Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Cureus ; 16(7): e64414, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39130896

RESUMEN

Background and objectives Mucogingival plastic surgery is a surgical procedure performed to prevent or correct anatomical, developmental, or traumatic defects. The problem of gingival recession is common in dental practice, causing pain and dentin hypersensitivity for the patient, and remains difficult to treat surgically at the second surgical site used to harvest the connective graft. Many alternatives have been used to replace connective grafts, but none have been as effective. The importance of guided tissue regeneration remains to gain attachment because it means the formation of new periodontal tissue. This study aims to evaluate the attachment gain (AG) obtained after the management of single gingival recessions of Class I and Class II of Miller's classification. Material and methods This study was designed as a clinical randomized trial using a split-mouth technique. The study sample included 15 patients (30 symmetrical gingival recessions). The first group included the coronally advanced flap (CAF) with the connective tissue graft (CTG), and the second group included the CAF with the Xenogeneic Acellular Dermal Matrix (XDM) (Mucoderm®, Botiss Biomaterials, Zossen, Germany). AG was measured at baseline and after six months. Results The results showed that the mean relative attachment level at baseline was 8.333±0.899 in the CTG+CAF group and 8.466±0.833 in the XDM+CAF group. After six months of follow-up, the levels remained 8.333±0.899 in the CTG+CAF group and 8.466±0.833 in the XDM+CAF group, with a significant difference between the study groups after six months. Conclusion The current study concluded that both grafts applied with the coronally advanced flap led to a gain in attachment, with a greater gain in the CTG group.

2.
Biotechnol J ; 19(7): e2400068, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987218

RESUMEN

SH-SY5Y is a human neuroblastoma cell line that can be differentiated into several neuronal phenotypes, depending on culture conditions. For this reason, this cell line has been widely used as an in vitro model of neurodegenerative conditions, such as Parkinson's disease (PD). However, most studies published to date used fetal bovine serum (FBS) as culture medium supplement for SH-SY5Y cell differentiation. We report on the testing of human platelet lysate (hPL) as a culture medium supplement to support SH-SY5Y cell culture. Both standard hPL and a fibrinogen-depleted hPL (FD-hPL) formulation, which does not require the addition of anticoagulants to culture media, promoted an increase in SH-SY5Y cell proliferation in comparison to FBS, without compromising metabolic activity. SH-SY5Y cells cultured in hPL or FD-hPL also displayed a higher number of neurite extensions and stained positive for MAP2 and synaptophysin, in the absence of differentiation stimuli; reducing hPL or FD-hPL concentration to 1% v/v did not affect cell proliferation or metabolic activity. Furthermore, following treatment with retinoic acid (RA) and further stimulation with brain-derived neurotrophic factor (BDNF) and nerve growth factor beta (NGF-ß), the percentage of SH-SY5Y cells stained positive for dopaminergic neuronal differentiation markers (tyrosine hydroxylase [TH] and Dopamine Transporter [DAT]) was higher in hPL or FD-hPL than in FBS, and gene expression of dopaminergic markers TH, DAT, and DR2 was also detected. Overall, the data herein presented supports the use of hPL to differentiate SH-SY5Y cells into a neuronal phenotype with dopaminergic features, and the adoption of FD-hPL as a fully xenogeneic free alternative to FBS to support the use of SH-SY5Y cells as a neurodegeneration model.


Asunto(s)
Plaquetas , Técnicas de Cultivo de Célula , Diferenciación Celular , Proliferación Celular , Neuronas Dopaminérgicas , Neuroblastoma , Humanos , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Línea Celular Tumoral , Plaquetas/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/citología , Técnicas de Cultivo de Célula/métodos , Medios de Cultivo/química , Medios de Cultivo/farmacología , Tretinoina/farmacología , Fenotipo
3.
J Oral Implantol ; 50(4): 408-414, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38895920

RESUMEN

After vertical bone augmentation (VBA) surgery, loss of both keratinized tissue (KT) and vestibule depth (VD) take place. This article evaluated KT gain, patient satisfaction, and aesthetic outcomes after a modified apically repositioned flap (ARF) in combination with a strip-free gingival graft (FGG) harvested from the palate and a xenogeneic collagen matrix (XCM) to correct mucogingival distortion (MGD) after VBA. This technique minimizes patient morbidity by reducing the need for extensive masticatory mucosa grafts. The study included 12 patients with ≤3 mm KT after vertical augmentation procedures. Keratinized tissue gain and tissue thickness were measured. Patient morbidity and aesthetic outcomes were also evaluated. Twenty-four months after surgery, significant VD gain was observed, obtaining a vertical KT augmentation of 5.38 ± 2.06 mm, although tissue thickness increase was only 0.42 ± 0.42mm. Regarding patient satisfaction, aesthetic results evaluating tissue color and texture were satisfactory; the pain was slight, obtaining a score of 2.10 ± 1.13 out of 10, measured using a Visual Analogue Scale (VAS). The present retrospective case series study shows that using an apically repositioned flap combined with a strip FGG and an XCM might offer a valid means of achieving KT gain.


Asunto(s)
Aumento de la Cresta Alveolar , Colágeno , Encía , Satisfacción del Paciente , Humanos , Colágeno/uso terapéutico , Aumento de la Cresta Alveolar/métodos , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Encía/trasplante , Masculino , Estética Dental , Adulto , Queratinas , Colgajos Quirúrgicos
4.
Front Genome Ed ; 6: 1403395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863835

RESUMEN

Although current stem cell therapies exhibit promising potential, the extended process of employing autologous cells and the necessity for donor-host matching to avert the rejection of transplanted cells significantly limit the widespread applicability of these treatments. It would be highly advantageous to generate a pluripotent universal donor stem cell line that is immune-evasive and, therefore, not restricted by the individual's immune system, enabling unlimited application within cell replacement therapies. Before such immune-evasive stem cells can be moved forward to clinical trials, in vivo testing via transplantation experiments in immune-competent animals would be a favorable approach preceding preclinical testing. By using human stem cells in immune competent animals, results will be more translatable to a clinical setting, as no parts of the immune system have been altered, although in a xenogeneic setting. In this way, immune evasiveness, cell survival, and unwanted proliferative effects can be assessed before clinical trials in humans. The current study presents the generation and characterization of three human embryonic stem cell lines (hESCs) for xenogeneic transplantation in immune-competent mice. The major histocompatibility complexes I- and II-encoding genes, B2M and CIITA, have been deleted from the hESCs using CRISPR-Cas9-targeted gene replacement strategies and knockout. B2M was knocked out by the insertion of murine CD47. Human-secreted embryonic alkaline phosphatase (hSEAP) was inserted in a safe harbor site to track cells in vivo. The edited hESCs maintained their pluripotency, karyotypic normality, and stable expression of murine CD47 and hSEAP in vitro. In vivo transplantation of hESCs into immune-competent BALB/c mice was successfully monitored by measuring hSEAP in blood samples. Nevertheless, transplantation of immune-evasive hESCs resulted in complete rejection within 11 days, with clear immune infiltration of T-cells on day 8. Our results reveal that knockout of B2M and CIITA together with species-specific expression of CD47 are insufficient to prevent rejection in an immune-competent and xenogeneic context.

5.
J Surg Case Rep ; 2024(6): rjae396, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38832069

RESUMEN

This case report introduces an innovative approach for tissue regeneration post-total excision of basal cell carcinoma utilizing a xenogeneic collagen matrix coupled with injectable platelet-rich fibrin. The clinical outcome underscores the efficacy and predictability of this protocol in soft tissue regeneration. While further investigation on a larger patient cohort is warranted to fully elucidate its effects and advantages, this technique holds promise in streamlining surgical procedures following excision of extraoral neoplasms. Notably, its simple handling, minimal resource requirements, and potential to mitigate donor site morbidity and patient comorbidities post-surgery signify its value in clinical practice.

6.
Clin Oral Investig ; 28(5): 300, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704784

RESUMEN

OBJECTIVE: The primary objective of this review is to compare autogenous soft tissue grafts (connective tissue graft - CTG and free gingival graft-FGG) with different type of matrices (acellular dermal matrix-ADM, xenograft collagen matrix-XCM, volume-stable collagen matrix-VCMX) used to increase peri-implant soft tissues. MATERIALS AND METHODS: A search on electronic databases was performed to identify randomized and non-randomized controlled trials (RCTs and CCTs, respectively) with either parallel or split-mouth design, and treating ≥ 10 patients. A network meta-analysis (NMA) was used to compare different matrices. Soft tissue thickness dimensional changes and keratinized width (KMW) changes were the primary outcome measures. The secondary outcomes were to evaluate: a) PROMs; b) volumetric changes; c) surgical operating time; and d) different periodontal measurements. RESULTS: A total of 23 studies were included in the qualitative analysis, and 16 studies (11 RCTs and 5 CCTs) in the quantitative analysis. A total of N = 573 sites were evaluated for NMA. CTG resulted the best material for increasing peri-implant soft tissue thickness, at 180 and 360 days after surgery. The use of an ADM showed good results for buccal thickness increase, primarily in the first three months after surgery. Vestibuloplasty + FGG resulted in the most effective technique for peri-implant KMW augmentation, after 180 days. CONCLUSIONS: While CTG demonstrated better performance in all the comparison and FGG showed to be the best graft to increase keratinized mucosa up to 90 days, ADM and VCMX may be used to increase soft tissue horizontal thickness with lower patients' morbidity. LIMITATIONS: The limits of this NMA are the following: a) limited number of included studies; b) high heterogeneity among them (number of patients, treatment sites, surgical techniques, outcome measures, and follow-ups). CLINICAL RELEVANCE: Many studies compared the efficacy of autogenous and non-autogenous grafts in terms of gingival thickness, volume, and keratinized width increase. However, there is still not clear overall evidence on this topic. This NMA helps clinicians to choose the right material in different peri-implant soft tissue procedures. Recommendations for future studies are mandatory.


Asunto(s)
Colágeno , Metaanálisis en Red , Humanos , Colágeno/uso terapéutico , Encía/trasplante , Dermis Acelular , Tejido Conectivo/trasplante , Implantes Dentales , Gingivoplastia/métodos
7.
Biomed Mater ; 19(4)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38756029

RESUMEN

Hard tissue engineering scaffolds especially 3D printed scaffolds were considered an excellent strategy for craniomaxillofacial hard tissue regeneration, involving crania and facial bones and teeth. Porcine treated dentin matrix (pTDM) as xenogeneic extracellular matrix has the potential to promote the stem cell differentiation and mineralization as it contains plenty of bioactive factors similar with human-derived dentin tissue. However, its application might be impeded by the foreign body response induced by the damage-associated molecular patterns of pTDM, which would cause strong inflammation and hinder the regeneration. Ceria nanoparticles (CNPs) show a great promise at protecting tissue from oxidative stress and influence the macrophages polarization. Using 3D-bioprinting technology, we fabricated a xenogeneic hard tissue scaffold based on pTDM xenogeneic TDM-polycaprolactone (xTDM/PCL) and we modified the scaffolds by CNPs (xTDM/PCL/CNPs). Through series ofin vitroverification, we found xTDM/PCL/CNPs scaffolds held promise at up-regulating the expression of osteogenesis and odontogenesis related genes including collagen type 1, Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein-2, osteoprotegerin, alkaline phosphatase (ALP) and DMP1 and inducing macrophages to polarize to M2 phenotype. Regeneration of bone tissues was further evaluated in rats by conducting the models of mandibular and skull bone defects. Thein vivoevaluation showed that xTDM/PCL/CNPs scaffolds could promote the bone tissue regeneration by up-regulating the expression of osteogenic genes involving ALP, RUNX2 and bone sialoprotein 2 and macrophage polarization into M2. Regeneration of teeth evaluated on beagles demonstrated that xTDM/PCL/CNPs scaffolds expedited the calcification inside the scaffolds and helped form periodontal ligament-like tissues surrounding the scaffolds.


Asunto(s)
Cerio , Matriz Extracelular , Nanopartículas , Osteogénesis , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Animales , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Porcinos , Matriz Extracelular/metabolismo , Cerio/química , Nanopartículas/química , Ratas , Poliésteres/química , Dentina/química , Humanos , Regeneración Ósea/efectos de los fármacos , Odontogénesis , Diferenciación Celular , Regeneración , Macrófagos/metabolismo , Cráneo , Ratas Sprague-Dawley
8.
Front Immunol ; 15: 1386382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585270

RESUMEN

Xenotransplantation is emerging as a vital solution to the critical shortage of organs available for transplantation, significantly propelled by advancements in genetic engineering and the development of sophisticated immunosuppressive treatments. Specifically, the transplantation of kidneys from genetically engineered pigs into human patients has made significant progress, offering a potential clinical solution to the shortage of human kidney supply. Recent trials involving the transplantation of these modified porcine kidneys into deceased human bodies have underscored the practicality of this approach, advancing the field towards potential clinical applications. However, numerous challenges remain, especially in the domains of identifying suitable donor-recipient matches and formulating effective immunosuppressive protocols crucial for transplant success. Critical to advancing xenotransplantation into clinical settings are the nuanced considerations of anesthesia and surgical practices required for these complex procedures. The precise genetic modification of porcine kidneys marks a significant leap in addressing the biological and immunological hurdles that have traditionally challenged xenotransplantation. Yet, the success of these transplants hinges on the process of meticulously matching these organs with human recipients, which demands thorough understanding of immunological compatibility, the risk of organ rejection, and the prevention of zoonotic disease transmission. In parallel, the development and optimization of immunosuppressive protocols are imperative to mitigate rejection risks while minimizing side effects, necessitating innovative approaches in both pharmacology and clinical practices. Furthermore, the post-operative care of recipients, encompassing vigilant monitoring for signs of organ rejection, infectious disease surveillance, and psychological support, is crucial for ensuring post-transplant life quality. This comprehensive care highlights the importance of a multidisciplinary approach involving transplant surgeons, anesthesiologists, immunologists, infectiologists and psychiatrists. The integration of anesthesia and surgical expertise is particularly vital, ensuring the best possible outcomes of those patients undergoing these novel transplants, through safe procedural practices. As xenotransplantation moving closer to clinical reality, establishing consensus guidelines on various aspects, including donor-recipient selection, immunosuppression, as well as surgical and anesthetic management of these transplants, is essential. Addressing these challenges through rigorous research and collective collaboration will be the key, not only to navigate the ethical, medical, and logistical complexities of introducing kidney xenotransplantation into mainstream clinical practice, but also itself marks a new era in organ transplantation.


Asunto(s)
Anestesia , Trasplante de Órganos , Animales , Humanos , Porcinos , Trasplante Heterólogo/efectos adversos , Zoonosis , Riñón , Inmunosupresores
9.
Clin Transl Immunology ; 13(3): e1497, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495918

RESUMEN

Objectives: Donor haematopoietic stem cell transplantation treats leukaemia by inducing graft-versus-leukaemia (GVL) immunity. However, this benefit is often mitigated by graft-versus-host disease (GVHD), which is reduced by post-transplant cyclophosphamide (PTCy) alone or combined with tocilizumab (TOC) in humanised mice. This study established a preclinical humanised mouse model of GVL and investigated whether PTCy alone or combined with TOC impacts GVL immunity. Methods: NOD-scid-IL2Rγnull mice were injected with 2 × 107 human peripheral blood mononuclear cells (hPBMCs) on day 0 and with 1 × 106 THP-1 acute myeloid leukaemia cells on day 14. In subsequent experiments, mice were also injected with PTCy (33 mg kg-1) or Dulbecco's phosphate buffered saline (PBS) on days 3 and 4, alone or combined with TOC or control antibody (25 mg kg-1) twice weekly for 28 days. Clinical signs of disease were monitored until day 42. Results: Mice with hPBMCs from three different donors and THP-1 cells showed similar survival, clinical score and weight loss. hCD33+ leukaemia cells were minimal in mice reconstituted with hPBMCs from two donors but present in mice with hPBMCs from a third donor, suggesting donor-specific GVL responses. hPBMC-injected mice treated with PTCy alone or combined with TOC (PTCy + TOC) demonstrated prolonged survival compared to control mice. PTCy alone and PTCy + TOC-treated mice with hPBMCs showed minimal hepatic hCD33+ leukaemia cells, indicating sustained GVL immunity. Further, the combination of PTCy + TOC reduced histological damage in the lung and liver. Conclusion: Collectively, this research demonstrates that PTCy alone or combined with TOC impairs GVHD without compromising GVL immunity.

10.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339054

RESUMEN

Allogeneic haematopoietic stem cell transplantation (HSCT) leads to the establishment of graft-versus-leukaemia (GVL) immunity, but in many cases also results in the development of graft-versus-host disease (GVHD). This study aimed to determine if P2X7 antagonism using Brilliant Blue G (BBG) could improve the beneficial effects of post-transplant cyclophosphamide (PTCy) in a humanised mouse model of GVHD, without comprising GVL immunity. NOD.Cg-Prkdcscid Il2rgtm1Wjl (NSG) mice were injected with human peripheral blood mononuclear cells (PBMCs) (Day 0), then with cyclophosphamide (33 mg/kg) on Days 3 and 4, and with BBG (50 mg/kg) (or saline) on Days 0-10. PTCy with BBG reduced clinical GVHD development like that of PTCy alone. However, histological analysis revealed that the combined treatment reduced liver GVHD to a greater extent than PTCy alone. Flow cytometric analyses revealed that this reduction in liver GVHD by PTCy with BBG corresponded to an increase in human splenic CD39+ Tregs and a decrease in human serum interferon-γ concentrations. In additional experiments, humanised NSG mice, following combined treatment, were injected with human THP-1 acute myeloid leukaemia cells on Day 14. Flow cytometric analyses of liver CD33+ THP-1 cells showed that PTCy with BBG did not mitigate GVL immunity. In summary, PTCy combined with BBG can reduce GVHD without compromising GVL immunity. Future studies investigating P2X7 antagonism in combination with PTCy may lead to the development of novel treatments that more effectively reduce GVHD in allogeneic HSCT patients without promoting leukaemia relapse.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia , Colorantes de Rosanilina , Humanos , Animales , Ratones , Leucocitos Mononucleares , Ratones Endogámicos NOD , Recurrencia Local de Neoplasia/tratamiento farmacológico , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/métodos , Ciclofosfamida/uso terapéutico , Leucemia/tratamiento farmacológico , Estudios Retrospectivos
11.
J Biomed Mater Res B Appl Biomater ; 112(1): e35353, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37968838

RESUMEN

The decellularized pericardium has been widely used in cardiac tissue engineering, whereas its clinical applications are limited due to weak mechanical performance, high collagen exposure, and being prone to microbial contamination. In this study, a biohybrid scaffold of the decellularized caprine pericardium (DCP) and graphene oxide (GO) was fabricated by an immersion coating technique. The antimicrobial activity of GO was evaluated against Escherichia coli and showed minimum inhibitory concentration at 125 µg/mL and minimum bactericidal concentration at 250 µg/mL. The presence of GO on the surface of the biohybrid GO-DCP was confirmed through SEM analysis. The existence of glycosaminoglycan, elastin, and collagen in the DCP and GO-DCP was inferred from the FTIR spectra. The biocompatibility of GO-DCP was studied by seeding valvular interstitial cells, and the results show GO coating supports cell adhesion on the serous and fibrous sides of the DCP. Further, the biomechanical response of DCP is unaltered by the presence of GO. In conclusion, GO enhances the biological performance of decellularized pericardium, which can be used in cardiac tissue engineering applications.


Asunto(s)
Estenosis de la Válvula Aórtica , Calcinosis , Grafito , Animales , Humanos , Andamios del Tejido/química , Cabras , Válvula Aórtica , Células Cultivadas , Pericardio , Ingeniería de Tejidos/métodos , Colágeno/farmacología
12.
Tissue Eng Part B Rev ; 30(1): 74-81, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37440326

RESUMEN

Dentin is a bone-like matrix that forms the bulk of the tooth. By fabricating dentin with protocols involving demineralization, sterilization, and preservation, treated dentin matrix (TDM)/demineralized dentin matrix (DDM) could be obtained, which is considered as a useful tool for bone and tooth-tissue regeneration. Non-negligible inflammatory and immune responses are reviewed in this article of autogenous, allogeneic, and xenogeneic TDM/DDM for the first time. Both autogenous and allogeneic TDM/DDM showed good biocompatibility in original and clinical studies, while a few cases reported the observation of inflammatory cells around tissue samples. As for xenogeneic TDM/DDM, multiple immune responses were revealed. Immune cells, including eosinocytes, macrophages, lymphocytes, mutinucleated giant cell, M1/M2 macrophages, and Th1-type CTL responses were involved. To avoid these adverse inflammatory responses caused by TDM/DDM implantation, some of the effective fabricating methods are discussed to reduce host immune responses to TDM/DDM.


Asunto(s)
Dentina , Trasplante de Células Madre Hematopoyéticas , Humanos
13.
Stem Cell Res Ther ; 14(1): 365, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087374

RESUMEN

BACKGROUND: The term sepsis refers to a complex and heterogeneous syndrome. Although great progress has been made in improving the diagnosis and treatment of this condition, it continues to have a huge impact on morbidity and mortality worldwide. Mesenchymal stem cells are a population of multipotent cells that have immunomodulatory properties, anti-apoptotic effects, and antimicrobial activity. We studied these capacities in a porcine model of peritoneal sepsis. METHODS: We infused human adipose-derived mesenchymal stem cells (ADSCs) into a porcine model of peritoneal sepsis. Twenty piglets were treated with antibiotics alone (control group) or antibiotics plus peritoneal infusion of ADSCs at a concentration of 2 × 106 cells/kg or 4 × 106 cells/kg (low- and high-dose experimental groups, respectively). The animals were evaluated at different time points to determine their clinical status, biochemical and hematologic parameters, presence of inflammatory cytokines and chemokines in blood and peritoneal fluid, and finally by histologic analysis of the organs of the peritoneal cavity. RESULTS: One day after sepsis induction, all animals presented peritonitis with bacterial infection as well as elevated C-reactive protein, haptoglobin, IL-1Ra, IL-6, and IL-1b. Xenogeneic ADSC infusion did not elicit an immune response, and peritoneal administration of the treatment was safe and feasible. One day after infusion, the two experimental groups showed a superior physical condition (e.g., mobility, feeding) and a significant increase of IL-10 and TGF-ß in blood and a decrease of IL-1Ra, IL-1b, and IL-6. After 7 days, all animals treated with ADSCs had better results concerning blood biomarkers, and histopathological analysis revealed a lower degree of inflammatory cell infiltration of the organs of the peritoneal cavity. CONCLUSIONS: Intraperitoneal administration of ADSCs as an adjuvant therapy for sepsis improves the outcome and diminishes the effects of peritonitis and associated organ damage by regulating the immune system and reducing intra-abdominal adhesions in a clinically relevant porcine model of abdominal sepsis.


Asunto(s)
Células Madre Mesenquimatosas , Peritonitis , Sepsis , Humanos , Animales , Porcinos , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Interleucina-6/metabolismo , Células Madre Mesenquimatosas/metabolismo , Peritonitis/terapia , Peritonitis/metabolismo , Sepsis/terapia , Sepsis/metabolismo , Antibacterianos/metabolismo
14.
Front Immunol ; 14: 1252374, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928528

RESUMEN

Triple-negative breast cancer (TNBC) remains difficult to treat, especially due to ineffective immune responses. Current treatments mainly aim at a cytotoxic effect, whereas (stem) cell therapies are being investigated for their immune stimulatory capacities to initiate the anti-tumor immunity. Here, a thoroughly characterized, homogenous and non-tumorigenic mixture of equine mesenchymal stem cells (eMSCs) harvested from horse peripheral blood as innovative xenogeneic immunomodulators were tested in a 4T1-based intraductal mouse model for TNBC. The eMSCs significantly reduced 4T1 progression upon systemic injection, with induction of inflammatory mediators and T-cell influx in primary tumors, already after a single dose. These xenogeneic anti-cancer effects were not restricted to MSCs as systemic treatment with alternative equine epithelial stem cells (eEpSCs) mimicked the reported disease reduction. Mechanistically, effective eMSC treatment did not rely on the spleen as systemic entrapment site, whereas CD4+ and CD8α+ T-cell infiltration and activation were critical. These results show that eMSCs and potentially also other equine stem cell types can be a valuable TNBC treatment strategy for further (pre)clinical evaluation.


Asunto(s)
Antineoplásicos , Células Madre Mesenquimatosas , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Caballos , Animales , Neoplasias de la Mama Triple Negativas/patología , Antineoplásicos/uso terapéutico , Inmunidad Adaptativa , Transducción de Señal
15.
Arthritis Res Ther ; 25(1): 190, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789403

RESUMEN

BACKGROUND: As current therapies for canine osteoarthritis (OA) provide mainly symptomatic improvement and fail to address the complex pathology of the disease, mesenchymal stem cells (MSCs) offer a promising biological approach to address both aspects of OA through their immunomodulatory properties. METHODS: This study aimed to investigate the safety and efficacy of xenogeneic MSCs in dogs with OA at different dose levels after intravenous injection. OA was surgically induced in the right stifle joint. Thirty-two male and female dogs were divided into three treatment groups and a control group. Regular general physical examinations; lameness, joint, radiographic, and animal caretaker assessments; pressure plate analyses; and blood analyses were performed over 42 days. At study end, joint tissues were evaluated regarding gross pathology, histopathology, and immunohistochemistry. In a follow-up study, the biodistribution of intravenously injected 99mTc-labeled equine peripheral blood-derived MSCs was evaluated over 24h in three dogs after the cruciate ligament section. RESULTS: The dose determination study showed the systemic administration of ePB-MSCs in a canine OA model resulted in an analgesic, anti-inflammatory, and joint tissue protective effect associated with improved clinical signs and improved cartilage structure, as well as a good safety profile. Furthermore, a clear dose effect was found with 0.3 × 106 ePB-MSCs as the most effective dose. In addition, this treatment was demonstrated to home specifically towards the injury zone in a biodistribution study. CONCLUSION: This model-based study is the first to confirm the efficacy and safety of systemically administered xenogeneic MSCs in dogs with OA. The systemic administration of a low dose of xenogeneic MSCs could offer a widely accessible, safe, and efficacious treatment to address the complex pathology of canine OA and potentially slow down the disease progression by its joint tissue protective effect.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Osteoartritis , Animales , Masculino , Perros , Femenino , Caballos , Estudios de Seguimiento , Distribución Tisular , Inyecciones Intraarticulares , Osteoartritis/patología , Inmunomodulación , Trasplante de Células Madre Mesenquimatosas/métodos
16.
In Vivo ; 37(6): 2564-2576, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37905631

RESUMEN

BACKGROUND/AIM: Human dental pulp mesenchymal stem cells (hDPSCs) are considered to be a good cell source for cell-based clinical therapy, due to the advantages of high proliferation capacity, multilineage differentiation potential, immune regulation abilities, less ethnic concerns and non-invasive access. However, hDPSCs were traditionally isolated and expanded in medium containing fetal bovine serum (FBS), which is a barrier for clinical application due to the safety issues (virus transmission and allergy). Although many studies make efforts to screen out a suitable culture medium, the results are not promising so far. Therefore, a standard good manufacturing practice (GMP) compliant culture system is urgently required for the large-scale cell production. This study aimed to find suitable culture conditions for producing clinical grade hDPSCs to meet the requirements for clinical cell-based therapy and further to promote the application of hDPSCs into tissue regeneration or disease cure. MATERIALS AND METHODS: We derived hDPSCs from nine orthodontic teeth expanded in two different media: a GMP compliant and xenogeneic serum-free medium (AMMS) and a serum containing medium (SCM). Cell propterties including morphology, proliferation, marker expression, differentiation, stemness, senescence and cytokine secretion between these two media were systematically compared. RESULTS: hDPSCs cultured in both media exhibited the typical characteristics of mesenchymal stem cells (MSCs). However, we found that more cell colonies formed in the primary culture in AMMS, and the hDPSCs displayed higher proliferation capacity, differentiation potential and better stemness maintenance during sub-culturing in AMMS. CONCLUSION: Cell properties of hDPSCs could be improved when they were isolated and expanded in AMMS, which might provide a good candidate of culture medium for large-scale cell manufacturing.


Asunto(s)
Células Madre Mesenquimatosas , Diente , Humanos , Pulpa Dental , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Expresión Génica , Proliferación Celular , Células Cultivadas
17.
Pharmaceutics ; 15(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37765233

RESUMEN

Graft-versus-host disease (GVHD) is a T cell-mediated inflammatory disorder that arises from allogeneic haematopoietic stem cell transplantation and is often fatal. The P2X7 receptor is an extracellular adenosine 5'-triphosphate-gated cation channel expressed on immune cells. Blockade of this receptor with small molecule inhibitors impairs GVHD in a humanised mouse model. A species-specific blocking monoclonal antibody (mAb) (clone L4) for human P2X7 is available, affording the opportunity to determine whether donor (human) P2X7 contributes to the development of GVHD in humanised mice. Using flow cytometric assays of human RPMI 8266 and murine J774 cells, this study confirmed that this mAb bound and impaired human P2X7. Furthermore, this mAb prevented the loss of human regulatory T cells (hTregs) and natural killer (hNK) T cells in vitro. NOD-scid IL2Rγnull mice were injected with 10 × 106 human peripheral blood mononuclear cells (Day 0) and an anti-hP2X7 or control mAb (100 µg i.p. per mouse, Days 0, 2, 4, 6, and 8). The anti-hP2X7 mAb increased hTregs and hNK cells at Day 21. Moreover, anti-hP2X7 mAb-treatment reduced clinical and histological GVHD in the liver and lung compared to the control treatment at disease endpoint. hTregs, hNK, and hNK T cell proportions were increased, and human T helper 17 cell proportions were decreased at endpoint. These studies indicate that blockade of human (donor) P2X7 reduces GVHD development in humanised mice, providing the first direct evidence of a role for donor P2X7 in GVHD.

18.
Xenotransplantation ; 30(5): e12820, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37735958

RESUMEN

Xenotransplantation is a promising approach to reduce organ shortage, while genetic modification of donor pigs has significantly decreased the immunogenic burden of xenotransplants, organ rejection is still a hurdle. Genetically modified pig organs are used in xenotransplantation research, and the first clinical pig-to-human heart transplantation was performed in 2022. However, the impact of genetic modification has not been investigated on a cellular level yet. Endothelial cells (EC) and their sugar-rich surface known as the glycocalyx are the first barrier encountering the recipient's immune system, making them a target for rejection. We have previously shown that wild type venous but not arterial EC were protected against heparan sulfate (HS) shedding after activation with human serum or human tumor necrosis factor alpha (TNF𝛼). Using a 2D microfluidic system we investigated the glycocalyx dynamics of genetically modified porcine arterial and venous EC (Gal𝛼1,3 Gal knock-out, transgenic for human CD46 and thrombomodulin, GTKO/hCD46/hTM) after activation with human serum or human TNF𝛼. Interestingly, we observed that GTKO/hCD46/hTM arterial cells, additionally to venous cells, do not shed HS. Unscathed HS on GTKO/hCD46/hTM EC correlated with reduced complement deposition, suggesting that protection against complement activation contributes to maintaining an intact glycocalyx layer on arterial EC. This protection was lost on GTKO/hCD46/hTM cells after simultaneous perfusion with human serum and human TNF𝛼. HS shedding on arterial cells and increased complement deposition on both arterial and venous cells was observed. These findings suggest that GTKO/hCD46/hTM EC revert to a proinflammatory phenotype in an inflammatory xenotransplantation setting, potentially favoring transplant rejection.


Asunto(s)
Células Endoteliales , Glicocálix , Animales , Humanos , Porcinos , Trasplante Heterólogo , Animales Modificados Genéticamente , Proteínas del Sistema Complemento
19.
Cells ; 12(16)2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37626914

RESUMEN

The therapeutic efficacy of mesenchymal stromal cells (MSCs) has been shown to rely on their immunomodulatory and regenerative properties. In order to obtain sufficient numbers of cells for clinical applications, MSCs have to be expanded ex vivo. Expansion media with xenogeneic-free (XF) growth-promoting supplements like human platelet lysate (PL) or serum- and xenogeneic-free (SF/XF) formulations have been established as safe and efficient, and both groups provide different beneficial qualities. In this study, MSCs were expanded in XF or SF/XF media as well as in mixtures thereof. MSCs cultured in these media were analyzed for phenotypic and functional properties. MSC expansion was optimal with SF/XF conditions when PL was present. Metabolic patterns, consumption of growth factors, and secretome of MSCs differed depending on the type and concentration of supplement. The lactate per glucose yield increased along with a higher proportion of PL. Many factors in the supernatant of cultured MSCs showed distinct patterns depending on the supplement (e.g., FGF-2, TGFß, and insulin only in PL-expanded MSC, and leptin, sCD40L PDGF-AA only in SF/XF-expanded MSC). This also resulted in changes in cell characteristics like migratory potential. These findings support current approaches where growth media may be utilized for priming MSCs for specific therapeutic applications.


Asunto(s)
Médula Ósea , Células Madre Mesenquimatosas , Humanos , Medios de Cultivo/farmacología , Suplementos Dietéticos , Ácido Láctico
20.
Xenotransplantation ; 30(5): e12819, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37548062

RESUMEN

Primary adrenal insufficiency is a life-threatening disorder, which requires lifelong hormone replacement therapy. Transplantation of xenogeneic adrenal cells is a potential alternative approach for the treatment of adrenal insufficiency. For a successful outcome of this replacement therapy, transplanted cells should provide adequate hormone secretion and respond to adrenal physiological stimuli. Here, we describe the generation and characterization of primary porcine adrenal spheroids capable of replacing the function of adrenal glands in vivo. Cells within the spheroids morphologically resembled adult adrenocortical cells and synthesized and secreted adrenal steroid hormones in a regulated manner. Moreover, the embedding of the spheroids in alginate led to the formation of cellular elongations of steroidogenic cells migrating centripetally towards the inner part of the slab, similar to zona Fasciculata cells in the intact organ. Finally, transplantation of adrenal spheroids in adrenalectomized SCID mice reversed the adrenal insufficiency phenotype, which significantly improved animals' survival. Overall, such adrenal models could be employed for disease modeling and drug testing, and represent the first step toward potential clinical trials in the future.


Asunto(s)
Corteza Suprarrenal , Insuficiencia Suprarrenal , Ratones , Animales , Porcinos , Corteza Suprarrenal/fisiología , Corteza Suprarrenal/trasplante , Trasplante Heterólogo , Ratones SCID , Trasplante de Células
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA