Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124997, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39173322

RESUMEN

Polylactic acid (PLA) straws hold eco-friendly potential; however, residual diisocyanates used to enhance the mechanical strength can generate carcinogenic primary aromatic amines (PAAs), posing health risks. Herein, we present a rapid, comprehensive strategy to detecting PAAs in 18 brands of food-grade PLA straws and assessing their migration into diverse food simulants. Surface-enhanced Raman spectroscopy was conducted to rapidly screen straws for PAAs. Subsequently, qualitative determination of migrating PAAs into various food simulants (4 % acetic acid, 10 % ethanol, 50 % ethanol) occurred at 70 °C for 2 h using liquid chromatography-mass spectrometry. Three PAAs including 4,4'-methylenedianiline, 2,4'-methylenedianiline, and 2,4-diaminotoluene were detected in all straws. Specifically, 2,4-diaminotoluene in 50 % ethanol exceeded specific migration limit of 2 µg/kg, raising safety concerns. Notably, PAAs migration to 10 % and 50 % ethanol surpassed that to 4 % acetic acid within a short 2-hour period. Moreover, PLA straws underwent varying degrees of shape changes before and after migration. Straws with poly(butylene succinate) resisted deformation compared to those without, indicating enhanced heat resistance, while poly(butyleneadipate-co-terephthalate) improved hydrolysis resistance. Importantly, swelling study unveiled swelling effect wasn't the primary factor contributing to the increased PAAs migration in ethanol food simulant, as there was no significant disparity in swelling degrees across different food simulants. FT-IR and DSC analysis revealed higher PAAs content in 50 % ethanol were due to highly concentrated polar ethanol disrupting hydrogen bonds and van der Waal forces holding PLA molecules together. Overall, minimizing contact between PLA straws and alcoholic foods is crucial to avoid potential safety risks posed by PAAs.


Asunto(s)
Aminas , Poliésteres , Espectrometría Raman , Poliésteres/química , Espectrometría Raman/métodos , Cromatografía Liquida/métodos , Aminas/análisis , Aminas/química , Espectrometría de Masas/métodos , Contaminación de Alimentos/análisis , Embalaje de Alimentos , Cromatografía Líquida con Espectrometría de Masas
2.
ACS Sens ; 9(9): 4860-4869, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39233482

RESUMEN

Exosomes, nanosized extracellular vesicles containing biomolecular cargo, are increasingly recognized as promising noninvasive biomarkers for cancer diagnosis, particularly for their role in carrying tumor-specific molecular information. Traditional methods for exosome detection face challenges such as complexity, time consumption, and the need for sophisticated equipment. This study addresses these challenges by introducing a novel droplet microfluidic platform integrated with a surface-enhanced Raman spectroscopy (SERS)-based aptasensor for the rapid and sensitive detection of HER2-positive exosomes from breast cancer cells. Our approach utilized an on-chip salt-induced gold nanoparticles (GNPs) aggregation process in the presence of HER2 aptamers and HER2-positive exosomes, enhancing the hot spot-based SERS signal amplification. This platform achieved a limit of detection of 4.5 log10 particles/mL with a sample-to-result time of 5 min per sample. Moreover, this platform has been successfully applied for HER2 status testing in clinical samples to distinguish HER2-positive breast cancer patients from HER2-negative breast cancer patients. High sensitivity, specificity, and the potential for high-throughput screening of specific tumor exosomes make this SERS-based droplet system a potential liquid biopsy technology for early cancer diagnosis.


Asunto(s)
Neoplasias de la Mama , Exosomas , Oro , Nanopartículas del Metal , Receptor ErbB-2 , Espectrometría Raman , Exosomas/química , Humanos , Espectrometría Raman/métodos , Receptor ErbB-2/análisis , Oro/química , Nanopartículas del Metal/química , Aptámeros de Nucleótidos/química , Femenino , Línea Celular Tumoral , Límite de Detección , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos
3.
Small ; : e2402919, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221684

RESUMEN

Multi-biomarker analysis can enhance the accuracy of the single-biomarker analysis by reducing the errors caused by genetic and environmental differences. For this reason, multi-biomarker analysis shows higher accuracy in early and precision diagnosis. However, conventional analysis methods have limitations for multi-biomarker analysis because of their long pre-processing times, inconsistent results, and large sample requirements. To solve these, a fast and accurate precision diagnostic method is introduced for lung cancer by multi-biomarker profiling using a single drop of blood. For this, surface-enhanced Raman spectroscopic immunoassay (SERSIA) is employed for the accurate, quick, and reliable quantification of biomarkers. Then, it is checked the statistical relation of the multi-biomarkers to differentiate between healthy controls and lung cancer patients. This approach has proven effective; with 20 µL of blood serum, lung cancer is diagnosed with 92% accuracy. It also accurately identifies the type and stage of cancer with 87% and 85%, respectively. These results show the importance of multi-biomarker analysis in overcoming the challenges posed by single-biomarker diagnostics. Furthermore, it markedly improves multi-biomarker-based analysis methods, illustrating its important impact on clinical diagnostics.

4.
Talanta ; 281: 126880, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277938

RESUMEN

5-Hydroxyindole-3-acetic acid (5-HIAA) is a molecular marker that can be used in the early diagnosis of carcinoid tumors, and the development of sophisticated 5-HIAA assays is therefore of great importance. Surface-enhanced Raman spectroscopy (SERS) has been widely used for the rapid and sensitive detection of disease biomarkers. Insufficient specificity for tumor markers and poor spectral reproducibility are the bottlenecks in the practical use of SERS technology. In this study, based on MIL-125 surface-loaded gold nanoparticles (Au@MIL-125), a novel strategy was proposed to obtain Au@MIL-125@molecularly imprinted polymers (MIPs) as functional SERS substrates by wrapping a thin MIP shell around the Au@MIL-125 surface for selective separation followed by a 5-HIAA assay. The Raman peak intensity ratio (I865/I1078) was used to quantify 5-HIAA after a SERS spectral calibration with an embedded internal standard (i.e., 4-aminobenzenethiol) to improve the quantitative accuracy. The linear range was from 10-11 to 10-7 M, and the limit of detection (LOD) was 5.45 × 10-13 M. The method of integrating the MIPs with the metal MOF-based nanocomposites was shown to be useful in the analysis of real samples using SERS. The application of SERS for the selective and quantitative detection of analytes in real sample analysis, therefore, has great potential.

5.
Adv Sci (Weinh) ; : e2406668, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231358

RESUMEN

Metabolic dysregulation is a key driver of cellular senescence, contributing to the progression of systemic aging. The heterogeneity of senescent cells and their metabolic shifts are complex and unexplored. A microfluidic SlipChip integrated with surface-enhanced Raman spectroscopy (SERS), termed SlipChip-SERS, is developed for single-cell metabolism analysis. This SlipChip-SERS enables compartmentalization of single cells, parallel delivery of saponin and nanoparticles to release intracellular metabolites and to realize SERS detection with simple slipping operations. Analysis of different cancer cell lines using SlipChip-SERS demonstrated its capability for sensitive and multiplexed metabolic profiling of individual cells. When applied to human primary fibroblasts of different ages, it identified 12 differential metabolites, with spermine validated as a potent inducer of cellular senescence. Prolonged exposure to spermine can induce a classic senescence phenotype, such as increased senescence-associated ß-glactosidase activity, elevated expression of senescence-related genes and reduced LMNB1 levels. Additionally, the senescence-inducing capacity of spermine in HUVECs and WRL-68 cells is confirmed, and exogenous spermine treatment increased the accumulation and release of H2O2. Overall, a novel SlipChip-SERS system is developed for single-cell metabolic analysis, revealing spermine as a potential inducer of senescence across multiple cell types, which may offer new strategies for addressing ageing and ageing-related diseases.

6.
Food Chem ; 460(Pt 3): 140731, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39106757

RESUMEN

17ß-E2 is used in animal growth regulation and agricultural fertilizer, and even ng L-1 mass concentration levels can show biological effects. In this work, Ag NPs was used as surface-enhanced Raman spectroscopy (SERS) source and WS2 was synthesized by a simple method to provide a uniform distribution platform for Ag NPs. The MIP was the shell, which can selectively enrich the target molecule, pull the distance between the target molecule and SERS source, and protect Ag NPs. A cyclable SERS substrate with high sensitivity for detecting 17ß-E2 in food was constructed. The optimized WS2/Ag@MIP as SERS substrate has the advantages of high Enhanced Factor (EF = 2.78 × 109), low detection limit (LOD = 0. 0958 pM), strong anti-interference ability, and good recycling performance. Moreover, the detection of 17ß-E2 in real samples still has good accuracy. This work provides a new possibility for the trace detection of 17ß-E2 in food.


Asunto(s)
Estradiol , Contaminación de Alimentos , Límite de Detección , Nanopartículas del Metal , Plata , Espectrometría Raman , Espectrometría Raman/métodos , Plata/química , Contaminación de Alimentos/análisis , Nanopartículas del Metal/química , Estradiol/análisis , Animales , Compuestos de Tungsteno/química
7.
Small Sci ; 4(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39185268

RESUMEN

Surface Enhanced Resonance Raman (SERS) is a powerful optical technique, which can help enhance the sensitivity of Raman spectroscopy aided by noble metal nanoparticles (NPs). However, current SERS-NPs are often suboptimal, which can aggregate under physiological conditions with much reduced SERS enhancement. Herein, a robust one-pot method has been developed to synthesize SERS-NPs with more uniform core diameters of 50 nm, which is applicable to both non-resonant and resonant Raman dyes. The resulting SERS-NPs are colloidally stable and bright, enabling NP detection with low-femtomolar sensitivity. An algorithm has been established, which can accurately unmix multiple types of SERS-NPs enabling potential multiplex detection. Furthermore, a new liposome-based approach has been developed to install a targeting carbohydrate ligand, i.e., hyaluronan, onto the SERS-NPs bestowing significantly enhanced binding affinity to its biological receptor CD44 overexpressed on tumor cell surface. The liposomal HA-SERS-NPs enabled visualization of spontaneously developed breast cancer in mice in real time guiding complete surgical removal of the tumor, highlighting the translational potential of these new glyco-SERS-NPs.

8.
Nano Lett ; 24(33): 10139-10147, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39109658

RESUMEN

Surface-enhanced Raman scattering (SERS) offers a promising, cost-effective alternative for the rapid, sensitive, and quantitative analysis of potential biomarkers in exhaled gases, which is crucial for early disease diagnosis. However, a major challenge in SERS is the effective detection of gaseous analytes, primarily due to difficulties in enriching and capturing them within the substrate's "hotspot" regions. This study introduces an advanced gas sensor combining mesoporous gold (MesoAu) and metal-organic frameworks (MOFs), exhibiting high sensitivity and rapid detection capabilities. The MesoAu provides abundant active sites and interconnected mesopores, facilitating the diffusion of analytes for detection. A ZIF-8 shell enveloping MesoAu further enriches target molecules, significantly enhancing sensitivity. A proof-of-concept experiment demonstrated a detection limit of 0.32 ppb for gaseous benzaldehyde, indicating promising prospects for the rapid diagnosis of early stage lung cancer. This research also pioneers a novel approach for constructing hierarchical plasmonic nanostructures with immense potential in gas sensing.


Asunto(s)
Pruebas Respiratorias , Gases , Oro , Estructuras Metalorgánicas , Espectrometría Raman , Estructuras Metalorgánicas/química , Pruebas Respiratorias/métodos , Oro/química , Gases/análisis , Gases/química , Humanos , Espectrometría Raman/métodos , Porosidad , Nanoestructuras/química , Benzaldehídos/química , Límite de Detección , Nanopartículas del Metal/química
9.
Curr Pharm Des ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39161144

RESUMEN

Cancer is the leading cause of mortality worldwide, requiring continuous advancements in diagnosis and treatment. Traditional methods often lack sensitivity and specificity, leading to the need for new methods. 3D printing has emerged as a transformative tool in cancer diagnosis, offering the potential for precise and customizable nanosensors. These advancements are critical in cancer research, aiming to improve early detection and monitoring of tumors. In current times, the usage of the 3D printing technique has been more prevalent as a flexible medium for the production of accurate and adaptable nanosensors characterized by exceptional sensitivity and specificity. The study aims to enhance early cancer diagnosis and prognosis by developing advanced 3D-printed nanosensors using 3D printing technology. The research explores various 3D printing techniques, design strategies, and functionalization strategies for cancer-specific biomarkers. The integration of these nanosensors with detection modalities like fluorescence, electrochemical, and surface-enhanced Raman spectroscopy is also evaluated. The study explores the use of inkjet printing, stereolithography, and fused deposition modeling to create nanostructures with enhanced performance. It also discusses the design and functionalization methods for targeting cancer indicators. The integration of 3D-printed nanosensors with multiple detection modalities, including fluorescence, electrochemical, and surface-enhanced Raman spectroscopy, enables rapid and reliable cancer diagnosis. The results show improved sensitivity and specificity for cancer biomarkers, enabling early detection of tumor indicators and circulating cells. The study highlights the potential of 3D-printed nanosensors to transform cancer diagnosis by enabling highly sensitive and specific detection of tumor biomarkers. It signifies a pivotal step forward in cancer diagnostics, showcasing the capacity of 3D printing technology to produce advanced nanosensors that can significantly improve early cancer detection and patient outcomes.

10.
ACS Sens ; 9(8): 4154-4165, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39101767

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for discrimination of bimolecules in complex systems. However, its practical applications face challenges such as complicated manufacturing procedures and limited scalability of SERS substrates, as well as poor reproducibility during detection which compromises the reliability of SERS-based analysis. In this study, we developed a convenient method for simultaneous fabrication of massive SERS substrates with an internal standard to eliminate the substrate-to-substrate differences. We first synthesized Au@CN@Au nanoparticles (NPs) which contain embedded internal standard molecules with a single characteristic peak in the Raman-silent region, and then deposited the NPs on 6 mm glass wafers in a 96-well plate simply by centrifugation for 3 min. The one-time obtained 96 SERS substrates have excellent intrasubstrate uniformity and intersubstrate repeatability for SERS detection by using the internal standard (relative standard deviation = 10.47%), and were able to detect both charged and neutral molecules (crystal violet and triphenylphosphine) at a concentration of 10-9 M. Importantly, cells can be directly cultured on glass wafers in the 96-well plate, enabling real time monitoring of the secretes and metabolism change in response to external stimulation. We found that the release of nucleic acids, amino acids and lipids by MDA-MB-231 cells significantly increased under hypoxic conditions. Overall, our approach enables fast and large-scale production of Au@CN@Au NPs-coated glass wafers as SERS substrates, which are homogeneous and highly sensitive for monitoring trace changes of biomolecules.


Asunto(s)
Vidrio , Oro , Nanopartículas del Metal , Espectrometría Raman , Oro/química , Espectrometría Raman/métodos , Nanopartículas del Metal/química , Humanos , Vidrio/química , Línea Celular Tumoral
11.
J Photochem Photobiol B ; 257: 112968, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955080

RESUMEN

Nasopharyngeal cancer (NPC) is a malignant tumor with high prevalence in Southeast Asia and highly invasive and metastatic characteristics. Radiotherapy is the primary strategy for NPC treatment, however there is still lack of effect method for predicting the radioresistance that is the main reason for treatment failure. Herein, the molecular profiles of patient plasma from NPC with radiotherapy sensitivity and resistance groups as well as healthy group, respectively, were explored by label-free surface enhanced Raman spectroscopy (SERS) based on surface plasmon resonance for the first time. Especially, the components with different molecular weight sizes were analyzed via the separation process, helping to avoid the possible missing of diagnostic information due to the competitive adsorption. Following that, robust machine learning algorithm based on principal component analysis and linear discriminant analysis (PCA-LDA) was employed to extract the feature of blood-SERS data and establish an effective predictive model with the accuracy of 96.7% for identifying the radiotherapy resistance subjects from sensitivity ones, and 100% for identifying the NPC subjects from healthy ones. This work demonstrates the potential of molecular separation-assisted label-free SERS combined with machine learning for NPC screening and treatment strategy guidance in clinical scenario.


Asunto(s)
Aprendizaje Automático , Neoplasias Nasofaríngeas , Espectrometría Raman , Humanos , Espectrometría Raman/métodos , Neoplasias Nasofaríngeas/radioterapia , Análisis Discriminante , Tolerancia a Radiación , Análisis de Componente Principal , Detección Precoz del Cáncer/métodos , Resonancia por Plasmón de Superficie/métodos
12.
Food Chem ; 458: 140231, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959803

RESUMEN

Aflatoxin B1 (AFB1), a pernicious constituent of the aflatoxin family, predominantly contaminates cereals, oils, and their derivatives. Acknowledged as a Class I carcinogen by the World Health Organization (WHO), the expeditious and quantitative discernment of AFB1 remains imperative. This investigation delineates that aluminum ions can precipitate the coalescence of iodine-modified silver nanoparticles, thereby engendering hot spots conducive for label-free AFB1 identification via Surface-Enhanced Raman Spectroscopy (SERS). This methodology manifests a remarkable limit of detection (LOD) at 0.47 fg/mL, surpassing the sensitivity thresholds of conventional survey techniques. Moreover, this method has good anti-interference ability, with a relative error of less than 10% and a relative standard deviation of less than 6% in quantitative results. Collectively, these findings illuminate the substantial application potential and viability of this approach in the quantitative analysis of AFB1, underpinning a significant advancement in food safety diagnostics.


Asunto(s)
Aflatoxina B1 , Contaminación de Alimentos , Límite de Detección , Nanopartículas del Metal , Plata , Espectrometría Raman , Aflatoxina B1/análisis , Espectrometría Raman/métodos , Plata/química , Nanopartículas del Metal/química , Contaminación de Alimentos/análisis
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124571, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38950473

RESUMEN

Accurate detection of dissolved furfural in transformer oil is crucial for real-time monitoring of the aging state of transformer oil-paper insulation. While label-free surface-enhanced Raman spectroscopy (SERS) has demonstrated high sensitivity for dissolved furfural in transformer oil, challenges persist due to poor substrate consistency and low quantitative reliability. Herein, machine learning (ML) algorithms were employed in both substrate fabrication and spectral analysis of label-free SERS. Initially, a high-consistency Ag@Au substrate was prepared through a combination of experiments, particle swarm optimization-neural network (PSO-NN), and a hybrid strategy of particle swarm optimization and genetic algorithm (Hybrid PSO-GA). Notably, a two-step ML framework was proposed, whose operational mechanism is classification followed by quantification. The framework adopts a hierarchical modeling strategy, incorporating simple algorithms such as kernel support vector machine (Kernel-SVM), k-nearest neighbors (KNN), etc., to independently establish lightweight regression models on each cluster, which allows each model to focus more effectively on fitting the data within its cluster. The classification model achieved an accuracy of 100%, while the regression models exhibited an average correlation coefficient (R2) of 0.9953 and the root mean square errors (RMSE) consistently below 10-2. Thus, this ML framework emerges as a rapid and reliable method for detecting dissolved furfural in transformer oil, even in the presence of different interfering substances, which may also have potentiality for other complex mixture monitoring systems.

14.
Photodiagnosis Photodyn Ther ; 48: 104260, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950876

RESUMEN

PURPOSE: To assess the accuracy of Raman spectroscopy in distinguishing between patients with leukemia and healthy individuals. METHOD: PubMed, Embase, Web of Science, Cochrane Library, and CNKI databases were searched for relevant articles published from inception of the respective database to November 1, 2023. The pooled sensitivity (SEN), specificity (SPE), diagnostic odds ratio (DOR), positive likelihood ratio (PLR), negative likelihood ratio (NLR), were calculated along with their corresponding 95 % confidence intervals (CI). A summary comprehensive receiver operating characteristic curve (SROC) was constructed and the area under the curve (AUC) was calculated. The degree of heterogeneity was tested and analyzed. RESULTS: Fifteen groups of original studies from 13 articles were included. The pooled SEN and SPE were 0.93 (95 % CI, [0.92 -0.93]) and 0.91(95 % CI, [0.90-0.92]), respectively. The DOR was 613.01 (95 %CI, [270.79-1387.75]), and the AUC was 0.99. The Deeks' funnel plot asymmetry test indicated no significant publication bias among the included studies (bias coefficient, 40.80; P = 0.13 < 0.10). The meta-regression analysis findings indicated that the observed heterogeneity could be attributed to variations in sample categories and Raman spectroscopy techniques. CONCLUSION: We confirmed that Raman spectroscopy has good accuracy in differentiating patients with leukemia from healthy individuals, and may become a means of leukemia screening in clinical practice. In the case of analysis based on live cells using surface-enhanced Raman spectroscopy (SERS) improved diagnostic efficacy was observed.


Asunto(s)
Leucemia , Sensibilidad y Especificidad , Espectrometría Raman , Espectrometría Raman/métodos , Humanos , Leucemia/diagnóstico , Curva ROC
15.
Biomedicines ; 12(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39062021

RESUMEN

Fibromyalgia (FM) is a chronic central sensitivity syndrome characterized by augmented pain processing at diffuse body sites and presents as a multimorbid clinical condition. Long COVID (LC) is a heterogenous clinical syndrome that affects 10-20% of individuals following COVID-19 infection. FM and LC share similarities with regard to the pain and other clinical symptoms experienced, thereby posing a challenge for accurate diagnosis. This research explores the feasibility of using surface-enhanced Raman spectroscopy (SERS) combined with soft independent modelling of class analogies (SIMCAs) to develop classification models differentiating LC and FM. Venous blood samples were collected using two supports, dried bloodspot cards (DBS, n = 48 FM and n = 46 LC) and volumetric absorptive micro-sampling tips (VAMS, n = 39 FM and n = 39 LC). A semi-permeable membrane (10 kDa) was used to extract low molecular fraction (LMF) from the blood samples, and Raman spectra were acquired using SERS with gold nanoparticles (AuNPs). Soft independent modelling of class analogy (SIMCA) models developed with spectral data of blood samples collected in VAMS tips showed superior performance with a validation performance of 100% accuracy, sensitivity, and specificity, achieving an excellent classification accuracy of 0.86 area under the curve (AUC). Amide groups, aromatic and acidic amino acids were responsible for the discrimination patterns among FM and LC syndromes, emphasizing the findings from our previous studies. Overall, our results demonstrate the ability of AuNP SERS to identify unique metabolites that can be potentially used as spectral biomarkers to differentiate FM and LC.

16.
Anal Chim Acta ; 1312: 342767, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38834270

RESUMEN

BACKGROUND: Surface-enhanced Raman spectroscopy (SERS) has gained increasing importance in molecular detection due to its high specificity and sensitivity. Complex biofluids (e.g., cell lysates and serums) typically contain large numbers of different bio-molecules with various concentrations, making it extremely challenging to be reliably and comprehensively characterized via conventional single SERS spectra due to uncontrollable electromagnetic hot spots and irregular molecular motions. The traditional approach of directly reading out the single SERS spectra or calculating the average of multiple spectra is less likely to take advantage of the full information of complex biofluid systems. RESULTS: Herein, we propose to construct a spectral set with unordered multiple SERS spectra as a novel representation strategy to characterize full molecular information of complex biofluids. This new SERS representation not only contains details from each single spectra but captures the temporal/spatial distribution characteristics. To address the ordering-independent property of traditional chemometric methods (e.g., the Euclidean distance and the Pearson correlation coefficient), we introduce Wasserstein distance (WD) to quantitatively and comprehensively assess the quality of spectral sets on biofluids. WD performs its superiority for the quantitative assessment of the spectral sets. Additionally, WD benefits from its independence of the ordering of spectra in a spectral set, which is undesirable for traditional chemometric methods. With experiments on cell lysates and human serums, we successfully achieve the verification for the reproducibility between parallel samples, the uniformity at different positions in the same sample, the repeatability from multiple tests at one location of the same sample, and the cardinality effect of the spectral set. SERS spectral sets also manage to distinguish different classes of human serums and achieve higher accuracy than the traditional prostate-specific antigen in prostate cancer classification. SIGNIFICANCE: The proposed SERS spectral set is a robust representation approach in accessing full information of biological samples compared to relying on a single or averaged spectra in terms of reproducibility, uniformity, repeatability, and cardinality effect. The application of WD further demonstrates the effectiveness and robustness of spectral sets in characterizing complex biofluid samples, which extends and consolidates the role of SERS.


Asunto(s)
Espectrometría Raman , Espectrometría Raman/métodos , Humanos , Propiedades de Superficie , Nanopartículas del Metal/química , Masculino
17.
Biosens Bioelectron ; 261: 116488, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38905860

RESUMEN

Long-stranded non-coding RNAs (lncRNA) have important roles in disease as transcriptional regulators, mRNA processing regulators and protein synthesis factors. However, traditional methods for detecting lncRNA are time-consuming and labor-intensive, and the functions of lncRNA are still being explored. Here, we present a surface enhanced Raman spectroscopy (SERS) based biosensor for the detection of lncRNA associated with liver cancer (LC) as well as in situ cellular imaging. Using the dual SERS probes, quantitative detection of lncRNA (DAPK1-215) can be achieved with an ultra-low detection limit of 952 aM by the target-triggered assembly of core-satellite nanostructures. And the reliability of this assay can be further improved with the R2 value of 0.9923 by an internal standard probe that enables the signal dynamic calibration. Meanwhile, the high expression of DAPK1-215 mainly distributed in the cytoplasm was observed in LC cells compared with the normal ones using the SERS imaging method. Moreover, results of cellular function assays showed that DAPK1-215 promoted the migration and invasion of LC by significantly reducing the expression of the structural domain of death associated protein kinase. The development of this biosensor based on SERS can provide a sensitive and specific method for exploring the expression of lncRNA that would be a potential biomarker for the screening of LC.


Asunto(s)
Neoplasias Hepáticas , Nanoestructuras , ARN Largo no Codificante , Espectrometría Raman , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/química , Espectrometría Raman/métodos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Nanoestructuras/química , Técnicas Biosensibles/métodos , Resonancia por Plasmón de Superficie/métodos , Línea Celular Tumoral , Límite de Detección , Oro/química
18.
Biosens Bioelectron ; 261: 116523, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38924813

RESUMEN

The quest to reduce kidney transplant rejection has emphasized the urgent requirement for the development of non-invasive, precise diagnostic technologies. These technologies aim to detect antibody-mediated rejection (ABMR) and T-cell-mediated rejection (TCMR), which are asymptomatic and pose a risk of potential kidney damage. The protocols for managing rejection caused by ABMR and TCMR differ, and diagnosis has traditionally relied on invasive biopsy procedures. Therefore, a convergence system using a nano-sensing chip, Raman spectroscopy, and AI technology was introduced to facilitate diagnosis using serum samples obtained from patients with no major abnormality, ABMR, and TCMR after kidney transplantation. Tissue biopsy and Banff score analysis were performed across the groups for validation, and 5 µL of serum obtained at the same time was added onto the Au-ZnO nanorod-based Surface-Enhanced Raman Scattering sensing chip to obtain Raman spectroscopy signals. The accuracy of machine learning algorithms for principal component-linear discriminant analysis and principal component-partial least squares discriminant analysis was 93.53% and 98.82%, respectively. The collagen (an indicative of kidney injury), creatinine, and amino acid-derived signals (markers of kidney function) contributed to this accuracy; however, the high accuracy was primarily due to the ability of the system to analyze a broad spectrum of various biomarkers.


Asunto(s)
Rechazo de Injerto , Trasplante de Riñón , Aprendizaje Automático , Espectrometría Raman , Humanos , Espectrometría Raman/métodos , Rechazo de Injerto/sangre , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/clasificación , Técnicas Biosensibles/métodos , Nanotubos/química , Masculino , Oro/química , Biomarcadores/sangre , Persona de Mediana Edad , Femenino , Adulto
19.
Biosens Bioelectron ; 262: 116530, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38943854

RESUMEN

The progression of gastric cancer involves a complex multi-stage process, with gastroscopy and biopsy being the standard procedures for diagnosing gastric diseases. This study introduces an innovative non-invasive approach to differentiate gastric disease stage using gastric fluid samples through machine-learning-assisted surface-enhanced Raman spectroscopy (SERS). This method effectively identifies different stages of gastric lesions. The XGBoost algorithm demonstrates the highest accuracy of 96.88% and 91.67%, respectively, in distinguishing chronic non-atrophic gastritis from intestinal metaplasia and different subtypes of gastritis (mild, moderate, and severe). Through blinded testing validation, the model can achieve more than 80% accuracy. These findings offer new possibilities for rapid, cost-effective, and minimally invasive diagnosis of gastric diseases.


Asunto(s)
Gastritis , Aprendizaje Automático , Metaplasia , Espectrometría Raman , Humanos , Espectrometría Raman/métodos , Metaplasia/patología , Gastritis/patología , Gastritis/diagnóstico , Técnicas Biosensibles/métodos , Jugo Gástrico/química , Neoplasias Gástricas/patología , Neoplasias Gástricas/diagnóstico , Enfermedad Crónica , Algoritmos
20.
Mikrochim Acta ; 191(7): 415, 2024 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907752

RESUMEN

A novel approach is proposed leveraging surface-enhanced Raman spectroscopy (SERS) combined with machine learning (ML) techniques, principal component analysis (PCA)-centroid displacement-based nearest neighbor (CDNN). This label-free approach can identify slight abnormalities between SERS spectra of gastric lesions at different stages, offering a promising avenue for detection and prevention of precancerous lesion of gastric cancer (PLGC). The agaric-shaped nanoarray substrate was prepared using gas-liquid interface self-assembly and reactive ion etching (RIE) technology to measure SERS spectra of serum from mice model with gastric lesions at different stages, and then a SERS spectral recognition model was trained and constructed using the PCA-CDNN algorithm. The results showed that the agaric-shaped nanoarray substrate has good uniformity, stability, cleanliness, and SERS enhancement effect. The trained PCA-CDNN model not only found the most important features of PLGC, but also achieved satisfactory classification results with accuracy, area under curve (AUC), sensitivity, and specificity up to 100%. This demonstrated the enormous potential of this analysis platform in the diagnosis of PLGC.


Asunto(s)
Aprendizaje Automático , Lesiones Precancerosas , Espectrometría Raman , Neoplasias Gástricas , Neoplasias Gástricas/diagnóstico , Espectrometría Raman/métodos , Animales , Lesiones Precancerosas/diagnóstico , Lesiones Precancerosas/sangre , Ratones , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA