Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.154
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 637, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727927

RESUMEN

BACKGROUND: Retinal pigment epithelial cells (RPECs) are a type of retinal cells that structurally and physiologically support photoreceptors. However, hyperglycemia has been shown to play a critical role in the progression of diabetic retinopathy (DR), which is one of the leading causes of vision impairment. In the diabetic eye, the high glucose environment damages RPECs via the induction of oxidative stress, leading to the release of excess reactive oxygen species (ROS) and triggering apoptosis. In this study, we aim to investigate the antioxidant mechanism of Vitamin C in reducing hyperglycemia-induced stress and whether this mechanism can preserve the function of RPECs. METHODS AND RESULTS: ARPE-19 cells were treated with high glucose in the presence or absence of Vitamin C. Cell viability was measured by MTT assay. Cleaved poly ADP-ribose polymerase (PARP) was used to identify apoptosis in the cells. ROS were detected by the DCFH-DA reaction. The accumulation of sorbitol in the aldose reductase (AR) polyol pathway was determined using the sorbitol detection assay. Primary mouse RPECs were isolated from adult mice and identified by Rpe65 expression. The mitochondrial damage was measured by mitochondrial membrane depolarization. Our results showed that high glucose conditions reduce cell viability in RPECs while Vitamin C can restore cell viability, compared to the vehicle treatment. We also demonstrated that Vitamin C reduces hyperglycemia-induced ROS production and prevents cell apoptosis in RPECs in an AR-independent pathway. CONCLUSIONS: These results suggest that Vitamin C is not only a nutritional necessity but also an adjuvant that can be combined with AR inhibitors for alleviating hyperglycemic stress in RPECs.


Asunto(s)
Apoptosis , Ácido Ascórbico , Supervivencia Celular , Glucosa , Hiperglucemia , Estrés Oxidativo , Especies Reactivas de Oxígeno , Epitelio Pigmentado de la Retina , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Hiperglucemia/metabolismo , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/complicaciones , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glucosa/metabolismo , Humanos , Línea Celular , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Retinopatía Diabética/metabolismo , Retinopatía Diabética/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
2.
BMC Plant Biol ; 24(1): 365, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38706002

RESUMEN

BACKGROUND: In plants, GABA plays a critical role in regulating salinity stress tolerance. However, the response of soybean seedlings (Glycine max L.) to exogenous gamma-aminobutyric acid (GABA) under saline stress conditions has not been fully elucidated. RESULTS: This study investigated the effects of exogenous GABA (2 mM) on plant biomass and the physiological mechanism through which soybean plants are affected by saline stress conditions (0, 40, and 80 mM of NaCl and Na2SO4 at a 1:1 molar ratio). We noticed that increased salinity stress negatively impacted the growth and metabolism of soybean seedlings, compared to control. The root-stem-leaf biomass (27- and 33%, 20- and 58%, and 25- and 59% under 40- and 80 mM stress, respectively]) and the concentration of chlorophyll a and chlorophyll b significantly decreased. Moreover, the carotenoid content increased significantly (by 35%) following treatment with 40 mM stress. The results exhibited significant increase in the concentration of hydrogen peroxide (H2O2), malondialdehyde (MDA), dehydroascorbic acid (DHA) oxidized glutathione (GSSG), Na+, and Cl- under 40- and 80 mM stress levels, respectively. However, the concentration of mineral nutrients, soluble proteins, and soluble sugars reduced significantly under both salinity stress levels. In contrast, the proline and glycine betaine concentrations increased compared with those in the control group. Moreover, the enzymatic activities of ascorbate peroxidase, monodehydroascorbate reductase, glutathione reductase, and glutathione peroxidase decreased significantly, while those of superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase increased following saline stress, indicating the overall sensitivity of the ascorbate-glutathione cycle (AsA-GSH). However, exogenous GABA decreased Na+, Cl-, H2O2, and MDA concentration but enhanced photosynthetic pigments, mineral nutrients (K+, K+/Na+ ratio, Zn2+, Fe2+, Mg2+, and Ca2+); osmolytes (proline, glycine betaine, soluble sugar, and soluble protein); enzymatic antioxidant activities; and AsA-GSH pools, thus reducing salinity-associated stress damage and resulting in improved growth and biomass. The positive impact of exogenously applied GABA on soybean plants could be attributed to its ability to improve their physiological stress response mechanisms and reduce harmful substances. CONCLUSION: Applying GABA to soybean plants could be an effective strategy for mitigating salinity stress. In the future, molecular studies may contribute to a better understanding of the mechanisms by which GABA regulates salt tolerance in soybeans.


Asunto(s)
Ácido Ascórbico , Glutatión , Glycine max , Plantones , Ácido gamma-Aminobutírico , Ácido gamma-Aminobutírico/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/fisiología , Glycine max/efectos de los fármacos , Glycine max/metabolismo , Glycine max/fisiología , Ácido Ascórbico/metabolismo , Glutatión/metabolismo , Minerales/metabolismo , Tolerancia a la Sal/efectos de los fármacos , Estrés Salino/efectos de los fármacos , Clorofila/metabolismo , Salinidad
3.
J Hazard Mater ; 472: 134453, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38723481

RESUMEN

Crop plants face complex tropospheric ozone (O3) stress, emphasizing the need for a food security-focused management strategy. While research extensively explores O3's harmful effects, this study delves into the combined impacts of O3 and CO2. This study investigates the contrasting responses of O3-sensitive (PBW-550) and O3-resistant (HUW-55) wheat cultivars, towards elevated ozone (eO3) and elevated carbon dioxide (eCO2), both individually and in combination. The output of the present study confirms the positive effect of eCO2 on wheat cultivars exposed to eO3 stress, with more prominent effects on O3-sensitive cultivar PBW-550, as compared to the O3-resistant HUW-55. The differential response of the two wheat cultivars can be attributed to the mechanistic variations in the enzyme activities of the Halliwell-Asada pathway (AsA-GSH cycle) and the ascorbate and glutathione pool. The results indicate that eCO2 was unable to uplift the regeneration of the glutathione pool in HUW-55, however, PBW-550 responded well, under similar eO3 conditions. The study's findings, highlighting mechanistic variations in antioxidants, show a more positive yield response in PBW-550 compared to HUW-55 under ECO treatment. This insight can inform agricultural strategies, emphasizing the use of O3-sensitive cultivars for sustained productivity in future conditions with high O3 and CO2 concentrations.


Asunto(s)
Ácido Ascórbico , Dióxido de Carbono , Glutatión , Ozono , Triticum , Ozono/toxicidad , Ozono/farmacología , Triticum/efectos de los fármacos , Triticum/metabolismo , Dióxido de Carbono/metabolismo , Glutatión/metabolismo , Ácido Ascórbico/metabolismo , Contaminantes Atmosféricos/toxicidad
4.
Chemosphere ; 359: 142358, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759809

RESUMEN

The uptake of nickel (Ni) by Asteraceae/Cichorioideae species Cichorium intybus, Leontodon hispidus and Hieracium aurantiacum exposed to Ni (0.3 or 30 µM) over 14 days and subsequent changes of metabolites were compared in order to identify their phytoaccumulation potential. Hieracium contained the most Ni (194 and 1558 µg Ni/g DW at 30 µM Ni in shoots and roots) but had unchanged amount of antioxidants (vitamin C and thiols) in the shoots and an elevated amount in the roots, which may be the reason for the absence of visible damage. On the contrary, Leontodon reacted by a decrease in antioxidants to an excess of Ni, which can be related to enhanced oxidative stress (an increase in ROS and a decrease in nitric oxide detected by fluorescence microscopy). All roots were anatomically in the secondary state and Ni-induced cell wall thickening (i.e. lignin/suberin deposition) was most visible in Hieracium roots, which also contained 2-times more Ni than the other species. Among essential elements, mainly Fe accumulation was affected by Ni excess. The content of soluble phenols increased while organic acids (malic and citric) decreased sometimes extensively (up to 90%) in individual species. PCA analyses showed that especially ascorbic acid, thiols and phenols affect the separation in the shoots especially with regard to applied concentration of Ni, while these metabolites in the roots clearly separated the species (Cichorium from the others). The data show the highest tolerance to Ni in Hieracium, but the highest phytoaccumulation of Ni was found in Cichorium (626 µg Ni/plant or 122 µg Ni/shoot at a dose of 30 µM Ni).


Asunto(s)
Antioxidantes , Asteraceae , Níquel , Estrés Oxidativo , Raíces de Plantas , Níquel/metabolismo , Antioxidantes/metabolismo , Asteraceae/metabolismo , Raíces de Plantas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Contaminantes del Suelo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Ascórbico/metabolismo , Brotes de la Planta/metabolismo , Compuestos de Sulfhidrilo/metabolismo
5.
PeerJ ; 12: e17219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650645

RESUMEN

Abiotic stress caused by soil salinization remains a major global challenge that threatens and severely impacts crop growth, causing yield reduction worldwide. In this study, we aim to investigate the damage of salt stress on the leaf physiology of two varieties of rice (Huanghuazhan, HHZ, and Xiangliangyou900, XLY900) and the regulatory mechanism of Hemin to maintain seedling growth under the imposed stress. Rice leaves were sprayed with 5.0 µmol·L-1 Hemin or 25.0 µmol·L-1 ZnPP (Zinc protoporphyrin IX) at the three leaf and one heart stage, followed by an imposed salt stress treatment regime (50.0 mmol·L-1 sodium chloride (NaCl)). The findings revealed that NaCl stress increased antioxidant enzymes activities and decreased the content of nonenzymatic antioxidants such as ascorbate (AsA) and glutathione (GSH). Furthermore, the content of osmoregulatory substances like soluble proteins and proline was raised. Moreover, salt stress increased reactive oxygen species (ROS) content in the leaves of the two varieties. However, spraying with Hemin increased the activities of antioxidants such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and accelerated AsA-GSH cycling to remove excess ROS. In summary, Hemin reduced the effect of salt stress on the physiological characteristics of rice leaves due to improved antioxidant defense mechanisms that impeded lipid peroxidation. Thus, Hemin was demonstrated to lessen the damage caused by salt stress.


Asunto(s)
Antioxidantes , Glutatión , Hemina , Oryza , Estrés Salino , Oryza/efectos de los fármacos , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Hemina/farmacología , Antioxidantes/metabolismo , Estrés Salino/efectos de los fármacos , Glutatión/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Ascórbico/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Cloruro de Sodio/farmacología , Catalasa/metabolismo , Superóxido Dismutasa/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo
6.
Plant Physiol Biochem ; 210: 108627, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38663265

RESUMEN

Sporidiobolus pararoseus Y16, a species of significant ecological importance, has distinctive physiological and biological regulatory systems that aid in its survival and environmental adaptation. The goal of this investigation was to understand the complex interactions between physiological and molecular mechanisms in pear fruits as induced by S. pararoseus Y16. The study investigated the use of S. pararoseus Y16 and ascorbic acid (VC) in combination in controlling blue mold decay in pears via physiological and transcriptomic approach. The study results showed that treatment of S. pararoseus Y16 with 150 µg/mL VC reduced pears blue mold disease incidence from 43% to 11%. Furthermore, the combination of S. pararoseus Y16 and VC significantly inhibited mycelia growth and spore germination of Penicillium expansum in the pear's wounds. The pre-treatment did not impair post-harvest qualities of pear fruit but increased antioxidant enzyme activity specifically polyphenol oxidase (PPO), peroxidase (POD), catalase (CAT) activities as well as phenylalanine ammonia-lyase (PAL) enzyme activity. The transcriptome analysis further uncovered 395 differentially expressed genes (DEGs) and pathways involved in defense mechanisms and disease resistance. Notable pathways of the DEGs include plant-pathogen interaction, tyrosine metabolism, and hormone signal transduction pathways. The integrative approach with both physiological and transcriptomic tools to investigate postharvest pathology in pear fruits with clarification on how S. pararoseus Y16 enhanced with VC, improved gene expression for disease defense, and create alternative controls strategies for managing postharvest diseases.


Asunto(s)
Ácido Ascórbico , Estrés Oxidativo , Penicillium , Enfermedades de las Plantas , Pyrus , Pyrus/microbiología , Penicillium/fisiología , Penicillium/efectos de los fármacos , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacología , Enfermedades de las Plantas/microbiología , Estrés Oxidativo/efectos de los fármacos , Perfilación de la Expresión Génica , Basidiomycota/fisiología , Transcriptoma
7.
Sci Total Environ ; 932: 172555, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677420

RESUMEN

Microplastics (MPs) pose a significant threat to the function of agro-ecosystems. At present, research on MPs has mainly focused on the effects of different concentrations or types of MPs on a crop, while ignoring other environmental factors. In agricultural production, the application of nitrogen (N) fertilizer is an important means to maintain the high yield of crops. The effects of MPs and N on growth parameters, photosynthetic system, active oxygen metabolism, nutrient content, and ascorbate-glutathione (AsA-GSH) cycle of maize and wheat were studied in order to explicit whether N addition could effectively alleviate the effects of MPs on maize and wheat. The results showed that MPs inhibited the plant height of both maize and wheat, and MPs effects on physiological traits of maize were more severe than those of wheat, reflecting in reactive oxygen metabolism and restriction of photosynthetic capacity. Under the condition of N supply, AsA-GSH cycle of two plants has different response strategies to MPs: Maize promoted enzyme activity and co-accumulation of AsA and GSH, while wheat tended to consume AsA and accumulate GSH. N application induced slight oxidative stress on maize, which was manifested as an increase in hydrogen peroxide and malonaldehyde contents, and activities of polyphenol oxidase and peroxidase. The antioxidant capacity of maize treated with the combination of MPs + N was better than that treated with N or MPs alone. N could effectively alleviate the adverse effects of MPs on wheat by improving the antioxidant capacity.


Asunto(s)
Microplásticos , Nitrógeno , Oxidación-Reducción , Fotosíntesis , Triticum , Zea mays , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Zea mays/fisiología , Triticum/crecimiento & desarrollo , Triticum/fisiología , Triticum/efectos de los fármacos , Triticum/metabolismo , Fotosíntesis/efectos de los fármacos , Nitrógeno/metabolismo , Microplásticos/toxicidad , Glutatión/metabolismo , Fertilizantes , Homeostasis , Contaminantes del Suelo/toxicidad , Ácido Ascórbico/metabolismo , Estrés Oxidativo
8.
Metallomics ; 16(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38614957

RESUMEN

Metal ion-catalyzed overproduction of reactive oxygen species (ROS) is believed to contribute significantly to oxidative stress and be involved in several biological processes, from immune defense to development of diseases. Among the essential metal ions, copper is one of the most efficient catalysts in ROS production in the presence of O2 and a physiological reducing agent such as ascorbate. To control this chemistry, Cu ions are tightly coordinated to biomolecules. Free or loosely bound Cu ions are generally avoided to prevent their toxicity. In the present report, we aim to find stable Cu-ligand complexes (Cu-L) that can efficiently catalyze the production of ROS in the presence of ascorbate under aerobic conditions. Thermodynamic stability would be needed to avoid dissociation in the biological environment, and high ROS catalysis is of interest for applications as antimicrobial or anticancer agents. A series of Cu complexes with the well-known tripodal and tetradentate ligands containing a central amine linked to three pyridyl-alkyl arms of different lengths were investigated. Two of them with mixed arm length showed a higher catalytic activity in the oxidation of ascorbate and subsequent ROS production than Cu salts in buffer, which is an unprecedented result. Despite these high catalytic activities, no increased antimicrobial activity toward Escherichia coli or cytotoxicity against eukaryotic AGS cells in culture related to Cu-L-based ROS production could be observed. The potential reasons for discrepancy between in vitro and in cell data are discussed.


Asunto(s)
Cobre , Especies Reactivas de Oxígeno , Cobre/metabolismo , Cobre/química , Especies Reactivas de Oxígeno/metabolismo , Ligandos , Catálisis , Humanos , Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Complejos de Coordinación/farmacología , Ácido Ascórbico/metabolismo , Ácido Ascórbico/química , Oxidación-Reducción
9.
Biochem Biophys Res Commun ; 709: 149816, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38547607

RESUMEN

The development of therapies that target cancer stem cells (CSCs) is an important challenge in cancer research. The antioxidant system is enhanced in CSCs, which may lead to resistance to existing therapies. Ascorbic acid (AA) has the potential to act as both an antioxidant and a pro-oxidant agent, but its effects on CSCs are a subject of current research. Here, we investigated the effect of AA focusing specifically on CSCs with the hepatocellular carcinoma cell line Li-7. The Li-7 cell line is heterogenous consisting of CD166- and CD166+ cells; CD166- cells include CSC-like cells (CD13+CD166- cells) and CD13-CD166- cells that can revert to CD13+CD166- cells. The addition of AA to the culture medium caused cell death in both cell populations in CD166- cells in a concentration dependent manner. In contrast, AA administration had a limited effect on CD166+ non-CSC cells. The level of reactive oxygen species after AA treatment was elevated only in CD166- cells. The effect of AA only occurred at low cell densities in 2D and 3D cultures. In a mouse tumor model injected with Li-7 cells, intraperitoneal administration of AA failed to prevent tumor formation but appeared to delay tumor growth. Our findings shed light on why AA administration has not become a mainstream treatment for cancer treatment; however, they also show the possibility that AA can be used in therapies to suppress CSCs.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Células Madre Neoplásicas/patología
10.
Food Chem ; 446: 138866, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430769

RESUMEN

Fresh-cut potatoes are prone to surface browning and physiological degradation. Chlorogenic acid (CGA), a natural phenolic antioxidant, has demonstrated preservative properties in various postharvest products. However, the underlying mechanisms of its application on maintaining quality remain unclear. Therefore, the effect of exogenous CGA treatment on quality deterioration of potato slices and the mechanisms involved were investigated. Results revealed CGA treatment retarded the browning coloration, suppressed microbial growth and inhibited the declines in starch, and ascorbic acid contents in potato slices. Meanwhile, the treatment activated the phenylpropanoid pathway but decreased the activities of phenolic decomposition-related enzymes such as polyphenol oxidase (PPO) and tyrosinase and downregulated StPPO expression. Moreover, the treated slices exhibited reduced accumulation of reactive oxygen species and increased activity of antioxidant enzymes. Additionally, they displayed enhanced 2,2-diphenyl-1-picrylhydrazyl radicals scavenging capacity and higher ATP levels. Therefore, these findings indicated that CGA treatment was effective for quality maintenance and antioxidant capacity enhancement in fresh-cut potatoes, thereby providing potential strategies for the preservation and processing of fresh-cut produce.


Asunto(s)
Antioxidantes , Solanum tuberosum , Antioxidantes/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/metabolismo , Solanum tuberosum/metabolismo , Fenoles/metabolismo , Ácido Ascórbico/metabolismo , Catecol Oxidasa/metabolismo
11.
ACS Chem Neurosci ; 15(6): 1197-1205, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38451201

RESUMEN

Vitamin C (Vc) plays a pivotal role in a series of pathological processes, such as tumors, immune diseases, and neurological disorders. However, its therapeutic potential for tinnitus management remains unclear. In this study, we find that Vc relieves tinnitus in noise-exposed rats. In the 7-day therapy groups, spontaneous firing rate (SFR) increases from 1.17 ± 0.10 Hz to 1.77 ± 0.15 Hz after noise exposure. Vc effectively reduces the elevated SFR to 0.99 ± 0.07 and 0.55 ± 0.05 Hz at different doses. The glutamate level in auditory cortex of noise-exposed rats (3.78 ± 0.42 µM) increases relative to that in the control group (1.34 ± 0.22 µM). High doses of Vc (500 mg/kg/day) effectively reduce the elevated glutamate levels (1.49 ± 0.28 µM). Mechanistic studies show that the expression of glutamate transporter 1 (GLT-1) is impaired following noise exposure and that Vc treatment effectively restores GLT-1 expression in the auditory cortex. Meanwhile, the GLT-1 inhibitor, dl-threo-beta-benzyloxyaspartic acid (dl-TBOA), invalidates the protection role of Vc. Our finding shows that Vc substantially enhances glutamate clearance by upregulating GLT-1 and consequently alleviates noise-induced tinnitus. This study provides valuable insight into a novel biological target for the development of therapeutic interventions that may prevent the onset of tinnitus.


Asunto(s)
Corteza Auditiva , Acúfeno , Ratas , Animales , Corteza Auditiva/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Neuroprotección , Acúfeno/tratamiento farmacológico , Acúfeno/metabolismo , Ácido Glutámico/metabolismo , Modelos Animales de Enfermedad , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo
12.
Biomed Pharmacother ; 173: 116407, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460367

RESUMEN

Acute kidney injury frequently occurs after cardiac surgery, and is primarily attributed to renal ischemia-reperfusion (I/R) injury and inflammation from surgery and cardiopulmonary bypass. Vitamin C, an antioxidant that is often depleted in critically ill patients, could potentially mitigate I/R-induced oxidative stress at high doses. We investigated the effectiveness of high-dose vitamin C in preventing I/R-induced renal injury. The ideal time and optimal dosage for administration were determined in a two-phase experiment on Sprague-Dawley rats. The rats were assigned to four groups: sham, IRC (I/R + saline), and pre- and post-vitC (vitamin C before and after I/R, respectively), with vitamin C administered at 200 mg/kg. Additional groups were examined for dose modification based on the optimal timing determined: V100, V200, and V300 (100, 200, and 300 mg/kg, respectively). Renal I/R was achieved through 45 min of ischemia followed by 24 h of reperfusion. Vitamin C administration during reperfusion significantly reduced renal dysfunction and tubular damage, more than pre-ischemic administration. Doses of 100 and 200 mg/kg during reperfusion reduced oxidative stress markers, including myeloperoxidase and inflammatory responses by decreasing high mobility group box 1 release and nucleotide-binding and oligomerization domain-like receptor 3 inflammasome. Overall beneficial effect was most prominent with 200 mg/kg. The 300 mg/kg dose, however, showed no additional benefits over the IRC group regarding serum blood urea nitrogen and creatinine levels and histological evaluation. During reperfusion, high-dose vitamin C administration (200 mg/kg) significantly decreased renal I/R injury by effectively attenuating the major triggers of oxidative stress and inflammation.


Asunto(s)
Lesión Renal Aguda , Antineoplásicos , Daño por Reperfusión , Humanos , Ratas , Animales , Ratas Sprague-Dawley , Riñón , Estrés Oxidativo , Lesión Renal Aguda/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Ácido Ascórbico/metabolismo , Daño por Reperfusión/patología , Antineoplásicos/farmacología , Inflamación/metabolismo , Isquemia/metabolismo , Creatinina
13.
Plant Physiol Biochem ; 208: 108445, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38402801

RESUMEN

The ubiquitous metalloid arsenic (As), which is not essential, can be found extensively in the soil and subterranean water of numerous nations, raising substantial apprehensions due to its impact on both agricultural productivity and sustainability. Plants exposed to As often display morphological, physiological, and growth-related abnormalities, collectively leading to reduced productivity. Polyphenols, operating as secondary messengers within the intricate signaling networks of plants, assume integral functions in the acquisition of resistance to diverse environmental stressors, including but not limited to drought, salinity, and exposure to heavy metals. The pivotal roles played by polyphenols in these adaptive processes underscore their profound significance in plant biology. This study aims to elucidate the impact of hesperidin (HP) and chlorogenic acid (CA), recognized as potent bioactive compounds, on maize plants exposed to As. To achieve this objective, the study examined the physiological and biochemical impacts, including growth parameters, photosynthesis, and chloroplastic antioxidants, of HP (100 µM) and CA (50 µM) on Zea mays plants exposed to arsenate stress (AsV, 100 µM - Na2HAsO4⋅7H2O). As toxicity led to reductions in fresh weight (FW) and dry weight (DW) by 33% and 26%, respectively. However, the application of As+HP and As + CA increased FW by 22% and 40% and DW by 14% and 17%, respectively, alleviating the effects of As stress. As toxicity resulted in the up-regulation of PSII genes (psbA and psbD) and PSI genes (psaA and psaB), indicating a potential response to the re-formation of degraded regions, likely driven by the heightened demand for photosynthesis. Exogenous HP or/and CA treatments effectively counteracted the adverse effects of As toxicity on the photochemical quantum efficiency of PSII (Fv/Fm). H2O2 content showed a 23% increase under As stress, and this increase was evident in guard cells when examining confocal microscopy images. In the presence of As toxicity, the chloroplastic antioxidant capacity can exhibit varying trends, with either a decrease or increase observed. After the application of CA and/or HP, a significant increase was observed in the activity of GR, APX, GST, and GPX enzymes, resulting in decreased levels of H2O2 and MDA. Additionally, the enhanced functions of MDHAR and DHAR have modulated the redox status of ascorbic acid (AsA) and glutathione (GSH). The HP or CA-mediated elevated levels of AsA and GSH content further contributed to the preservation of redox homeostasis in chloroplasts facing stress induced by As. In summary, the inclusion of HP and CA in the growth medium sustained plant performance in the presence of As toxicity by regulating physiological and biochemical characteristics, chloroplastic antioxidant enzymes, the AsA-GSH cycle and photosynthesis processes, thereby demonstrating their significant potential to confer resistance to maize through the mitigation of As-induced oxidative damage and the safeguarding of photosynthetic mechanisms.


Asunto(s)
Arsénico , Hesperidina , Antioxidantes/metabolismo , Zea mays/metabolismo , Arsénico/farmacología , Ácido Clorogénico/metabolismo , Hesperidina/farmacología , Hesperidina/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Ácido Ascórbico/metabolismo , Cloroplastos/metabolismo , Glutatión/metabolismo , Expresión Génica
14.
BMC Plant Biol ; 24(1): 82, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38302892

RESUMEN

BACKGROUND: Wolfberry is well-known for its high nutritional value and medicinal benefits. Due to the continuous ripening nature of Goji berries and the fact that they can be commercially harvested within a few weeks, their phytochemical composition may change during the harvesting process at different periods. RESULT: The involved molecular mechanisms of difference in fruit quality of ripe Lycium barbarum L. harvested at four different periods were investigated by transcriptomic and metabolomics analyses for the first time. According to the results we obtained, it was found that the appearance quality of L. barbarum fruits picked at the beginning of the harvesting season was superior, while the accumulation of sugar substances in L. barbarum fruits picked at the end of the harvesting season was better. At the same time the vitamin C and carotenoids content of wolfberry fruits picked during the summer harvesting season were richer. Ascorbic acid, succinic acid, glutamic acid, and phenolic acids have significant changes in transcription and metabolism levels. Through the network metabolic map, we found that ascorbic acid, glutamic acid, glutamine and related enzyme genes were differentially accumulated and expressed in wolfberry fruits at different harvesting periods. Nevertheless, these metabolites played important roles in the ascorbate-glutathione recycling system. Ascorbic acid, phenolic substances and the ascorbate-glutathione recycling system have antioxidant effects, which makes the L. barbarum fruits harvested in the summer more in line with market demand and health care concepts. CONCLUSION: This study laid the foundation for understanding the molecular regulatory mechanisms of quality differences of ripe wolfberry fruits harvested at different periods, and provides a theoretical basis for enhancing the quality of L. barbarum fruits.


Asunto(s)
Lycium , Lycium/genética , Lycium/metabolismo , Frutas/metabolismo , Perfilación de la Expresión Génica , Metaboloma , Ácido Ascórbico/metabolismo , Glutatión/metabolismo , Glutamatos/metabolismo
15.
J Exp Bot ; 75(9): 2682-2699, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38243395

RESUMEN

Concepts regarding the operation of the ascorbate-glutathione cycle and the associated water/water cycle in the processing of metabolically generated hydrogen peroxide and other forms of reactive oxygen species (ROS) are well established in the literature. However, our knowledge of the functions of these cycles and their component enzymes continues to grow and evolve. Recent insights include participation in the intrinsic environmental and developmental signalling pathways that regulate plant growth, development, and defence. In addition to ROS processing, the enzymes of the two cycles not only support the functions of ascorbate and glutathione, they also have 'moonlighting' functions. They are subject to post-translational modifications and have an extensive interactome, particularly with other signalling proteins. In this assessment of current knowledge, we highlight the central position of the ascorbate-glutathione cycle in the network of cellular redox systems that underpin the energy-sensitive communication within the different cellular compartments and integrate plant signalling pathways.


Asunto(s)
Ácido Ascórbico , Glutatión , Plantas , Ácido Ascórbico/metabolismo , Glutatión/metabolismo , Plantas/metabolismo , Transducción de Señal , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
16.
J Neurochem ; 168(2): 142-160, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169121

RESUMEN

White matter injury (WMI) is one of the most serious complications associated with preterm births. Damage to oligodendrocytes, which are the key cells involved in WMI pathogenesis, can directly lead to myelin abnormalities. L-ascorbyl-2-phosphate (AS-2P) is a stable form of vitamin C. This study aimed to explore the protective effects of AS-2P against chronic hypoxia-induced WMI, and elucidate the underlying mechanisms. An in vivo chronic hypoxia model and in vitro oxygen-glucose deprivation (OGD) model were established to explore the effects of AS-2P on WMI using immunofluorescence, immunohistochemistry, western blotting, real-time quantitative polymerase chain reaction, Morris water maze test, novel object recognition test, beaming-walking test, electron microscopy, and flow cytometry. The results showed that AS-2P resulted in the increased expression of MBP, Olig2, PDGFRα and CC1, improved thickness and density of the myelin sheath, and reduced TNF-α expression and microglial cell infiltration to alleviate inflammation in the brain after chronic hypoxia. Moreover, AS-2P improved the memory, learning and motor abilities of the mice with WMI. These protective effects of AS-2P may involve the upregulation of protein arginine methyltransferase 5 (PRMT5) and downregulation of P53 and NF-κB. In conclusion, our study demonstrated that AS-2P attenuated chronic hypoxia-induced WMI in vivo and OGD-induced oligodendrocyte injury in vitro possibly by regulating the PRMT5/P53/NF-κB pathway, suggesting that AS-2P may be a potential therapeutic option for WMI.


Asunto(s)
Lesiones Encefálicas , Sustancia Blanca , Animales , Ratones , FN-kappa B/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales Recién Nacidos , Sustancia Blanca/patología , Hipoxia/metabolismo , Lesiones Encefálicas/patología , Ácido Ascórbico/metabolismo , Oxígeno/metabolismo
17.
Biochem Biophys Res Commun ; 695: 149463, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38176172

RESUMEN

Cisplatin-induced acute kidney injury (AKI) restricts the use of cisplatin as a first-line chemotherapeutic agent. Our previous study showed that prophylactic vitamin C supplementation may act as an epigenetic modulator in alleviating cisplatin-induced AKI in mice. However, the targets of vitamin C and the mechanisms underlying the epigenetics changes remain largely unknown. Herein, whole-genome bisulfite sequencing and bulk RNA sequencing were performed on the kidney tissues of mice treated with cisplatin with prophylactic vitamin C supplementation (treatment mice) or phosphate-buffered saline (control mice) at 24 h after cisplatin treatment. Ascorbyl phosphate magnesium (APM), an oxidation-resistant vitamin C derivative, was found that led to global hypomethylation in the kidney tissue and regulated different functional genes in the promoter region and gene body region. Integrated evidence suggested that APM enhanced renal ion transport and metabolism, and reduced apoptosis and inflammation in the kidney tissues. Strikingly, Mapk15, Slc22a6, Cxcl5, and Cd44 were the potential targets of APM that conferred protection against cisplatin-induced AKI. Moreover, APM was found to be difficult to rescue cell proliferation and apoptosis caused by cisplatin in the Slc22a6 knockdown cell line. These results elucidate the mechanism by which vitamin C as an epigenetic regulator to protects against cisplatin-induced AKI and provides a new perspective and evidence support for controlling the disease process through regulating DNA methylation.


Asunto(s)
Lesión Renal Aguda , Antineoplásicos , Ratones , Animales , Cisplatino/efectos adversos , Antineoplásicos/farmacología , Desmetilación del ADN , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/prevención & control , Riñón/metabolismo , Apoptosis , Magnesio/metabolismo , Vitaminas/farmacología , Suplementos Dietéticos , Ácido Ascórbico/metabolismo , Fosfatos/metabolismo , Ratones Endogámicos C57BL
18.
BMC Plant Biol ; 24(1): 50, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38221634

RESUMEN

BACKGROUND: This study aimed to investigate the impact of protocatechuic acid (PRC) treatments on the productivity and fruit quality of 'Le-Conte' pears, with a specific focus on productivity, stone cells content, and antioxidant activity. The research spanned over three consecutive cultivating seasons, with the first season serving as a preliminary study to determine the optimal PRC concentrations and the most effective number of spray applications. During the initial season, response surface methodology (RSM) was employed to optimize PRC concentration and application frequency. PRC was evaluated at concentrations ranging from 50 to 400 ppm, with treatment frequencies of either once or twice. Considering the optimal conditions obtained from RSM results, PRC treatments at 200 ppm and 300 ppm were applied twice, and their respective effects were studied in comparison to the control in the following seasons. RESULTS: RSM results indicated that PRC at 200 and 300 ppm, applied twice, once during full bloom and again three weeks later, yielded the most significant effects. Subsequent studies revealed that PRC treatments had a substantial impact on various aspects of fruit production and quality. Applying 300 ppm PRC once during full bloom and again three weeks later resulted in higher fruit set percentages, lower fruit abscission, and enhanced fruit yield compared to untreated trees. Additionally, the 200 ppm PRC treatment maintained physicochemical characteristics such as fruit color, increased total soluble solids (TSS), and total sugar, and maintained higher ascorbic acid content and antioxidant capacity in the fruits while reducing stone cells content and lignin. Notably, enzyme activities related to phenylpropanoid metabolism and stone cells, including phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-Coumarate-CoA Ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and cinnamoyl-CoA reductase (CCR), as well as peroxidase, polyphenol oxidase, and laccase, were significantly regulated by PRC treatments. CONCLUSION: Overall, this study suggests that PRC treatments are suitable for enhancing pear yield and quality, with PRC at 200 ppm being the more recommended option over 300 ppm. This approach serves as an effective strategy for achieving a balance between enhancing the productivity and fruit quality of 'Le-Conte' pears.


Asunto(s)
Pyrus , Pyrus/metabolismo , Hidroxibenzoatos/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Frutas/metabolismo
19.
Nat Commun ; 15(1): 422, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212310

RESUMEN

To mobilize sparingly available phosphorus (P) in the rhizosphere, many plant species secrete malate to release P sorbed onto (hydr)oxides of aluminum and iron (Fe). In the presence of Fe, malate can provoke Fe over-accumulation in the root apoplast, triggering a series of events that inhibit root growth. Here, we identified HYPERSENSITIVE TO LOW P1 (HYP1), a CYBDOM protein constituted of a DOMON and a cytochrome b561 domain, as critical to maintain cell elongation and meristem integrity under low P. We demonstrate that HYP1 mediates ascorbate-dependent trans-plasma membrane electron transport and can reduce ferric and cupric substrates in Xenopus laevis oocytes and in planta. HYP1 expression is up-regulated in response to P deficiency in the proximal zone of the root apical meristem. Disruption of HYP1 leads to increased Fe and callose accumulation in the root meristem and causes significant transcriptional changes in roots. We further demonstrate that HYP1 activity overcomes malate-induced Fe accumulation, thereby preventing Fe-dependent root growth arrest in response to low P. Collectively, our results uncover an ascorbate-dependent metalloreductase that is critical to protect root meristems of P-deficient plants from increased Fe availability and provide insights into the physiological function of the yet poorly characterized but ubiquitous CYBDOM proteins.


Asunto(s)
Meristema , Fósforo , Meristema/metabolismo , Fósforo/metabolismo , Malatos/metabolismo , Hierro/metabolismo , Plantas/metabolismo , Ácido Ascórbico/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
20.
Plant Physiol Biochem ; 207: 108326, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237421

RESUMEN

Understanding how to adapt outdoor cultures of Nannochloropsis oceanica to high light (HL) is vital for boosting productivity. The N. oceanica RB2 mutant, obtained via ethyl methanesulfonate mutagenesis, was chosen for its tolerance to Rose Bengal (RB), a singlet oxygen (1O2) generator. Compared to the wild type (WT), the RB2 mutant showed higher resilience to excess light conditions. Analyzing the ascorbate-glutathione cycle (AGC), involving ascorbate peroxidases (APX, EC 1.11.1.11), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (GR, EC 1.8.1.7), in the RB2 mutant under HL stress provided valuable insights. At 250 µmol photon m-2 s-1 (HL), the WT strain displayed superoxide anion radicals (O2▪-) and hydrogen peroxide (H2O2) accumulation, increased lipid peroxidation, and cell death compared to normal light (NL) conditions (50 µmol photon m-2 s-1). The RB2 mutant didn't accumulate O2▪- and H2O2 after HL exposure, and exhibited increased APX, DHAR, and GR activities and transcript levels compared to WT and remained consistent after HL treatment. Although the RB2 mutant had a smaller ascorbate (AsA) pool than the WT, its ability to regenerate dehydroascorbate (DHA) increased post HL exposure, indicated by a higher AsA/DHA ratio. Additionally, under HL conditions, the RB2 mutant displayed an improved glutathione (GSH) regeneration rate (GSH/GSSG ratio) without changing the GSH pool size. Remarkably, H2O2 or menadione (a O2▪- donor) treatment induced cell death in the WT strain but not in the RB2 mutant. These findings emphasize the essential role of AGC in the RB2 mutant of Nannochloropsis in handling photo-oxidative stress.


Asunto(s)
Peróxido de Hidrógeno , Rosa Bengala , Peróxido de Hidrógeno/metabolismo , Ácido Ascórbico/metabolismo , Antioxidantes/metabolismo , Glutatión Reductasa/metabolismo , Estrés Oxidativo , Glutatión/metabolismo , Aclimatación , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA