Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Food Chem Toxicol ; 191: 114890, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059689

RESUMEN

Consumers are exposed to succinate dehydrogenase inhibitor (SDHI) pesticides through their diet. A cumulative dietary risk assessment for the French population has been performed with French monitoring data (2017-2021) and consumption data from INCA3. The calculation followed a two-tiered approach, using deterministic then probabilistic methods. It was carried out, using European health based guidance values (HBGV) derived for each active substance to characterise their toxicity. In Tier I, the calculated hazard index of 0.12 was below the threshold of 1 and in Tier II, the total margin of exposure at percentile 99.9 remains above the trigger value of 100 (1798 [1631-2311]). In Tier II, the three main risk drivers identified at the upper tail of the distribution were strawberries-fluopyram (19.1%), peaches-fluopyram (14.1%) and table grapes-boscalid (10.5%). Finally, the impact of the major sources of uncertainties was qualitatively evaluated. All together, they were considered of low impact on the outcomes. This work demonstrates the absence of unacceptable chronic risk related to the cumulative exposure of SDHI for French consumers during the 2017-2021 period.


Asunto(s)
Plaguicidas , Succinato Deshidrogenasa , Humanos , Francia , Medición de Riesgo , Plaguicidas/toxicidad , Succinato Deshidrogenasa/antagonistas & inhibidores , Adulto , Persona de Mediana Edad , Adulto Joven , Exposición Dietética , Femenino , Masculino , Contaminación de Alimentos/análisis , Adolescente , Anciano , Niño , Inhibidores Enzimáticos/toxicidad , Preescolar
2.
Pest Manag Sci ; 80(10): 5299-5306, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38940289

RESUMEN

BACKGROUND: Succinate dehydrogenase inhibitor (SDHI) fungicides play important roles in the control of plant fungal diseases. However, they are facing serious challenges from issues with resistance and cross-resistance, primarily attributed to their frequent application and structural similarities. There is an urgent need to design and develop SDHI fungicides with novel structures. RESULTS: Aiming to discover novel potent SDHI fungicides, 31 innovative pyrazole ß-ketonitrile derivatives with diphenyl ether moiety were rationally designed and synthesized, which were guided by a 3D-QSAR model from our previous study. The optimal target compound A23 exhibited not only outstanding in vitro inhibitory activities against Rhizoctonia solani with a half-maximal effective concentration (EC50) value of 0.0398 µg mL-1 comparable to that for fluxapyroxad (EC50 = 0.0375 µg mL-1), but also a moderate protective efficacy in vivo against rice sheath blight. Porcine succinate dehydrogenase (SDH) enzymatic inhibitory assay revealed that A23 is a potent inhibitor of SDH, with a half-maximal inhibitory concentration of 0.0425 µm. Docking study within R. solani SDH indicated that A23 effectively binds into the ubiquinone site mainly through hydrogen-bonds, and cation-π and π-π interactions. CONCLUSION: The identified ß-ketonitrile compound A23 containing diphenyl ether moiety is a potent SDH inhibitor, which might be a good lead for novel fungicide research and optimization. © 2024 Society of Chemical Industry.


Asunto(s)
Fungicidas Industriales , Simulación del Acoplamiento Molecular , Pirazoles , Relación Estructura-Actividad Cuantitativa , Rhizoctonia , Succinato Deshidrogenasa , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/química , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Pirazoles/farmacología , Pirazoles/química , Rhizoctonia/efectos de los fármacos , Éteres Fenílicos/química , Éteres Fenílicos/farmacología , Nitrilos/farmacología , Nitrilos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Animales , Enfermedades de las Plantas/microbiología
3.
Chemosphere ; 358: 142122, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663675

RESUMEN

Succinate dehydrogenase inhibitors (SDHIs) are widely-used fungicides, to which humans are exposed and for which putative health risks are of concern. In order to identify human molecular targets for these environmental chemicals, the interactions of 15 SDHIs with activities of main human drug transporters implicated in pharmacokinetics were investigated in vitro. 5/15 SDHIs, i.e., benzovindiflupyr, bixafen, fluxapyroxad, pydiflumetofen and sedaxane, were found to strongly reduce activity of the renal organic anion transporter (OAT) 3, in a concentration-dependent manner (with IC50 values in the 1.0-3.9 µM range), without however being substrates for OAT3. Moreover, these 5/15 SDHIs decreased the membrane transport of estrone-3 sulfate, an endogenous substrate for OAT3, and sedaxane was predicted to inhibit in vivo OAT3 activity in response to exposure to the acceptable daily intake (ADI) dose. In addition, pydiflumetofen strongly inhibited the renal organic cation transporter (OCT) 2 (IC50 = 2.0 µM) and benzovindiflupyr the efflux pump breast cancer resistance protein (BCRP) (IC50 = 3.9 µM). Other human transporters, including organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 as well as multidrug and toxin extrusion protein (MATE) 1 and MATE2-K were moderately or weakly inhibited by SDHIs, whereas P-glycoprotein, multidrug resistance-associated protein (MRP), OCT1 and OAT1 activities were not or only marginally impacted. Then, some human drug transporters, especially OAT3, constitute molecular targets for SDHIs. This could have toxic consequences, notably with respect to levels of endogenous compounds and metabolites substrates for the considered transporters or to potential SDHI-drug interactions. This could therefore contribute to putative health risk of these fungicides.


Asunto(s)
Succinato Deshidrogenasa , Humanos , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/antagonistas & inhibidores , Transporte Biológico/efectos de los fármacos , Fungicidas Industriales/toxicidad , Fungicidas Industriales/farmacología , Inhibidores Enzimáticos/farmacología , Estrona/análogos & derivados , Estrona/metabolismo , Células HEK293 , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/antagonistas & inhibidores
4.
J Agric Food Chem ; 71(24): 9255-9265, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37283465

RESUMEN

A series of novel pyrazole-4-carboxamides bearing an ether group were designed and synthesized on the basis of the structure of commercial succinate dehydrogenase inhibitor (SDHI) fungicide flubeneteram via scaffold hopping and evaluated for their antifungal activities against five fungi. The bioassay results showed that most of the target compounds exhibited excellent in vitro antifungal activity against Rhizoctonia solani and some compounds exerted remarkable antifungal activities against Sclerotinia sclerotiorum, Botrytis cinerea, Fusarium graminearum, and Alternaria alternate. Particularly, compounds 7d and 12b displayed outstanding antifungal activity against R. solani, with an EC50 value of 0.046 µg/mL, far superior to that of boscalid (EC50 = 0.741 µg/mL) and fluxapyroxad (EC50 = 0.103 µg/mL). Meanwhile, compound 12b also presented a broader fungicidal spectrum than other compounds. Moreover, in vivo anti-R. solani results showed that compounds 7d and 12b could significantly inhibit the growth of R. solani in rice leaves with excellent protective and curative efficacies. In addition, the results of the succinate dehydrogenase (SDH) enzymatic inhibition assay showed that compound 7d generated significant SDH inhibition, with an IC50 value of 3.293 µM, which was about 2 times better than that of boscalid (IC50 = 7.507 µM) and fluxapyroxad (IC50 = 5.991 µM). Furthermore, scanning electron microscopy (SEM) analysis indicated that compounds 7d and 12b significantly destroyed the typical structure and morphology of R. solani hyphae. The molecular docking study revealed that compounds 7d and 12b could embed into the binding pocket of SDH and form hydrogen bond interactions with TRP173 and TRY58 at the activity site of SDH, which was in line with fluxapyroxad, indicating that they had a similar mechanism of action. These results demonstrated that compounds 7d and 12b could be promising candidates of SDHI fungicides, which deserved further investigation.


Asunto(s)
Antifúngicos , Fungicidas Industriales , Antifúngicos/farmacología , Antifúngicos/química , Relación Estructura-Actividad , Éter , Succinato Deshidrogenasa , Simulación del Acoplamiento Molecular , Fungicidas Industriales/química , Rhizoctonia , Pirazoles/farmacología , Pirazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA