Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.949
Filtrar
1.
Gut Microbes ; 16(1): 2409209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39353090

RESUMEN

The gut microbiota can produce a variety of microbial-derived metabolites to influence tumor development. Tryptophan, an essential amino acid in the human body, can be converted by microorganisms via the indole pathway to indole metabolites such as Indole-3-Lactic Acid (ILA), Indole-3-Propionic Acid (IPA), Indole Acetic Acid (IAA) and Indole-3-Aldehyde (IAld). Recent studies have shown that indole metabolites play key roles in tumor progression, and they can be used as adjuvant regimens for tumor immunotherapy or chemotherapy. Here, we summarize recent findings on the common microbial indole metabolites and provide a review of the mechanisms of different indole metabolites in the tumor microenvironment. We further discuss the limitations of current indole metabolite research and future possibilities. It is expected that microbial indole metabolites will provide new strategies for clinical therapy.


Asunto(s)
Microbioma Gastrointestinal , Indoles , Neoplasias , Humanos , Indoles/metabolismo , Neoplasias/metabolismo , Neoplasias/microbiología , Animales , Microambiente Tumoral , Bacterias/metabolismo , Bacterias/genética , Triptófano/metabolismo , Ácidos Indolacéticos/metabolismo
2.
Planta ; 260(5): 109, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340535

RESUMEN

MAIN CONCLUSION: MiR171d and SCL6 are induced by the plant hormone auxin. MiR171d negatively regulates the expression of SCL6, thereby regulating the growth and development of plant adventitious roots. Under natural conditions, it is difficult to induce rooting in the process of propagating Acer rubrum L. via branches, which seriously limits its wide application in landscaping construction. In this study, the expression of Ar-miR171d was downregulated and the expression of ArSCL6 was upregulated after 300 mg/L indole-3-butyric acid (IBA) treatment. The transient interaction of Ar-miR171d and ArSCL6 in tobacco cells further confirmed their cleavage activity. Transgenic function verification confirmed that OE-Ar-miR171d inhibited adventitious root (AR) development, while OE-ArSCL6 promoted AR development. Tissue-specific expression verification of the ArSCL6 promoter demonstrated that it was specifically expressed in the plant root and leaf organs. Subcellular localization and transcriptional activation assays revealed that both ArSCL6 and ArbHLH089 were located in the nucleus and exhibited transcriptional activation activity. The interaction between the two was verified by bimolecular fluorescence complementarity (BIFC) experiments. These results help elucidate the regulatory mechanisms of the Ar-miR171d-ArSCL6 module during the propagation of A. rubrum and provide a molecular basis for the rooting of branches.


Asunto(s)
Acer , Regulación de la Expresión Génica de las Plantas , MicroARNs , Raíces de Plantas , MicroARNs/genética , MicroARNs/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Acer/genética , Acer/crecimiento & desarrollo , Acer/metabolismo , Plantas Modificadas Genéticamente , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Ácidos Indolacéticos/metabolismo , Indoles/metabolismo , Indoles/farmacología
3.
Cell Rep ; 43(8): 114597, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39106180

RESUMEN

The dynamics of N6-methyladenosine (m6A) mRNA modification are tightly controlled by the m6A methyltransferase complex and demethylases. Here, we find that auxin treatment alters m6A modification on auxin-responsive genes. Mechanically, TRANSMEMBRANE KINASE 4 (TMK4), a component of the auxin signaling pathway, interacts with and phosphorylates FKBP12-INTERACTING PROTEIN 37 (FIP37), a core component of the m6A methyltransferase complex, in an auxin-dependent manner. Phosphorylation of FIP37 enhances its interaction with RNA, thereby increasing m6A modification on its target genes, such as NITRILASE 1 (NIT1), a gene involved in indole-3-acetic acid (IAA) biosynthesis. 1-Naphthalacetic acid (NAA) treatment accelerates the mRNA decay of NIT1, in a TMK4- and FIP37-dependent manner, which leads to inhibition of auxin biosynthesis. Our findings identify a regulatory mechanism by which auxin modulates m6A modification through the phosphorylation of FIP37, ultimately affecting mRNA stability and auxin biosynthesis in plants.


Asunto(s)
Adenosina , Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Fosforilación , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estabilidad del ARN , Metiltransferasas/metabolismo , Metiltransferasas/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética
4.
J Agric Food Chem ; 72(35): 19333-19341, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39183467

RESUMEN

The regulation solutions and mechanisms of reducing pesticide phytotoxicity to nontarget plants are not well-defined and detailed. Here, we have proposed a new detoxification strategy to control the toxic effects of herbicide imazethapyr (IM) induced in wheat seedlings from the perspective of the plasma membrane (PM) H+-ATPase. We found that the changes in PM H+-ATPase activity have a regulatory effect on the phytotoxic effects induced by IM in plants. Treatment with PM H+-ATPase activators restored the reduced auxin content and photosynthetic efficiency caused by IM, thereby promoting plant growth. Application of a PM H+-ATPase inhibitor further reduced phosphorus content and significantly increased 2,4-dihydroxy-7-methoxy-2H,1,4-benzoxazin-3(4H)one (DIMBOA) and jasmonic acid levels. These effects indicate that auxin and DIMBOA may regulate plant growth trends and detoxification effects mediated by PM H+-ATPase. This work opens a new strategy for regulating herbicide toxicity to nontarget plants from the PM H+-ATPase.


Asunto(s)
Herbicidas , Ácidos Nicotínicos , Proteínas de Plantas , ATPasas de Translocación de Protón , Triticum , Triticum/crecimiento & desarrollo , Triticum/efectos de los fármacos , Triticum/metabolismo , Triticum/enzimología , Herbicidas/toxicidad , ATPasas de Translocación de Protón/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácidos Nicotínicos/toxicidad , Ácidos Nicotínicos/farmacología , Ácidos Indolacéticos/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Oxilipinas/farmacología , Ciclopentanos/farmacología
5.
Plant Physiol Biochem ; 215: 109027, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39154422

RESUMEN

ATP-binding cassette (ABC) transporters are vital for plant growth and development as they facilitate the transport of essential molecules. Despite the family's significance, limited information exists about its functional distinctions in Citrus medica. Our study identified 119 genes encoding ABC transporter proteins in the C. medica genome. Through an evolutionary tree and qPCR analysis, two ABC genes, CmABCB19 and CmABCC10, were implicated in C. medica fruit development, showing upregulation in normal fruits compared to malformed fruits. CmABCB19 was found to localize to the plasma membrane of Nicotiana tabacum, exhibiting indole-3-acetic acid (IAA) efflux activity in the yeast mutant strain yap1. CmABCC10, a tonoplast-localized transporter, exhibited efflux of diosmin, nobiletin, and naringin, with rutin influx in strain ycf1. Transgenic expression of CmABCB19 and CmABCC10 in Arabidopsis thaliana induced alterations in auxin and flavonoid content, impacting silique and seed size. This effect was attributed to the modulation of structural genes in the auxin biosynthesis (YUC5/9, CYP79B2, CYP83B1, SUR1) and flavonoid biosynthesis (4CL2/3, CHS, CHI, FLS1/3) pathways. In summary, the functional characterization of CmABCB19 and CmABCC10 illuminates auxin and flavonoid transport, offering insights into their interplay with biosynthetic pathways and providing a foundation for understanding the transporter's role in fruit development.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Citrus , Frutas , Proteínas de Plantas , Citrus/genética , Citrus/metabolismo , Citrus/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Frutas/genética , Frutas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Flavanonas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo , Flavonoides/metabolismo , Diosmina/metabolismo
6.
Plant Cell Rep ; 43(9): 212, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39127969

RESUMEN

KEY MESSAGE: Auxin (AUX) promotion of apple fruit ripening is ethylene-dependent, and AUX-MdARF17-MdERF003 plays a role in AUX-promoted ethylene synthesis in apple. Phytohormones play important roles in plant growth and fleshy fruit ripening, and the phytohormone auxin (AUX) can either promote or inhibit the ripening of fleshy fruits. Although AUX can influence ethylene (ETH) synthesis in apple (Malus domestica) fruits by affecting ETH system II, this mechanism remains to be explored. Here, we identified an ETH response factor (ERF) family transcription factor, MdERF003, whose expression could be activated by naphthalene acetic acid. The transient silencing of MdERF003 inhibited ETH synthesis in fruits, and MdERF003 could bind to the MdACS1 promoter. To explore the upstream target genes of MdERF003, we screened the MdARF family members by yeast one-hybrid assays of the MdERF003 promoter, and found that the transcription factor MdARF17, which showed AUX-promoted expression, could bind to the MdERF003 promoter and promote its expression. Finally, we silenced MdERF003 in apple fruits overexpressing MdARF17 and found that MdERF003 plays a role in MdARF17-promoted ETH synthesis in apple. Thus, AUX-MdARF17-MdERF003 promotes ETH synthesis in apple fruits.


Asunto(s)
Etilenos , Frutas , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Malus , Proteínas de Plantas , Factores de Transcripción , Malus/genética , Malus/metabolismo , Etilenos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ácidos Indolacéticos/metabolismo , Regiones Promotoras Genéticas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente
7.
J Biosci Bioeng ; 138(5): 406-414, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39112181

RESUMEN

Most agricultural products are presently cultivated on marginal lands with poor soil properties and unfavorable environmental conditions (diseases and abiotic stresses), which can threaten plant growth and yield. Plant growth-promoting bacteria (PGPB) are beneficial bacteria that promote plant growth and biomass and act as biocontrols against diseases and stress. However, most isolated PGPBs have a single function and low survival rates owing to their limited growth behaviors. In this study, we isolated multifunctional PGPB from oil palm rhizosphere, quantitatively measured their activities, and evaluated their effectiveness in Brassica rapa (Komatsuna) cultivation. This is the first study to report the isolation of three multifunctional PGPB strains with ammonium production, phosphate-potassium-silicate solubilization, and indole-3-acetic acid (IAA) production from the oil palm rhizosphere, namely Kosakonia oryzendophytica AJLB38, Enterobacter quasimori AJTS77, and Lelliottia jeotgali AJTS83. Additionally, these strains showed antifungal activity against the oil palm pathogen Ganoderma boninense. These strains grow under high temperature, acidic and alkaline pH, and high salt concentration, which would result in their proliferation in various environmental conditions. The cultivation experiments revealed these strains improved the growth and biomass with half the dosage of chemical fertilizer application, which was not significantly different to the full dosage. Furthermore, the overall plant growth-promoting activities in quantitative assays and overall B. rapa growth in cultivation experiments were statistically correlated, which could contribute to the prediction of plant growth promotion without plant cultivation experiments. Thus, the selected PGPB could be valuable as a biofertilizer to improve soil health and quality and promote agricultural sustainability.


Asunto(s)
Ácidos Indolacéticos , Rizosfera , Microbiología del Suelo , Ácidos Indolacéticos/metabolismo , Fertilizantes , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/efectos de los fármacos , Desarrollo de la Planta/efectos de los fármacos , Brassica rapa/microbiología , Brassica rapa/crecimiento & desarrollo , Biomasa , Arecaceae/microbiología , Fosfatos/metabolismo , Fosfatos/farmacología , Enterobacter/crecimiento & desarrollo , Enterobacter/aislamiento & purificación , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo
8.
J Hazard Mater ; 477: 135423, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39106721

RESUMEN

Infection with smut fungus like Ustilago maydis decreases crop yield via inducing gall formation. However, the in vitro impact of Ustilago spp. on plant growth and stress tolerance remains elusive. This study investigated the plant growth promotion and cadmium stress mitigation mechanisms of a filamentous fungus discovered on a cultural medium containing 25 µM CdCl2. ITS sequence alignment revealed 98.7 % similarity with Ustilago bromivora, naming the strain Ustilago sp. HFJ311 (HFJ311). Co-cultivation with HFJ311 significantly enhanced the growth of various plants, including Arabidopsis, tobacco, cabbage, carrot, rice, and maize, and improved Arabidopsis tolerance to abiotic stresses like salt and metal ions. HFJ311 increased chlorophyll and Fe contents in Arabidopsis shoots and enhanced root-to-shoot Fe translocation while decreasing root Fe concentration by approximately 70 %. Concurrently, HFJ311 reduced Cd accumulation in Arabidopsis by about 60 %, indicating its potential for bioremediation in Cd-contaminated soils. Additionally, HFJ311 stimulated IAA concentration by upregulating auxin biosynthesis genes. Overexpression of the Fe transporter IRT1 negated HFJ311's growth-promotion effects under Cd stress. These results suggest that HFJ311 stimulates plant growth and inhibits Cd uptake by enhancing Fe translocation and auxin biosynthesis while disrupting Fe absorption. Our findings offer a promising bioremediation strategy for sustainable agriculture and food security.


Asunto(s)
Arabidopsis , Cadmio , Ácidos Indolacéticos , Hierro , Ustilago , Arabidopsis/metabolismo , Arabidopsis/microbiología , Arabidopsis/crecimiento & desarrollo , Cadmio/metabolismo , Hierro/metabolismo , Ustilago/metabolismo , Ustilago/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Transporte Biológico , Zea mays/microbiología , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo
9.
BMC Plant Biol ; 24(1): 815, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210254

RESUMEN

Enhanced phytoremediation offers a rapid and eco-friendly approach for cleaning agricultural soil contaminated with copper and cadmium which pose a direct threat to food scarcity and security. The current study aimed to compare the effectiveness of the two commonly used additives, IAA and EDTA, for the remediation of copper (Cu) and cadmium (Cd) contaminated soils using sunflower and maize. The plants were cultivated in pots under controlled conditions with four sets of treatments: control (0), Cu50/Cd50, Cu50/Cd50 + EDTA, and Cu50/Cd50 + IAA. The results showed that Cu50/Cd50 mg/kg drastically compromised the phytoremediation potential of both plants, as evident by reduced shoot and root length, and lower biomass. However, the augmentation of Cu50/Cd50 with EDTA or IAA improved the tested parameters. In sunflower, EDTA enhanced the accumulation of Cu and Cd by 58% and 21%, respectively, and improved plant biomass by 41%, compared to control treatment. However, IAA exhibited higher accumulation of Cu and Cd by 64% and 25%, respectively, and enhanced plant biomass by 43%. In case of maize, IAA was superior to EDTA which enhanced the accumulation of Cu and Cd by 87% and 32% respectively, and increased the plant biomass by 57%, compared to control treatment. Our findings demonstrate that foliar IAA is more effective than EDTA in enhancing the phytoremediation potential of sunflower and maize for Cu and Cd.


Asunto(s)
Biodegradación Ambiental , Cadmio , Cobre , Ácido Edético , Helianthus , Ácidos Indolacéticos , Contaminantes del Suelo , Zea mays , Cadmio/metabolismo , Ácido Edético/farmacología , Cobre/metabolismo , Contaminantes del Suelo/metabolismo , Helianthus/metabolismo , Helianthus/efectos de los fármacos , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Biomasa , Suelo/química
10.
Sci Rep ; 14(1): 17810, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090163

RESUMEN

Elymus nutans Griseb. (E. nutans), a pioneer plant for the restoration of high quality pasture and vegetation, is widely used to establish artificial grasslands and ecologically restore arid and salinized soils. To investigate the effects of drought stress and salt stress on the physiology and endogenous hormones of E. nutans seedlings, this experiment configured the same environmental water potential (0 (CK), - 0.04, - 0.14, - 0.29, - 0.49, - 0.73, and - 1.02 MPa) of PEG-6000 and NaCl stress to investigate the effects of drought stress and salt stress, respectively, on E. nutans seedlings under the same environmental water potential. The results showed that although the physiological indices and endogenous hormones of the E. nutans seedlings responded differently to drought stress and salt stress under the same environmental water potential, the physiological indices of E. nutans shoots and roots were comprehensively evaluated using the genus function method, and the physiological indices of the E. nutans seedlings under the same environmental water potential exhibited better salt tolerance than drought tolerance. The changes in endogenous hormones of the E. nutans seedlings under drought stress were analyzed to find that treatment with gibberellic acid (GA3), gibberellin A7 (GA7), 6-benzyladenine (6-BA), 6-(y,y-dimethylallylaminopurine) (2.IP), trans-zeatin (TZ), kinetin (KT), dihydrozeatin (DHZ), indole acetic acid (IAA), and 2,6-dichloroisonicotininc acid (INA) was more effective than those under drought stress. By analyzing the amplitude of changes in the endogenous hormones in E. nutans seedlings, the amplitude of changes in the contents of GA3, GA7, 6-BA, 2.IP, TZ, KT, DHZ, IAA, isopentenyl adenosine (IPA), indole-3-butyric acid (IBA), naphthalene acetic acid (NAA), and abscisic acid was larger in drought stress compared with salt stress, which could be because the endogenous hormones are important for the drought tolerance of E. nutans itself. The amplitude of the changes in the contents of DHZ, TZR, salicylic acid, and jasmonic acid was larger in salt stress compared with drought stress. Changes in the content of melatonin were larger in salt stress compared with drought stress, which could indicate that endogenous hormones and substances are important for the salt tolerance of E. nutans itself.


Asunto(s)
Sequías , Reguladores del Crecimiento de las Plantas , Estrés Salino , Plantones , Plantones/fisiología , Plantones/efectos de los fármacos , Plantones/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Estrés Fisiológico , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Tolerancia a la Sal , Ácidos Indolacéticos/metabolismo , Poaceae/fisiología , Poaceae/efectos de los fármacos , Poaceae/metabolismo
11.
PLoS Pathog ; 20(8): e1012510, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39208401

RESUMEN

Auxin is an important class of plant hormones that play an important role in plant growth development, biotic stress response, and viruses often suppress host plant auxin levels to promote infection. However, previous research on auxin-mediated disease resistance has focused mainly on signaling pathway, and the molecular mechanisms of how pathogenic proteins manipulate the biosynthetic pathway of auxin remain poorly understood. TCP is a class of plant-specific transcription factors, of which TCP17 is a member that binds to the promoter of YUCCAs, a key rate-limiting enzyme for auxin synthesis, and promotes the expression of YUCCAs, which is involved in auxin synthesis in plants. In this study, we reported that Tomato spotted wilt virus (TSWV) infection suppressed the expression of YUCCAs through its interaction with TCP17. Further studies revealed that the NSs protein encoded by TSWV disrupts the dimerization of TCP17, thereby inhibit its transcriptional activation ability and reducing the auxin content in plants. Consequently, this interference inhibits the auxin response signal and promotes the TSWV infection. Transgenic plants overexpressing TCP17 exhibit resistance against TSWV infection, whereas plants knocking out TCP17 were more susceptible to TSWV infection. Additionally, proteins encoded by other RNA viruses (BSMV, RSV and TBSV) can also interact with TCP17 and interfere with its dimerization. Notably, overexpression of TCP17 enhanced resistance against BSMV. This suggests that TCP17 plays a crucial role in plant defense against different types of plant viruses that use viral proteins to target this key component of auxin synthesis and promote infection.


Asunto(s)
Ácidos Indolacéticos , Enfermedades de las Plantas , Factores de Transcripción , Ácidos Indolacéticos/metabolismo , Enfermedades de las Plantas/virología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Tospovirus , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Plantas Modificadas Genéticamente , Nicotiana/virología , Nicotiana/metabolismo , Nicotiana/genética , Arabidopsis/virología , Arabidopsis/metabolismo , Arabidopsis/genética
12.
Plant Cell Rep ; 43(7): 188, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960994

RESUMEN

KEY MESSAGE: BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance in Arabidopsis roots. The formative divisions of cortex/endodermis initials (CEIs) and CEI daughter cells (CEIDs) in Arabidopsis roots are coordinately controlled by the longitudinal auxin gradient and the radial SHORT ROOT (SHR) abundance. However, the mechanism underlying this coordination remains poorly understood. In this study, we demonstrate that BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance. Mutations in BIG gene repressed cell cycle progression, delaying the formative divisions within the ground tissues and impairing the establishment of endodermal and cortical identities. In addition, we uncovered auxin's suppressive effect on BIG expression, triggering CYCLIND6;1 (CYCD6;1) activation in an SHR-dependent fashion. Moreover, the degradation of RETINOBLASTOMA-RELATED (RBR) is jointly regulated by BIG and CYCD6;1. The loss of BIG function led to RBR protein accumulation, detrimentally impacting the SHR/SCARECROW (SCR) protein complex and the CEI/CEID formative divisions. Collectively, these findings shed light on a fundamental mechanism wherein BIG intricately coordinates the interplay between SHR/SCR and auxin, steering ground tissue patterning within Arabidopsis root tissue.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Raíces de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/citología , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , División Celular Asimétrica , Mutación/genética , Células Madre/metabolismo , Células Madre/citología , Ciclinas/metabolismo , Ciclinas/genética , Proteínas de Unión a Calmodulina , Factores de Transcripción
13.
Anal Chim Acta ; 1316: 342875, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969433

RESUMEN

BACKGROUND: Indole-3-acetic acid (IAA) and salicylic acid (SA), pivotal regulators in plant growth, are integral to a variety of plant physiological activities. The ongoing and simultaneous monitoring of these hormones in vivo enhances our comprehension of their interactive and regulatory roles. Traditional detection methods, such as liquid chromatography-mass spectrometry, cannot obtain precise and immediate information on IAA and SA due to the complexity of sample processing. In contrast, the electrochemical detection method offers high sensitivity, rapid response times, and compactness, making it well-suited for in vivo or real-time detection applications. RESULTS: A microneedle electrochemical sensor system crafted from disposable stainless steel (SS) wire was specifically designed for the real-time assessment of IAA and SA in plant in situ. This sensor system included a SS wire (100 µm diameter) coated with carbon cement and multi-walled carbon nanotubes, a plain platinum wire (100 µm diameter), and an Ag/AgCl wire (100 µm diameter). Differential pulse voltammetry and amperometry were adopted for detecting SA and IAA within the range of 0.1-20 µM, respectively. This sensor was applied to track IAA and SA fluctuations in tomato leaves during PstDC3000 infection, offering continuous data. Observations indicated an uptick in SA levels following infection, while IAA production was suppressed. The newly developed disposable SS wire-based microneedle electrochemical sensor system is economical, suitable for mass production, and inflicts minimal damage during the monitoring of SA and IAA in plant tissues. SIGNIFICANCE: This disposable microneedle electrochemical sensor facilitates in vivo detection of IAA and SA in smaller plant tissues and allows for long-time monitoring of their concentrations, which not only propels research into the regulatory and interaction mechanisms of IAA and SA but also furnishes essential tools for advancing precision agriculture.


Asunto(s)
Técnicas Electroquímicas , Ácidos Indolacéticos , Hojas de la Planta , Ácido Salicílico , Solanum lycopersicum , Acero Inoxidable , Solanum lycopersicum/química , Ácidos Indolacéticos/análisis , Ácido Salicílico/análisis , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Acero Inoxidable/química , Técnicas Electroquímicas/instrumentación , Agujas , Enfermedades de las Plantas/microbiología
14.
Gut Microbes ; 16(1): 2374608, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38972055

RESUMEN

With the increasing of aging population and the consumption of high-fat diets (HFD), the incidence of Alzheimer's disease (AD) has skyrocketed. Natural antioxidants show promising potential in the prevention of AD, as oxidative stress and neuroinflammation are two hallmarks of AD pathogenesis. Here, we showed that quinic acid (QA), a polyphenol derived from millet, significantly decreased HFD-induced brain oxidative stress and neuroinflammation and the levels of Aß and p-Tau. Examination of gut microbiota suggested the improvement of the composition of gut microbiota in HFD mice after QA treatment. Metabolomic analysis showed significant increase of gut microbial tryptophan metabolites indole-3-acetic acid (IAA) and kynurenic acid (KYNA) by QA. In addition, IAA and KYNA showed negative correlation with pro-inflammatory factors and AD indicators. Further experiments on HFD mice proved that IAA and KYNA could reproduce the effects of QA that suppress brain oxidative stress and inflammation and decrease the levels of of Aß and p-Tau. Transcriptomics analysis of brain after IAA administration revealed the inhibition of DR3/IKK/NF-κB signaling pathway by IAA. In conclusion, this study demonstrated that QA could counteract HFD-induced brain oxidative stress and neuroinflammation by regulating inflammatory DR3/IKK/NF-κB signaling pathway via gut microbial tryptophan metabolites.


Asunto(s)
Encéfalo , Dieta Alta en Grasa , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , FN-kappa B , Estrés Oxidativo , Ácido Quínico , Transducción de Señal , Triptófano , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Triptófano/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacología , Ácido Quínico/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/prevención & control , Quinasa I-kappa B/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/prevención & control , Ácidos Indolacéticos/metabolismo , Ácido Quinurénico/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/prevención & control
15.
Planta ; 260(2): 54, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012577

RESUMEN

MAIN CONCLUSION: phytoglobin1 positively regulates root bending in hypoxic Arabidopsis roots through regulation of ethylene response factors and auxin transport. Hypoxia-induced root bending is known to be mediated by the redundant activity of the group VII ethylene response factors (ERFVII) RAP2.12 and HRE2, causing changes in polar auxin transport (PAT). Here, we show that phytoglobin1 (Pgb1), implicated in hypoxic adaptation through scavenging of nitric oxide (NO), can alter root direction under low oxygen. Hypoxia-induced bending is exaggerated in roots over-expressing Pgb1 and attenuated in those where the gene is suppressed. These effects were attributed to Pgb1 repressing both RAP2.12 and HRE2. Expression, immunological and genetic data place Pgb1 upstream of RAP2.12 and HRE2 in the regulation of root bending in oxygen-limiting environments. The attenuation of slanting in Pgb1-suppressing roots was associated with depletion of auxin activity at the root tip because of depression in PAT, while exaggeration of root bending in Pgb1-over-expressing roots with the retention of auxin activity. Changes in PIN2 distribution patterns, suggestive of redirection of auxin movement during hypoxia, might contribute to the differential root bending responses of the transgenic lines. In the end, Pgb1, by regulating NO levels, controls the expression of 2 ERFVIIs which, in a cascade, modulate PAT and, therefore, root bending.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Oxígeno , Raíces de Plantas , Transducción de Señal , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Etilenos/metabolismo , Óxido Nítrico/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transporte Biológico , Proteínas de Unión al ADN
16.
Sci Rep ; 14(1): 15309, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961197

RESUMEN

Axillary bud is an important aspect of plant morphology, contributing to the final tobacco yield. However, the mechanisms of axillary bud development in tobacco remain largely unknown. To investigate this aspect of tobacco biology, the metabolome and proteome of the axillary buds before and after topping were compared. A total of 569 metabolites were differentially abundant before and 1, 3, and 5 days after topping. KEGG analyses further revealed that the axillary bud was characterized by a striking enrichment of metabolites involved in flavonoid metabolism, suggesting a strong flavonoid biosynthesis activity in the tobacco axillary bud after topping. Additionally, 9035 differentially expressed proteins (DEPs) were identified before and 1, 3, and 5 days after topping. Subsequent GO and KEGG analyses revealed that the DEPs in the axillary bud were enriched in oxidative stress, hormone signal transduction, MAPK signaling pathway, and starch and sucrose metabolism. The integrated proteome and metabolome analysis revealed that the indole-3-acetic acid (IAA) alteration in buds control dormancy release and sustained growth of axillary bud by regulating proteins involved in carbohydrate metabolism, amino acid metabolism, and lipid metabolism. Notably, the proteins related to reactive oxygen species (ROS) scavenging and flavonoid biosynthesis were strongly negatively correlated with IAA content. These findings shed light on a critical role of IAA alteration in regulating axillary bud outgrowth, and implied a potential crosstalk among IAA alteration, ROS homeostasis, and flavonoid biosynthesis in tobacco axillary bud under topping stress, which could improve our understanding of the IAA alteration in axillary bud as an important regulator of axillary bud development.


Asunto(s)
Ácidos Indolacéticos , Metaboloma , Nicotiana , Proteínas de Plantas , Proteoma , Ácidos Indolacéticos/metabolismo , Nicotiana/metabolismo , Nicotiana/crecimiento & desarrollo , Proteoma/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Flavonoides/metabolismo , Flores/metabolismo , Flores/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo
17.
Microbiol Res ; 287: 127836, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39018831

RESUMEN

Verticillium dahliae is a destructive, soil-borne pathogen that causes significant losses on numerous important dicots. Recently, beneficial microbes inhabiting the rhizosphere have been exploited and used to control plant diseases. In the present study, Burkholderia gladioli KRS027 demonstrated excellent inhibitory effects against Verticillium wilt in cotton seedlings. Plant growth and development was promoted by affecting the biosynthesis and signaling pathways of brassinosteroids (BRs), gibberellins (GAs), and auxins, consequently promoting stem elongation, shoot apical meristem, and root apical tissue division in cotton. Furthermore, based on the host transcriptional response to V. dahliae infection, it was found that KRS027 modulates the plants to maintain cell homeostasis and respond to other pathogen stress. Moreover, KRS027 induced disruption of V. dahliae cellular structures, as evidenced by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses. Based on the comparative transcriptomic analysis between KRS027 treated and control group of V. dahliae, KRS027 induced substantial alterations in the transcriptome, particularly affecting genes encoding secreted proteins, small cysteine-rich proteins (SCRPs), and protein kinases. In addition, KRS027 suppressed the growth of different clonal lineages of V. dahliae strains through metabolites, and volatile organic compounds (VOCs) released by KRS027 inhibited melanin biosynthesis and microsclerotia development. These findings provide valuable insights into an alternative biocontrol strategy for Verticillium wilt, demonstrating that the antagonistic bacterium KRS027 holds promise as a biocontrol agent for promoting plant growth and managing disease occurrence.


Asunto(s)
Ascomicetos , Burkholderia gladioli , Enfermedades de las Plantas , Transcriptoma , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Burkholderia gladioli/crecimiento & desarrollo , Burkholderia gladioli/genética , Burkholderia gladioli/metabolismo , Ascomicetos/crecimiento & desarrollo , Ascomicetos/genética , Gossypium/microbiología , Gossypium/crecimiento & desarrollo , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Plantones/microbiología , Plantones/crecimiento & desarrollo , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Agentes de Control Biológico , Ácidos Indolacéticos/metabolismo , Giberelinas/metabolismo , Verticillium
18.
Plant Physiol Biochem ; 213: 108823, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38905727

RESUMEN

Cadmium (Cd) is a widely distributed heavy metal pollutant that is detrimental to growth and development of plants. The secretion of indole-3-acetic acid is one of the defense mechanisms when plants inflict heavy metal stress. This study aimed to explore how 4-phenoxyphenylboronic acid, an effective IAA inhibitor, induces changes in IAA level, Cadmium accumulation, and activation of defense responses in rice seedling roots under different Cadmium concentrations. Our research results show that: 1) root growth was promoted with PPBa addition under mild Cadmium treatment. 2) the root IAA level improved with increasing Cadmium concentration, and PPBa had a significant inhibitory effect on IAA level. 3) PPBa had no effect on the Cadmium accumulation in rice seedling roots. 4) PPBa had a significant inhibitory effect on the generation of H2O2 under mild and moderate Cadmium treatment. 5) PPBa exacerbated the imbalance of osmotic substances in rice seedling roots under severe Cadmium treatment. This study helps us understand the tolerance and endogenous regulation of plants to heavy metal stress.


Asunto(s)
Cadmio , Peróxido de Hidrógeno , Ácidos Indolacéticos , Oryza , Raíces de Plantas , Plantones , Oryza/efectos de los fármacos , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Peróxido de Hidrógeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Ácidos Borónicos/farmacología
19.
Int J Phytoremediation ; 26(12): 2010-2020, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38932483

RESUMEN

Urease-producing bacteria (UPB) are widely present in soil and play an important role in soil ecosystems. In this study, 65 UPB strains were isolated from cadmium (Cd)-polluted soil around a lead-zinc mine in Yunnan Province, China. The Cd tolerance, removal of Cd from aqueous solution, production of indoleacetic acid (IAA) and plant growth-promoting effects of these materials were investigated. The results indicate that among the 65 UPB strains, four strains with IAA-producing ability were screened and identified as Bacillus thuringiensis W6-11, B. cereus C7-4, Serratia marcescens W11-10, and S. marcescens C5-6. Among the four strains, B. cereus C7-4 had the highest Cd tolerance, median effect concentration (EC50) of 59.94 mg/L. Under Cd 5 mg/L, S. marcescens C5-6 had the highest Cd removal from aqueous solution, up to 69.83%. Under Cd 25 mg/kg, inoculation with B. cereus C7-4 significantly promoted maize growth in a sand pot by increasing the root volume, root surface area, and number of root branches by 22%, 29%, and 20%, respectively, and plant height and biomass by 16% and 36%, respectively, and significantly increasing Cd uptake in the maize roots. Therefore, UPB is a potential resource for enhancing plant adaptability to Cd stress in plants with Cd-polluted habitats.


This study utilized urease-producing bacteria screened from the soil of lead zinc mining areas in Yunnan, China as the research object, enriching the microbial resources in Yunnan. In addition, this article verified the IAA production ability and cadmium removal ability of urease-producing bacteria, and screened out bifunctional urease-producing bacteria that have potential in cadmium pollution control and plant growth promotion.


Asunto(s)
Biodegradación Ambiental , Cadmio , Microbiología del Suelo , Contaminantes del Suelo , Ureasa , Zea mays , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Zea mays/metabolismo , Ureasa/metabolismo , China , Ácidos Indolacéticos/metabolismo , Serratia marcescens/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo
20.
J Environ Manage ; 362: 121250, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833921

RESUMEN

To investigate the impact and mechanism of Cd-tolerant bacteria in soil on promoting Cd accumulation in Ageratum conyzoides L., we verified the impact of inoculating two strains, B-1 (Burkholderia contaminans HA09) and B-7 (Arthrobacter humicola), on Cd accumulation in A. conyzoides through a pot experiment. Additionally, we investigated the dissolution of CdCO3 and nutrient elements, as well as the release of indoleacetic acid (IAA) by the two strains. The results showed that both strains can significantly improve the dissolution of CdCO3. Strains B-1 and B-7 had obvious effect of dissolving phosphorus, which was 5.63 and 2.76 times higher than that of the control group, respectively. Strain B-7 had significant effect of dissolution potassium, which was 1.79 times higher than that of the control group. Strains B-1 and B-7 had significant nitrogen fixation effect, which was 29.53 and 44.39 times higher than that of the control group, respectively. In addition, inoculating with strain B-1 and B-7 significantly increased the Cd extraction efficiency of A. conyzoides (by 114% and 45% respectively) through enhancing Cd accumulation and the biomass of A. conyzoides. Furthermore, the inoculation of strain B-1 and B-7 led to a significant increase in the activities of CAT and SOD, as well as the content of chlorophyll a and total chlorophyll in the leaves of A. conyzoides. To sum up, strain B-1 and B-7 can promote the phytoremediation efficiency of A. conyzoides on Cd by promoting the biomass and Cd accumulation of A. conyzoides.


Asunto(s)
Ageratum , Arthrobacter , Biodegradación Ambiental , Cadmio , Contaminantes del Suelo , Cadmio/metabolismo , Arthrobacter/metabolismo , Contaminantes del Suelo/metabolismo , Ageratum/metabolismo , Burkholderia/metabolismo , Ácidos Indolacéticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA