Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.751
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 19(7): e0300643, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954725

RESUMEN

As most teleosts are unable to synthesize vitamin C, supplemental diets containing vitamin C diets play a crucial role in fish health. The aim of this study was to investigate the effect of dietary vitamin C on the intestinal enzyme activity and intestinal microbiota of silver pomfre (Pampus argenteus). Four experimental diets were supplemented with basic diets containing 300 mg of vitamin C/kg (group tjl3), 600 mg of vitamin C/kg (group tjl6), and 1200 mg of vitamin C/kg (group tjl12), as well as vitamin C-free supplemental basic diet (group tjl0), respectively. The four diets were fed to juvenile P. argenteus (average initial weight: 4.68 ± 0.93 g) for 6 weeks. The results showed that the activity of SOD (superoxide dismutase) and CAT (catalase) increased significantly while that of MDA (malondialdehyde) decreased significantly in group tjl3 compared to vitamin group tjl0. At the genus level, groups tjl0, tjl6, and tjl12 contained the same dominant microbial community, Stenotrophomonas, Photobacterium, and Vibrio, whereas group tjl3 was dominated by Stenotrophomonas, Delftia, and Bacteroides. Among the fish fed with a basic diet containing 300 mg of vitamin C/kg, the intestines exhibited a notable abundance of probiotic bacteria, including lactic acid bacteria (Lactobacillus) and Bacillus. The abundance of Aeromonas in groups tjl3 and tjl6 was lower than that of the vitamin C-free supplemental basic diet group, whereas Aeromonas was not detected in group tjl12. In addition, a causative agent of the disease outbreak in cultured P. argenteus, Photobacterium damselae subsp. Damselae (PDD) was the dominant microbiota community in groups tjl0, tjl6 and tjl12, whereas the abundance of PDD in group tjl3 was the lowest among the diets. Taken together, the diets supplied with vitamin C could influence the composition microbial community of P. argenteus. The low level of vitamin C (300 mg of vitamin C/kg per basic diet) supplementation could not only improve the antioxidant capacity but also resist the invasion of pathogenic bacteria.


Asunto(s)
Antioxidantes , Ácido Ascórbico , Suplementos Dietéticos , Microbioma Gastrointestinal , Animales , Ácido Ascórbico/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Perciformes/microbiología , Alimentación Animal/análisis , Superóxido Dismutasa/metabolismo , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Dieta/veterinaria , Catalasa/metabolismo
2.
Nutrients ; 16(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892614

RESUMEN

Aging and its related disorders are important issues nowadays and the first cause of this physio-pathological condition is the overproduction of ROS. Ascorbic acid is an antioxidant mediator and its anti-aging proprieties are well known. Our previous data demonstrated that Voghera sweet pepper (VP), a distinctive type of pepper cultivated in Italy, is particularly rich in ascorbic acid. Based on these data, the anti-aging effect mediated by extracts of the edible part of VP was evaluated on an in vitro model of both young and old Normal Human Diploid Fibroblasts (NHDF). Using phase contrast microscopy, we observed that VP may help cells in the maintenance of physiological morphology during aging. Cytofluorimetric analyses revealed that VP extracts led to an increase in DNA synthesis and percentage of living cells, linked to a consequent increase in mitotic events. This hypothesis is supported by the enhancement of PCNA expression levels observed in old, treated fibroblasts, corroborating the idea that this extract could recover a young phenotype in adult fibroblasts, confirmed by the study of p16 and p53 expression levels and TEM analyses. Based on these results, we may suppose that VP can lead to the partial recovery of "young-like" phenotypes in old fibroblasts.


Asunto(s)
Ácido Ascórbico , Capsicum , Proliferación Celular , Senescencia Celular , Fibroblastos , Extractos Vegetales , Proteína p53 Supresora de Tumor , Humanos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Capsicum/química , Senescencia Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Proliferación Celular/efectos de los fármacos , Ácido Ascórbico/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Envejecimiento/fisiología , Antioxidantes/farmacología , Diploidia , Células Cultivadas , Italia
3.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828917

RESUMEN

Alpha-tocopherol (vitamin E) is an antioxidant that is largely involved in immune defense and enhancing the ability of biological systems to respond to oxidative stress. During the process of free radical scavenging, vitamin C supports the regeneration of vitamin E. Although the functions of antioxidants and their importance have been widely studied, the intricate interplay between antioxidants has yet to be fully elucidated, especially in dogs and cats. As such, the objective of the present study was to determine the effect of a combination of dietary antioxidants on DNA damage and antioxidant status in dogs and cats. Forty adult mixed-breed dogs and 40 adult domestic shorthair cats were randomly assigned to one of four treatment groups per species. Dogs and cats remained in these groups for the 84-d duration of the study. The food differed in antioxidant supplementation with the control food meeting all of the Association of American Feed Control Officials requirements for complete and balanced nutrition, including sufficient vitamin E to exceed the published minimum. The treatment diets were targeted to include either 500, 1,000, or 1,500 IU vitamin E/kg as well as 100 ppm of vitamin C and 1.5 ppm of ß-carotene in the food. The effect of vitamin E supplementation level on serum vitamin E concentration, DNA damage, and total antioxidant power was evaluated. Feeding diets enriched with antioxidants resulted in an increased (P < 0.05) circulating vitamin E concentration, increased (P < 0.05) immune cell protection, reduced (P < 0.05) DNA damage in dogs, and an improved (P < 0.05) antioxidant status. Overall, these data demonstrated that feeding a dry kibble with an antioxidant blend inclusive of vitamin E, vitamin C, and ß-carotene enhanced cell protection and improved antioxidant status in dogs and cats.


Animals have an impressive array of defenses to excessive reactive oxygen species in the body. The antioxidant defense system is complex and sophisticated. vitamin E, vitamin C, and ß-carotene are known to scavenge free radicals that are created during times of oxidative stress. To evaluate the effect of the various antioxidants, dogs and cats were fed one of four diets for 84 d. Diets included a control group that had vitamin E concentrations that exceeded regulatory minimums and four treatment groups that were targeted to include 500, 1,000, or 1,500 IU vitamin E/kg as well as 100 ppm of vitamin C and 1.5 ppm of ß-carotene in the food. To assess the effectiveness of the different vitamin E concentrations provided in the foods, circulating vitamin E, DNA damage, and total antioxidant power were assessed. Results from the parameters assessed showed that dogs and cats benefit from supplementing their diet with a blend of antioxidants targeted to include 100 ppm of vitamin C, 1.5 ppm of ß-carotene, and have varying benefits to increased vitamin E/kg in the food.


Asunto(s)
Alimentación Animal , Antioxidantes , Ácido Ascórbico , Daño del ADN , Dieta , Suplementos Dietéticos , Vitamina E , Animales , Perros , Gatos , Antioxidantes/farmacología , Daño del ADN/efectos de los fármacos , Dieta/veterinaria , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Masculino , Ácido Ascórbico/farmacología , Ácido Ascórbico/administración & dosificación , Femenino , Vitamina E/farmacología , Vitamina E/administración & dosificación , Radicales Libres/metabolismo , Estrés Oxidativo/efectos de los fármacos , beta Caroteno/farmacología , beta Caroteno/administración & dosificación
4.
J Microbiol Biotechnol ; 34(6): 1206-1213, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38693048

RESUMEN

Citrus fruits offer a range of health benefits due to their rich nutritional profile, including vitamin C, flavonoids, carotenoids, and fiber. It is known that unripe citrus has higher levels of vitamin C, dietary fiber, polyphenols, and flavonoids compared to mature fruits. In this study, we assessed the nutritional components of unripe citrus peel and pressed juices, as well as their anti-obesity potential through the modulation of adipocyte differentiation and the expression of adipogenesis-related genes, specifically PPARγ and C/EBPα, in 3T3-L1 preadipocytes. Our analysis revealed that unripe citrus peel exhibited elevated levels of fiber and protein compared to pressed juice, with markedly low levels of free sugar, particularly sucrose. The content of hesperidin, a representative flavonoid in citrus fruits, was 3,157.6 mg/kg in unripe citrus peel and 455.5 mg/kg in pressed juice, indicating that it was approximately seven times higher in unripe citrus peel compared to pressed juice. Moreover, we observed that the peel had a dose-dependently inhibitory effect on adipocyte differentiation, which was linked to a significant downregulation of adipogenesis-related gene expression. Thus, our findings suggest that unripe citrus possesses anti-obesity effects by impeding adipogenesis and adipocyte differentiation, with the peel demonstrating a more pronounced effect compared to pressed juice.


Asunto(s)
Células 3T3-L1 , Adipocitos , Adipogénesis , Diferenciación Celular , Citrus , PPAR gamma , Citrus/química , Adipogénesis/efectos de los fármacos , Animales , Ratones , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipocitos/citología , Diferenciación Celular/efectos de los fármacos , PPAR gamma/metabolismo , PPAR gamma/genética , Frutas/química , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Fibras de la Dieta/análisis , Flavonoides/farmacología , Flavonoides/análisis , Hesperidina/farmacología , Fármacos Antiobesidad/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Jugos de Frutas y Vegetales/análisis , Ácido Ascórbico/farmacología
5.
Medicine (Baltimore) ; 103(20): e38189, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758839

RESUMEN

To investigate the mechanism by which high-dose vitamin C (HVC) promotes ferroptosis in tumor cells via network pharmacology, vitamin C-related and ferroptosis-related targets were obtained from the PharmMapper and GeneCards databases, respectively, and their common targets were compared using the Venn diagram. Common targets were imported into the STRING database for protein-protein interaction analysis, and core targets were defined. Core targets were enriched for Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways using the R language packages. A map of the core target-based interaction network and a map of the mechanism by which HVC regulates ferroptosis were constructed. A total of 238 vitamin C-related and 721 ferroptosis-related targets were identified, of which 21 targets were common to both. Furthermore, ALDOA, AHCY, LDHB, HSPA8, LGALS3, and GSTP1 were identified as core targets. GO enrichment analysis suggested that the main biological processes included the extrinsic apoptotic signaling pathway and pyruvate metabolic process. KEGG enrichment analysis suggested that HVC regulates ferroptosis mainly through the amino acid and carbohydrate metabolic pathways. The targets were validated by molecular docking. In conclusion, HVC may promote ferroptosis in tumor cells by regulating metabolic pathways, and there is a synergistic effect between HVC and type I ferroptosis inducers. Glycolysis-dependent tumors may be beneficial for HVC therapy. Our study provides a reference for further clinical studies on HVC antitumor therapy.


Asunto(s)
Ácido Ascórbico , Ferroptosis , Simulación del Acoplamiento Molecular , Farmacología en Red , Ferroptosis/efectos de los fármacos , Humanos , Ácido Ascórbico/farmacología , Ácido Ascórbico/administración & dosificación , Farmacología en Red/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Mapas de Interacción de Proteínas/efectos de los fármacos
6.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731845

RESUMEN

Moringa oleifera leaves are rich sources of bioactive compounds with potential health benefits, including antioxidants and anti-inflammatory agents. Pressurized liquid extraction (PLE) stands out as a promising technique for effectively extracting valuable compounds from natural sources. In this study, we aimed to optimize PLE parameters, such as temperature, extraction duration, and pressure, to maximize bioactive compound (polyphenols, flavonoids, and ascorbic acid) yield from M. oleifera leaves and evaluate their antioxidant and anti-inflammatory activities. According to the outcomes of this research, the maximum achieved total polyphenol content was 24.10 mg gallic acid equivalents (GAE)/g of dry weight (dw), and the total flavonoid content was increased up to 19.89 mg rutin equivalents (RtE)/g dw. Moreover, after HPLC-DAD analysis, neochlorogenic and chlorogenic acids, catechin and epicatechin, rutin, and narirutin were identified and quantified. As far as the optimum ascorbic acid content is concerned, it was found to be 4.77 mg/g dw. The antioxidant activity was evaluated by three different methods: ferric reducing antioxidant power (FRAP), the DPPH method, and the anti-hydrogen peroxide activity (AHPA) method, resulting in 124.29 µmol ascorbic acid equivalent (AAE)/g dw, 131.28 µmol AAE/g dw, and 229.38 µmol AAE/g dw values, respectively. Lastly, the albumin denaturation inhibition was found to be 37.54%. These findings underscore the potential of PLE as an efficient extraction method for preparing extracts from M. oleifera leaves with the maximum content of bioactive compounds.


Asunto(s)
Antioxidantes , Moringa oleifera , Extractos Vegetales , Hojas de la Planta , Moringa oleifera/química , Hojas de la Planta/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/química , Flavonoides/aislamiento & purificación , Flavonoides/análisis , Flavonoides/química , Flavonoides/farmacología , Polifenoles/aislamiento & purificación , Polifenoles/farmacología , Polifenoles/análisis , Polifenoles/química , Ácido Ascórbico/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Cromatografía Líquida de Alta Presión/métodos , Presión , Extracción Líquido-Líquido/métodos , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación
7.
Mol Biol Rep ; 51(1): 637, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727927

RESUMEN

BACKGROUND: Retinal pigment epithelial cells (RPECs) are a type of retinal cells that structurally and physiologically support photoreceptors. However, hyperglycemia has been shown to play a critical role in the progression of diabetic retinopathy (DR), which is one of the leading causes of vision impairment. In the diabetic eye, the high glucose environment damages RPECs via the induction of oxidative stress, leading to the release of excess reactive oxygen species (ROS) and triggering apoptosis. In this study, we aim to investigate the antioxidant mechanism of Vitamin C in reducing hyperglycemia-induced stress and whether this mechanism can preserve the function of RPECs. METHODS AND RESULTS: ARPE-19 cells were treated with high glucose in the presence or absence of Vitamin C. Cell viability was measured by MTT assay. Cleaved poly ADP-ribose polymerase (PARP) was used to identify apoptosis in the cells. ROS were detected by the DCFH-DA reaction. The accumulation of sorbitol in the aldose reductase (AR) polyol pathway was determined using the sorbitol detection assay. Primary mouse RPECs were isolated from adult mice and identified by Rpe65 expression. The mitochondrial damage was measured by mitochondrial membrane depolarization. Our results showed that high glucose conditions reduce cell viability in RPECs while Vitamin C can restore cell viability, compared to the vehicle treatment. We also demonstrated that Vitamin C reduces hyperglycemia-induced ROS production and prevents cell apoptosis in RPECs in an AR-independent pathway. CONCLUSIONS: These results suggest that Vitamin C is not only a nutritional necessity but also an adjuvant that can be combined with AR inhibitors for alleviating hyperglycemic stress in RPECs.


Asunto(s)
Apoptosis , Ácido Ascórbico , Supervivencia Celular , Glucosa , Hiperglucemia , Estrés Oxidativo , Especies Reactivas de Oxígeno , Epitelio Pigmentado de la Retina , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Hiperglucemia/metabolismo , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/complicaciones , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glucosa/metabolismo , Humanos , Línea Celular , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Retinopatía Diabética/metabolismo , Retinopatía Diabética/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
8.
Molecules ; 29(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38792156

RESUMEN

Vitamin C (VC), also known as ascorbic acid, plays a crucial role as a water-soluble nutrient within the human body, contributing to a variety of metabolic processes. Research findings suggest that increased doses of VC demonstrate potential anti-tumor capabilities. This review delves into the mechanisms of VC absorption and its implications for cancer management. Building upon these foundational insights, we explore modern delivery systems for VC, evaluating its use in diverse cancer treatment methods. These include starvation therapy, chemodynamic therapy (CDT), photothermal/photodynamic therapy (PTT/PDT), electrothermal therapy, immunotherapy, cellular reprogramming, chemotherapy, radiotherapy, and various combination therapies.


Asunto(s)
Ácido Ascórbico , Neoplasias , Ácido Ascórbico/uso terapéutico , Ácido Ascórbico/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Fotoquimioterapia/métodos , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Terapia Combinada
9.
Eur J Immunol ; 54(7): e2451028, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38616772

RESUMEN

Vitamin C (ascorbic acid) is a potent antioxidant and a cofactor for various enzymes including histone demethylases and methylcytosine dioxygenases. Vitamin C also exerts direct cytotoxicity toward selected tumor cells including colorectal carcinoma. Moreover, vitamin C has been shown to impact immune cell differentiation at various levels including maturation and/or functionality of T cells and their progenitors, dendritic cells, B cells, and NK cells. γδ T cells have recently attracted great interest as effector cells for cell-based cancer immunotherapy, due to their HLA-independent recognition of a large variety of tumor cells. While γδ T cells can thus be also applied as an allogeneic off-the-shelf product, it is obvious that the effector function of γδ T cells needs to be optimized to ensure the best possible clinical efficacy. Here we review the immunomodulatory mechanisms of vitamin C with a special focus on how vitamin C enhances the effector function of γδ T cells. We also discuss future directions of how vitamin C can be used in the clinical setting to boost the efficacy of adoptive cell therapies.


Asunto(s)
Ácido Ascórbico , Receptores de Antígenos de Linfocitos T gamma-delta , Ácido Ascórbico/farmacología , Humanos , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Animales , Inmunoterapia Adoptiva/métodos , Linfocitos T/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Diferenciación Celular/inmunología , Diferenciación Celular/efectos de los fármacos
10.
Epigenetics ; 19(1): 2337142, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38583183

RESUMEN

Deregulation of ten-eleven Translocation protein 1 (TET1) is commonly reported to induce imbalances in gene expression and subsequently to colorectal cancer development (CRC). On the other hand, vitamin C (VitC) improves the prognosis of colorectal cancer by reprogramming the cancer epigenome and limiting chemotherapeutic drug resistance events. In this study, we aimed to characterize TET1-specific subcellular compartments and evaluate the effect of VitC on TET1 compartmentalization in colonic tumour cells. We demonstrated that TET1 is concentrated in coarse nuclear bodies (NB) and 5-hydroxymethylcytosine (5hmC) in foci in colorectal cancer cells (HCT116, Caco-2, and HT-29). To our knowledge, this is the first report of a novel intracellular localization profile of TET1 and its demethylation marker, 5hmC, in CRC cells. Interestingly, we found that TET1-NBs frequently interacted with Cajal bodies, but not with promyelocytic leukaemia (PML) bodies. In addition, we report that VitC treatment of HCT116 cells induces 5hmC foci biogenesis and triggers 5hmC marks to form active complexes with nuclear body components, including both Cajal and PML proteins. Our data highlight novel NB-concentrating TET1 in CRC cells and demonstrate that VitC modulates TET1-NBs' interactions with other nuclear structures. These findings reveal novel TET1-dependent cellular functions and potentially provide new insights for CRC management.


Asunto(s)
Ácido Ascórbico , Neoplasias Colorrectales , Humanos , Células CACO-2 , Ácido Ascórbico/farmacología , Cuerpos Nucleares de la Leucemia Promielocítica , Metilación de ADN , Cuerpos Nucleares , Vitaminas , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Oxigenasas de Función Mixta/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
11.
Biosci Trends ; 18(2): 187-194, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38599880

RESUMEN

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic and symmetric in-flammation. Our previous research revealed an imbalance in the gut flora of RA patients and showed that certain gut microbiota can accelerate RA progression by enhancing vitamin C degradation. However, it is unclear whether vitamin C supplementation could improve the gut microbiota to prevent the development of arthritis by interfering with the gut-joint axis. In this work, we aimed to evaluate the effects of vitamin C in regulating the gut microbiota and to elucidate its potential role in the onset and progression of RA in a mouse model, thus providing a basis for the development of new intervention strategies and treatments for RA. In this study, collagen-induced arthritis (CIA) mouse models, biochemical, histological and 16S rRNA microbiological methods were used to investigate the role and possible mechanism of vitamin C in rheumatoid arthritis. The results showed that treatment of CIA mice with vitamin C effectively rescued the gut mi-crobiota imbalance and suppressed the inflammatory response associated with RA, and effectively alleviated arthritis symptoms in mice in which levels of the pro-inflammatory cytokines IL-6 and TNF-α were specifi-cally reduced. In conclusion, our results demonstrate the potential of vitamin C as a potential therapeutic choice for RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ácido Ascórbico , Microbioma Gastrointestinal , Animales , Ácido Ascórbico/uso terapéutico , Ácido Ascórbico/administración & dosificación , Ácido Ascórbico/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/microbiología , Ratones , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/microbiología , Artritis Experimental/inmunología , Masculino , Ratones Endogámicos DBA , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Modelos Animales de Enfermedad , ARN Ribosómico 16S/genética
12.
Bioorg Chem ; 147: 107402, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688199

RESUMEN

A series of novel l-ascorbic acid derivatives bearing aryl and alkyl sulfonate substituents were synthesized and characterized. In vitro anticancer evaluation against MCF-7 (breast) and A-549 (lung) cancer cell lines revealed potent activity for most of the compounds, with 2b being equipotent to the standard drug colchicine against MCF-7 (IC50 = 0.04 µM). Notably, compound 2b displayed 89-fold selectivity for MCF-7 breast cancer over MCF-10A normal breast cells. Derivatives with two sulfonate groups (2a-g, 3a-g) exhibited superior potency over those with one sulfonate (4a-c,5g, 6b). Compounds 2b and 2c potently inhibited tubulin polymerization in A-549 cancer cells (73.12 % and 62.09 % inhibition, respectively), substantiating their anticancer potential through microtubule disruption. Molecular docking studies showed higher binding scores and affinities for these compounds at the colchicine-binding site of α, ß-tubulin compared to colchicine itself. In-silico ADMET predictions indicated favourable drug-like properties, with 2b exhibiting the highest binding affinity. These sulfonate derivatives of l-ascorbic acid represents promising lead scaffolds for anticancer drug development.


Asunto(s)
Antineoplásicos , Ácido Ascórbico , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Moduladores de Tubulina , Tubulina (Proteína) , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ácido Ascórbico/química , Ácido Ascórbico/farmacología , Tubulina (Proteína)/metabolismo , Relación Estructura-Actividad , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Polimerizacion/efectos de los fármacos , Ácidos Sulfónicos/química , Ácidos Sulfónicos/antagonistas & inhibidores , Ácidos Sulfónicos/farmacología , Línea Celular Tumoral
13.
Nutrients ; 16(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38674790

RESUMEN

Kiwifruit (KF) has shown neuroprotective potential in cell-based and rodent models by augmenting the capacity of endogenous antioxidant systems. This study aimed to determine whether KF consumption modulates the antioxidant capacity of plasma and brain tissue in growing pigs. Eighteen male pigs were divided equally into three groups: (1) bread, (2) bread + Actinidia deliciosa cv. 'Hayward' (green-fleshed), and (3) bread + A. chinensis cv. 'Hort16A' (yellow-fleshed). Following consumption of the diets for eight days, plasma and brain tissue (brain stem, corpus striatum, hippocampus, and prefrontal cortex) were collected and measured for biomarkers of antioxidant capacity, enzyme activity, and protein expression assessments. Green KF significantly increased ferric-reducing antioxidant potential (FRAP) in plasma and all brain regions compared with the bread-only diet. Gold KF increased plasma ascorbate concentration and trended towards reducing acetylcholinesterase activity in the brain compared with the bread-only diet. Pearson correlation analysis revealed a significant positive correlation between FRAP in the brain stem, prefrontal cortex, and hippocampus with the total polyphenol concentration of dietary interventions. These findings provide exploratory evidence for the benefits of KF constituents in augmenting the brain's antioxidant capacity that may support neurological homeostasis during oxidative stress.


Asunto(s)
Actinidia , Antioxidantes , Frutas , Fármacos Neuroprotectores , Animales , Actinidia/química , Antioxidantes/farmacología , Antioxidantes/metabolismo , Masculino , Frutas/química , Fármacos Neuroprotectores/farmacología , Porcinos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Humanos , Estrés Oxidativo/efectos de los fármacos , Dieta , Pan , Polifenoles/farmacología , Modelos Animales , Ácido Ascórbico/farmacología
14.
Plant Physiol Biochem ; 210: 108627, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38663265

RESUMEN

Sporidiobolus pararoseus Y16, a species of significant ecological importance, has distinctive physiological and biological regulatory systems that aid in its survival and environmental adaptation. The goal of this investigation was to understand the complex interactions between physiological and molecular mechanisms in pear fruits as induced by S. pararoseus Y16. The study investigated the use of S. pararoseus Y16 and ascorbic acid (VC) in combination in controlling blue mold decay in pears via physiological and transcriptomic approach. The study results showed that treatment of S. pararoseus Y16 with 150 µg/mL VC reduced pears blue mold disease incidence from 43% to 11%. Furthermore, the combination of S. pararoseus Y16 and VC significantly inhibited mycelia growth and spore germination of Penicillium expansum in the pear's wounds. The pre-treatment did not impair post-harvest qualities of pear fruit but increased antioxidant enzyme activity specifically polyphenol oxidase (PPO), peroxidase (POD), catalase (CAT) activities as well as phenylalanine ammonia-lyase (PAL) enzyme activity. The transcriptome analysis further uncovered 395 differentially expressed genes (DEGs) and pathways involved in defense mechanisms and disease resistance. Notable pathways of the DEGs include plant-pathogen interaction, tyrosine metabolism, and hormone signal transduction pathways. The integrative approach with both physiological and transcriptomic tools to investigate postharvest pathology in pear fruits with clarification on how S. pararoseus Y16 enhanced with VC, improved gene expression for disease defense, and create alternative controls strategies for managing postharvest diseases.


Asunto(s)
Ácido Ascórbico , Estrés Oxidativo , Penicillium , Enfermedades de las Plantas , Pyrus , Pyrus/microbiología , Penicillium/fisiología , Penicillium/efectos de los fármacos , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacología , Enfermedades de las Plantas/microbiología , Estrés Oxidativo/efectos de los fármacos , Perfilación de la Expresión Génica , Basidiomycota/fisiología , Transcriptoma
15.
Aging (Albany NY) ; 16(8): 6937-6953, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38643461

RESUMEN

AIMS: This study aimed to evaluate the effects of VC on SIMI in rats. METHODS: In this study, the survival rate of high dose VC for SIMI was evaluated within 7 days. Rats were randomly assigned to three groups: Sham group, CLP group, and high dose VC (500 mg/kg i.v.) group. The animals in each group were treated with drugs for 1 day, 3 days or 5 days, respectively. Echocardiography, myocardial enzymes and HE were used to detect cardiac function. IL-1ß, IL-6, IL-10 and TNF-α) in serum were measured using ELISA kits. Western blot was used to detect proteins related to apoptosis, inflammation, autophagy, MAPK, NF-κB and PI3K/Akt/mTOR signaling pathways. RESULTS: High dose VC improved the survival rate of SIMI within 7 days. Echocardiography, HE staining and myocardial enzymes showed that high-dose VC relieved SIMI in rats in a time-dependent manner. And compared with CLP group, high-dose VC decreased the expressions of pro-apoptotic proteins, while increased the expression of anti-apoptotic protein. And compared with CLP group, high dose VC decreased phosphorylation levels of Erk1/2, P38, JNK, NF-κB and IKK α/ß in SIMI rats. High dose VC increased the expression of the protein Beclin-1 and LC3-II/LC3-I ratio, whereas decreased the expression of P62 in SIMI rats. Finally, high dose VC attenuated phosphorylation of PI3K, AKT and mTOR compared with the CLP group. SIGNIFICANCE: Our results showed that high dose VC has a good protective effect on SIMI after continuous treatment, which may be mediated by inhibiting apoptosis and inflammatory, and promoting autophagy through regulating MAPK, NF-κB and PI3K/AKT/mTOR pathway.


Asunto(s)
Ácido Ascórbico , Autofagia , Lesiones Cardíacas , Miocardio , Sepsis , Animales , Ratas , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Apoptosis/efectos de los fármacos , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Autofagia/efectos de los fármacos , Lesiones Cardíacas/tratamiento farmacológico , Lesiones Cardíacas/etiología , Lesiones Cardíacas/metabolismo , Miocardio/metabolismo , Miocardio/patología , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
16.
Biochem Biophys Res Commun ; 709: 149816, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38547607

RESUMEN

The development of therapies that target cancer stem cells (CSCs) is an important challenge in cancer research. The antioxidant system is enhanced in CSCs, which may lead to resistance to existing therapies. Ascorbic acid (AA) has the potential to act as both an antioxidant and a pro-oxidant agent, but its effects on CSCs are a subject of current research. Here, we investigated the effect of AA focusing specifically on CSCs with the hepatocellular carcinoma cell line Li-7. The Li-7 cell line is heterogenous consisting of CD166- and CD166+ cells; CD166- cells include CSC-like cells (CD13+CD166- cells) and CD13-CD166- cells that can revert to CD13+CD166- cells. The addition of AA to the culture medium caused cell death in both cell populations in CD166- cells in a concentration dependent manner. In contrast, AA administration had a limited effect on CD166+ non-CSC cells. The level of reactive oxygen species after AA treatment was elevated only in CD166- cells. The effect of AA only occurred at low cell densities in 2D and 3D cultures. In a mouse tumor model injected with Li-7 cells, intraperitoneal administration of AA failed to prevent tumor formation but appeared to delay tumor growth. Our findings shed light on why AA administration has not become a mainstream treatment for cancer treatment; however, they also show the possibility that AA can be used in therapies to suppress CSCs.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Células Madre Neoplásicas/patología
17.
ACS Chem Neurosci ; 15(6): 1197-1205, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38451201

RESUMEN

Vitamin C (Vc) plays a pivotal role in a series of pathological processes, such as tumors, immune diseases, and neurological disorders. However, its therapeutic potential for tinnitus management remains unclear. In this study, we find that Vc relieves tinnitus in noise-exposed rats. In the 7-day therapy groups, spontaneous firing rate (SFR) increases from 1.17 ± 0.10 Hz to 1.77 ± 0.15 Hz after noise exposure. Vc effectively reduces the elevated SFR to 0.99 ± 0.07 and 0.55 ± 0.05 Hz at different doses. The glutamate level in auditory cortex of noise-exposed rats (3.78 ± 0.42 µM) increases relative to that in the control group (1.34 ± 0.22 µM). High doses of Vc (500 mg/kg/day) effectively reduce the elevated glutamate levels (1.49 ± 0.28 µM). Mechanistic studies show that the expression of glutamate transporter 1 (GLT-1) is impaired following noise exposure and that Vc treatment effectively restores GLT-1 expression in the auditory cortex. Meanwhile, the GLT-1 inhibitor, dl-threo-beta-benzyloxyaspartic acid (dl-TBOA), invalidates the protection role of Vc. Our finding shows that Vc substantially enhances glutamate clearance by upregulating GLT-1 and consequently alleviates noise-induced tinnitus. This study provides valuable insight into a novel biological target for the development of therapeutic interventions that may prevent the onset of tinnitus.


Asunto(s)
Corteza Auditiva , Acúfeno , Ratas , Animales , Corteza Auditiva/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Neuroprotección , Acúfeno/tratamiento farmacológico , Acúfeno/metabolismo , Ácido Glutámico/metabolismo , Modelos Animales de Enfermedad , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo
18.
Gynecol Oncol ; 183: 93-102, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38555710

RESUMEN

OBJECTIVE: Uterine serous carcinoma is a highly aggressive non-endometrioid subtype of endometrial cancer with poor survival rates overall, creating a strong need for new therapeutic strategies to improve outcomes. High-dose ascorbate (vitamin C) has been shown to inhibit cell proliferation and tumor growth in multiple preclinical models and has shown promising anti-tumor activity in combination with chemotherapy, with a favorable safety profile. We aimed to study the anti-tumor effects of ascorbate and its synergistic effect with carboplatin on uterine serous carcinoma cells. METHODS: Cell proliferation was evaluated by MTT and colony formation assays in ARK1, ARK2 and SPEC2 cells. Cellular stress, antioxidant ability, cleaved caspase 3 activity and adhesion were measured by ELISA assays. Cell cycle was detected by Cellometer. Invasion was measured using a wound healing assay. Changes in protein expression were determined by Western immunoblotting. RESULTS: High-dose ascorbate significantly inhibited cell proliferation, caused cell cycle arrest, induced cellular stress, and apoptosis, increased DNA damage, and suppressed cell invasion in ARK1 and SPEC2 cells. Treatment of both cells with 1 mM N-acetylcysteine reversed ascorbate-induced apoptosis and inhibition of cell proliferation. The combination of ascorbate and carboplatin produced significant synergistic effects in inhibiting cell proliferation and invasion, inducing cellular stress, causing DNA damage, and enhancing cleaved caspase 3 levels compared to each compound alone in both cells. CONCLUSIONS: Ascorbate has potent antitumor activity and acts synergistically with carboplatin through its pro-oxidant effects. Clinical trials of ascorbate combined with carboplatin as adjuvant treatment of uterine serous carcinoma are worth exploring.


Asunto(s)
Apoptosis , Ácido Ascórbico , Carboplatino , Cistadenocarcinoma Seroso , Sinergismo Farmacológico , Neoplasias Uterinas , Ácido Ascórbico/farmacología , Ácido Ascórbico/administración & dosificación , Humanos , Carboplatino/farmacología , Carboplatino/administración & dosificación , Femenino , Línea Celular Tumoral , Neoplasias Uterinas/tratamiento farmacológico , Neoplasias Uterinas/patología , Neoplasias Uterinas/metabolismo , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/patología , Cistadenocarcinoma Seroso/metabolismo , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Especies Reactivas de Oxígeno/metabolismo , Daño del ADN/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/administración & dosificación
19.
J Food Sci ; 89(5): 2814-2826, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38551189

RESUMEN

Conventional methods for inhibiting browning in wine are not suitable for cili (Roxburgh rose) wine, which is naturally rich in ascorbic acid and subject to restrictions on SO2 addition. In this study, the capacity of various additives to suppress the browning of cili wine caused by ascorbic acid degradation was investigated. SO2, pure reduced glutathione (GSH), regular inactive dry yeast (IDY), and IDY with various levels of glutathione enrichment (g-IDY) were separately introduced into cili wine following the completion of alcoholic fermentation. Over a period of 12 months, the color parameters, levels of ascorbic acid, phenolic compounds, antioxidant activity, and GSH content of the aged cili wine were analyzed. Among the investigated additives, g-IDY exhibited the strongest inhibitory effect on browning. Moreover, adding 800 mg L-1 g-IDY increased the total reducing power and residual GSH content by factors of 1.52 and 2.44, respectively, with respect to those of the SO2-treated cili wine, thus enhancing its antioxidant capacity. Using ultra-performance liquid chromatography-tandem mass spectrometry analysis, a total of 22 monomeric phenolic compounds were identified. After g-IDY treatment, the contents of 15 easily oxidizable o-diphenols decreased, preventing the depletion of ascorbic acid as an antioxidant. As a result, the levels of ascorbic acid and total phenolics were 1.5-fold and 1.17-fold higher than those in the SO2-treated wine, respectively. This study demonstrates that g-IDY provides a new approach to preventing the browning of wine caused by ascorbic acid degradation. PRACTICAL APPLICATION: Cili wine, characterized by its high ascorbic acid content, can decelerate cellular senescence and bolster immune function, which has contributed to its popularity. Ascorbic acid, a potent antioxidant, can be spiked into white wines to significantly enhance their antioxidative properties. Nevertheless, the high ascorbic acid content in cili wine renders it susceptible to oxidation under both aerobic and anaerobic conditions, which alters the wine's hue from golden to dark brown, thus diminishing its commercial value. Overcoming this browning associated with ascorbic acid degradation is therefore of considerable importance and could facilitate the advancement of the cili industry.


Asunto(s)
Antioxidantes , Ácido Ascórbico , Color , Fermentación , Glutatión , Fenoles , Dióxido de Azufre , Vino , Vino/análisis , Ácido Ascórbico/análisis , Ácido Ascórbico/farmacología , Antioxidantes/análisis , Antioxidantes/farmacología , Fenoles/análisis , Glutatión/metabolismo , Dióxido de Azufre/análisis , Saccharomyces cerevisiae
20.
Ther Deliv ; 15(4): 267-278, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38449422

RESUMEN

Background: Thymoquinone (TQ) and vitamin C (Vit C) have demonstrated individual anticancer effects in various studies. TQ exhibits inhibitory properties against tumor growth, induces apoptosis, while Vit C protects against DNA damage and oxidative stress. Aim: Formulation of TQ and Vit C combination into liposomes using two methods and investigate the synergistic anticancer. Method: Liposomal preparations were characterized, and the purity of drug components was confirmed using encapsulation efficiency (EE %). Results: In vitro cell viability studies demonstrated the inhibitory effect of TQ and Vit C against colorectal (HT29, 5.5 ± 0.9 µM) and lung cancer (A549, 6.25 ± 0.9 µM) cell lines with combination index <1. Conclusion: The formulation of TQ and Vit C displayed synergistic anticancer activity.


Asunto(s)
Liposomas , Neoplasias Pulmonares , Humanos , Ácido Ascórbico/farmacología , Benzoquinonas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA