomena. Male cells mount an adaptive Hif-1a response, shifting their metabolism toward glycolysis and energy production from fatty acids. Furthermore, the loss of Sirt-3 in male MEFs leads to mitochondrial and endoplasmic reticulum stress. Since Sirt-3 knock-out is permanent, male cells are forced to function in a state of persistent oxidative and metabolic stress. Female MEFs are able to at least partially compensate for the loss of Sirt-3 by a higher expression of antioxidant enzymes. The activation of neither Hif-1a, mitochondrial stress response, nor oxidative stress response was observed in female cells lacking Sirt-3. These findings emphasize the sex-specific role of Sirt-3, which should be considered in future research.


Asunto(s)
Sirtuina 3 , Animales , Femenino , Masculino , Ratones , Sirtuina 3/genética , Fibroblastos , Perfilación de la Expresión Génica , Análisis por Micromatrices , Oxidación-Reducción
17.
Elife ; 122024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567911

RESUMEN

The antibiotic heliomycin (resistomycin), which is generated from Streptomyces resistomycificus, has multiple activities, including anticancer effects. Heliomycin was first described in the 1960s, but its clinical applications have been hindered by extremely low solubility. A series of 4-aminomethyl derivatives of heliomycin were synthesized to increase water solubility; studies showed that they had anti-proliferative effects, but the drug targets remained unknown. In this study, we conducted cellular thermal shift assays (CETSA) and molecular docking simulations to identify and validate that heliomycin and its water-soluble derivative, 4-(dimethylaminomethyl)heliomycin (designated compound 4-dmH) engaged and targeted with sirtuin-1 (SIRT1) in p53-functional SAS and p53-mutated HSC-3 oral cancer cells. We further addressed the cellular outcome of SIRT1 inhibition by these compounds and found that, in addition to SIRT1, the water-soluble 4-dmH preferentially targeted a tumor-associated NADH oxidase (tNOX, ENOX2). The direct binding of 4-dmH to tNOX decreased the oxidation of NADH to NAD+ which diminished NAD+-dependent SIRT1 deacetylase activity, ultimately inducing apoptosis and significant cytotoxicity in both cell types, as opposed to the parental heliomycin-induced autophagy. We also observed that tNOX and SIRT1 were both upregulated in tumor tissues of oral cancer patients compared to adjacent normal tissues, suggesting their clinical relevance. Finally, the better therapeutic efficacy of 4-dmH was confirmed in tumor-bearing mice, which showed greater tNOX and SIRT1 downregulation and tumor volume reduction when treated with 4-dmH compared to heliomycin. Taken together, our in vitro and in vivo findings suggest that the multifaceted properties of water-soluble 4-dmH enable it to offer superior antitumor value compared to parental heliomycin, and indicated that it functions through targeting the tNOX-NAD+-SIRT1 axis to induce apoptosis in oral cancer cells.


Asunto(s)
Neoplasias de la Boca , Compuestos Policíclicos , Sirtuina 1 , Humanos , Animales , Ratones , Sirtuina 1/metabolismo , Línea Celular Tumoral , NAD/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Simulación del Acoplamiento Molecular , Apoptosis , Neoplasias de la Boca/tratamiento farmacológico
18.
Zhen Ci Yan Jiu ; 49(4): 384-390, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38649206

RESUMEN

OBJECTIVES: To observe the effects on tyrosine hydroxylase (TH), α-synaptic nucleoprotein (α-syn), sirtuin 3 (Sirt3), NOD-like receptor 3 (NLRP3) and gasdermin-D (GSDMD) in the substantia nigra of midbrain after electroacupuncture (EA) at "Fengfu"(GV16), "Taichong" (LR3) and "Zusanli" (ST36) in rats of Parkinson's disease (PD), so as to explore the mechanism of EA in treatment of PD. METHODS: SD rats were randomly divided into control, model and EA groups, with 10 rats in each group. The PD model was established by injecting rotenone into the neck and back, lasting 28 days. In the EA group, EA was applied to GV16, LR3 and ST36, 30 min each time, once daily, consecutively for 28 days. The open-field test was adopted to detect the total distance of autonomic movement of rats, and the pole climbing test was used to detect the body coordination ability of rats. In the substania nigra of midbrain, the positive expression of TH was determined using immunohistochemistry, the mRNA expression levels of α - syn, Sirt3, NLRP3 and GSDMD were detected by quantitative real-time fluorescence PCR, and the protein expression levels of NLRP3, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) and cysteinyl aspartate specific proteinase (Caspase)-1 were detected by Western blot. RESULTS: Compared with the control group, the total distance of autonomous movement was decreased (P<0.01) in the model group, and the score of pole climbing experiment was increased (P<0.01);in the midbrain substantia nigra the positive expression of TH was decreased (P<0.01);the mRNA expression level of Sirt3 was decreased (P<0.01), and those of α-syn, NLRP3 and GSDMD were increased (P<0.01);while the protein expression levels of NLRP3, ASC and Caspase-1 were increased (P<0.01). When compared with the model group, the total distance of autonomous movement in open field experiment was increased (P<0.01) in the EA group and the score of pole climbing experiment was lower (P<0.05);in the midbrain substantia nigra the positive expression of TH was increased (P<0.01);the mRNA expression level of Sirt3 in the midbrain substantia nigra was increased (P<0.01), and those of α-syn, NLRP3 and GSDMD were reduced (P<0.01);while the protein expression levels of NLRP3, ASC and Caspase-1 decreased (P<0.01, P<0.05). CONCLUSIONS: EA at "GV16" "LR3" and "ST36" can repair the neuronal injury, clear the abnormal accumulation of α-syn in the substania nigra of midbrain, and ameliorate mitochondrial damage in PD rats, which may be obtained by regulating Sirt3/NLRP3/GSDMD signaling pathway, so as to delay the occurrence and development of Parkinson's disease.


Asunto(s)
Electroacupuntura , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedad de Parkinson , Ratas Sprague-Dawley , Transducción de Señal , Sirtuina 3 , Sirtuinas , Sustancia Negra , Animales , Ratas , Puntos de Acupuntura , Mesencéfalo/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/genética , Sirtuina 3/metabolismo , Sirtuina 3/genética , Sustancia Negra/metabolismo
19.
Cardiovasc Toxicol ; 24(5): 499-512, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589550

RESUMEN

Calcific aortic valve stenosis (CAVS) is characterized by increasing inflammation and progressive calcification in the aortic valve leaflets and is a major cause of death in the aging population. This study aimed to identify the inflammatory proteins involved in CAVS and provide potential therapeutic targets. We investigated the observational and causal associations of 92 inflammatory proteins, which were measured using affinity-based proteomic assays. Firstly, the case-control cohort identified differential proteins associated with the occurrence and progression of CAVS. Subsequently, we delved into exploring the causal impacts of these associated proteins through Mendelian randomization. This involved utilizing genetic instruments derived from cis-protein quantitative loci identified in genome-wide association studies, encompassing a cohort of over 400,000 individuals. Finally, we investigated the gene transcription and protein expression levels of inflammatory proteins by single-cell and immunohistochemistry analysis. Multivariate logistic regression and spearman's correlation analysis showed that five proteins showed a significant positive correlation with disease severity. Mendelian randomization showed that elevated levels of two proteins, namely, matrix metallopeptidase-1 (MMP1) and sirtuin 2 (SIRT2), were associated with an increased risk of CAVS. Immunohistochemistry and single-cell transcriptomes showed that expression levels of MMP1 and SIRT2 at the tissue and cell levels were significantly higher in calcified valves than in non-calcified control valves. These findings indicate that MMP1 and SIRT2 are causally related to CAVS and open up the possibility for identifying novel therapeutic targets.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Válvula Aórtica/patología , Biomarcadores , Calcinosis , Mediadores de Inflamación , Metaloproteinasa 1 de la Matriz , Análisis de la Aleatorización Mendeliana , Proteómica , Humanos , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/sangre , Estenosis de la Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/genética , Calcinosis/genética , Calcinosis/metabolismo , Calcinosis/sangre , Calcinosis/patología , Válvula Aórtica/metabolismo , Masculino , Femenino , Anciano , Estudios de Casos y Controles , Biomarcadores/sangre , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/sangre , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/metabolismo , Persona de Mediana Edad , Factores de Riesgo , Índice de Severidad de la Enfermedad , Anciano de 80 o más Años , Predisposición Genética a la Enfermedad , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/análisis , Fenotipo
20.
Cell Biochem Biophys ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466472

RESUMEN

Hepatocellular carcinoma (HCC) remains a major global health problem with high incidence and mortality. Diagnosis of HCC at late stages and tumour heterogeneity in patients with different genetic profiles are known factors that complicate the disease treatment. HCC therapy becomes even more challenging in patients with drug resistance such as resistance to sorafenib, which is a common drug used in HCC patients. Sorafenib resistance can further aggravate HCC by regulating various oncogenic pathways such as autophagy and nuclear factor-kappa Beta (NF-ĸß) signalling. Sirtuin 1 (SIRT1), is a nicotinamide adenosine dinucleotide (NAD)-dependent histone deacetylases that regulates various metabolic and oncogenic events such as cell survival, apoptosis, autophagy, tumourigenesis, metastasis and drug resistance in various cancers, but its role in HCC, particularly in sorafenib resistance is underexplored. In this study, we generated sorafenib-resistant HepG2 and Huh-7 liver cancer cell models to investigate the role of SIRT1 and its effect on autophagy and nuclear factor-kappa Beta (NF-ĸß) signalling pathways. Western blot analysis showed increased SIRT1, altered autophagy pathway and activated NF-Ä¸ß signalling in sorafenib-resistant cells. SIRT1-silenced HCC cells demonstrated down-regulated autophagy in both parental and chemoresistant cells. This may occur through the deacetylation of key autophagy molecules such as FOXO3, beclin 1, ATGs and LC3 by SIRT1, highlighting the role of SIRT1 in autophagy induction. Silencing of SIRT1 also resulted in activated NF-Ä¸ß signalling. This is because SIRT1 failed to deacetylate p65 subunit of NF-κB, translocate the NF-κB from nucleus to cytoplasm, and suppress NF-κB activity due to the silencing. Hence, the NF-κB transcriptional activity was restored. These findings summarize the role of SIRT1 in autophagy/NF-Ä¸ß regulatory axis, with a similar trend observed in both parental and sorafenib-resistant cells. The present work promotes a better understanding of the role of SIRT1 in autophagy and NF-Ä¸ß signalling in HCC and sorafenib-resistant HCC. As some key proteins in these pathways are potential therapeutic targets, a better understanding of SIRT1/autophagy/NF-Ä¸ß axis could further improve the therapeutic strategies against HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA