Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Sci Rep ; 11(1): 9873, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972572

RESUMEN

Triple negative breast cancer (TNBC) is known for being very aggressive, heterogeneous and highly metastatic. The standard of care treatment is still chemotherapy, with adjacent toxicity and low efficacy, highlighting the need for alternative and more effective therapeutic strategies. Edelfosine, an alkyl-lysophospholipid, has proved to be a promising therapy for several cancer types, upon delivery in lipid nanoparticles. Therefore, the objective of this work was to explore the potential of edelfosine for the treatment of TNBC. Edelfosine nanoemulsions (ET-NEs) composed by edelfosine, Miglyol 812 and phosphatidylcholine as excipients, due to their good safety profile, presented an average size of about 120 nm and a neutral zeta potential, and were stable in biorelevant media. The ability of ET-NEs to interrupt tumor growth in TNBC was demonstrated both in vitro, using a highly aggressive and invasive TNBC cell line, and in vivo, using zebrafish embryos. Importantly, ET-NEs were able to penetrate through the skin barrier of MDA-MB 231 xenografted zebrafish embryos, into the yolk sac, leading to an effective decrease of highly aggressive and invasive tumoral cells' proliferation. Altogether the results demonstrate the potential of ET-NEs for the development of new therapeutic approaches for TNBC.


Asunto(s)
Antineoplásicos/administración & dosificación , Nanopartículas/administración & dosificación , Éteres Fosfolípidos/administración & dosificación , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Administración Cutánea , Animales , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Composición de Medicamentos/métodos , Emulsiones , Excipientes/química , Femenino , Humanos , Nanopartículas/química , Permeabilidad , Fosfatidilcolinas/química , Éteres Fosfolípidos/farmacocinética , Piel/metabolismo , Triglicéridos/química , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra
2.
Int J Pharm ; 582: 119345, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32311470

RESUMEN

Despite the great advances accomplished in the treatment of pediatric cancers, recurrences and metastases still exacerbate prognosis in some aggressive solid tumors such as neuroblastoma and osteosarcoma. In view of the poor efficacy and toxicity of current chemotherapeutic treatments, we propose a single multitherapeutic nanotechnology-based strategy by co-assembling in the same nanodevice two amphiphilic antitumor agents: squalenoyl-gemcitabine and edelfosine. Homogeneous batches of nanoassemblies were easily formulated by the nanoprecipitation method. Their anticancer activity was tested in pediatric cancer cell lines and pharmacokinetic studies were performed in mice. In vitro assays revealed a synergistic effect when gemcitabine was co-administered with edelfosine. Squalenoyl-gemcitabine/edelfosine nanoassemblies were found to be capable of intracellular translocation in patient-derived metastatic pediatric osteosarcoma cells and showed a better antitumor profile than squalenoyl-gemcitabine nanoassemblies alone. The intravenous administration of this combinatorial nanomedicine in mice exhibited a controlled release behavior of gemcitabine and diminished edelfosine plasma peak concentrations. These findings make it a suitable pre-clinical candidate for childhood cancer therapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Neoplasias Óseas/tratamiento farmacológico , Nanoconjugados/uso terapéutico , Nanopartículas , Neuroblastoma/tratamiento farmacológico , Osteosarcoma/tratamiento farmacológico , Éteres Fosfolípidos/farmacología , Escualeno/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/química , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Composición de Medicamentos , Sinergismo Farmacológico , Femenino , Concentración 50 Inhibidora , Inyecciones Intravenosas , Ratones Desnudos , Nanoconjugados/administración & dosificación , Nanoconjugados/química , Neuroblastoma/metabolismo , Neuroblastoma/patología , Osteosarcoma/metabolismo , Osteosarcoma/patología , Éteres Fosfolípidos/administración & dosificación , Éteres Fosfolípidos/química , Éteres Fosfolípidos/farmacocinética , Escualeno/administración & dosificación , Escualeno/química , Escualeno/farmacocinética , Escualeno/uso terapéutico
3.
Biomed Pharmacother ; 83: 51-57, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27470549

RESUMEN

In this study, transferrin (Tf)-conjugated polyethylene glycol (PEG)-poly-l-lysine (PLL)-poly(lactic-co-glycolic acid) (PLGA) (PEG-PLL-PLGA)-based micellar formulations were successfully prepared for the delivery of edelfosine (EDS) in leukemia treatment. The micelles were nanosized and presented spherical shaped particles. Our in vitro data suggest that the nanoformulations maintain the biological activity of drugs for longer periods and lead to a continuous release of active drug. The enhanced cellular uptake of EDS-TM resulted in significantly higher cytotoxic effect in K562 leukemia cells. Cell cycle analysis further demonstrated the significantly higher G2/M phase arrest of cancer cells. Immunoblot analysis clearly revealed the potential of EDS-TM in inducing apoptosis of cancer cells which could improve the anticancer efficacy in leukemia. Importantly, EDS-M and EDS-TM significantly prolonged the circulation profile of EDS throughout until 24h, indicating the potential of targeted nanoparticulate delivery system. The prolonged blood circulation potential of micellar formulations might improve the therapeutic potential of drug by increasing its bioavailability in the serum. It would be worthwhile evaluating the effects of the EDS-loaded micelles on cancer cells in vivo for clinical application.


Asunto(s)
Antineoplásicos/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Nanomedicina/métodos , Éteres Fosfolípidos/uso terapéutico , Polímeros/química , Transferrina/metabolismo , Administración Intravenosa , Antineoplásicos/sangre , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Liberación de Fármacos , Dispersión Dinámica de Luz , Humanos , Immunoblotting , Células K562 , Cinética , Leucemia Mieloide Aguda/patología , Micelas , Éteres Fosfolípidos/sangre , Éteres Fosfolípidos/farmacocinética , Éteres Fosfolípidos/farmacología , Polímeros/síntesis química , Resultado del Tratamiento
4.
Int J Nanomedicine ; 9: 4979-89, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25368518

RESUMEN

Hepatocellular carcinoma (HCC) is the third most common cause of death related to cancer diseases worldwide. The current treatment options have many limitations and reduced success rates. In this regard, advances in gene therapy have shown promising results in novel therapeutic strategies. However, the success of gene therapy depends on the efficient and specific delivery of genetic material into target cells. In this regard, the main goal of this work was to develop a new lipid-based nanosystem formulation containing the lipid lactosyl-PE for specific and efficient gene delivery into HCC cells. The obtained results showed that incorporation of 15% of lactosyl-PE into liposomes induces a strong potentiation of lipoplex biological activity in HepG2 cells, not only in terms of transgene expression levels but also in terms of percentage of transfected cells. In the presence of galactose, which competes with lactosyl-PE for the binding to the asialoglycoprotein receptor (ASGP-R), a significant reduction in biological activity was observed, showing that the potentiation of transfection induced by the presence of lactosyl-PE could be due to its specific interaction with ASGP-R, which is overexpressed in HCC. In addition, it was found that the incorporation of lactosyl-PE in the nanosystems promotes an increase in their cell binding and uptake. Regarding the physicochemical properties of lipoplexes, the presence of lactosyl-PE resulted in a significant increase in DNA protection and in a substantial decrease in their mean diameter and zeta potential, conferring them suitable characteristics for in vivo application. Overall, the results obtained in this study suggest that the potentiation of the biological activity induced by the presence of lactosyl-PE is due to its specific binding to the ASGP-R, showing that this novel formulation could constitute a new gene delivery nanosystem for application in therapeutic strategies in HCC.


Asunto(s)
Glucolípidos/química , Liposomas/química , Nanopartículas/química , Éteres Fosfolípidos/química , Transfección/métodos , Receptor de Asialoglicoproteína/antagonistas & inhibidores , Receptor de Asialoglicoproteína/metabolismo , Cationes , ADN/química , Galactosa/química , Galactosa/farmacocinética , Glucolípidos/farmacocinética , Células Hep G2 , Humanos , Liposomas/farmacocinética , Éteres Fosfolípidos/farmacocinética
5.
Curr Top Med Chem ; 14(9): 1124-32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24678709

RESUMEN

Nanotechnology is providing a new therapeutic paradigm by enhancing drug efficacy and preventing side-effects. Edelfosine is a synthetic ether lipid analogue of platelet activating factor with high antitumor activity. The encapsulation of this potent antitumor drug in lipid nanoparticles increases its oral bioavailability; moreover, it prevents the hemolytic and gastrointestinal side-effects of the free drug. The literature points towards lymphatic absorption of lipid nanoparticles after oral administration, and previous in vitro and in vivo studies stress the protection against toxicity that these nanosystems provide. The present study is intended to assess the permeability of lipid nanoparticles across the intestinal barrier. Caco-2 monoculture and Caco-2/Raji co-culture were used as in vitro models of enterocytes and Microfold cells respectively. Results showed that free drug is internalized and possibly metabolized in enterocytes. These results do not correlate with those observed in vivo when edelfosine-lipid nanoparticles were administered orally in mice, which suggests that the microfold model is not a good model to study the absorption of edelfosine-lipid nanoparticles across the intestinal barrier in vitro.


Asunto(s)
Técnicas de Cocultivo , Enterocitos/citología , Enterocitos/metabolismo , Absorción Intestinal , Lípidos , Nanopartículas/metabolismo , Éteres Fosfolípidos/metabolismo , Administración Oral , Animales , Células CACO-2 , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacocinética , Humanos , Lípidos/administración & dosificación , Lípidos/farmacocinética , Ratones , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Éteres Fosfolípidos/administración & dosificación , Éteres Fosfolípidos/farmacocinética , Propiedades de Superficie , Células Tumorales Cultivadas
6.
Int J Nanomedicine ; 7: 5465-74, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23093902

RESUMEN

BACKGROUND: N-lactosyl-dioleoylphosphatidylethanolamine (Lac-DOPE) was synthesized and evaluated as a liver-specific targeting ligand via asialoglycoprotein receptors for liposomal delivery of doxorubicin. METHODS: Lactosylated liposomes encapsulating calcein (Lac-L-calcein) or doxorubicin (Lac-L-DOX) composed of egg phosphatidylcholine, cholesterol, monomethoxy polyethylene glycol 2000-distearoyl phosphatidylethanolamine, and Lac-DOPE at 50:35:5:10 (mol/mol) were prepared by polycarbonate membrane extrusion and evaluated in human hepatocellular carcinoma HepG2 cells. Cellular uptake of Lac-L-calcein was monitored by confocal microscopy and by flow cytometry. The cytotoxicity of Lac-L-DOX was evaluated by MTT assay. The pharmacokinetic properties of Lac-L-DOX were studied in normal mice, and its biodistribution and antitumor activity were studied in nude mice with HepG2 xenografts. RESULTS: The size of Lac-L-DOX was less than 100 nm and the liposomes demonstrated excellent colloidal stability. In vitro uptake of Lac-L-calcein by HepG2 cells was four times greater than that of non-targeted L-calcein. In the presence of 20 mM lactose, the uptake of Lac-L-calcein was inhibited, suggesting that asialoglycoprotein receptors mediated the observed cellular uptake. Lac-L-DOX exhibited enhanced in vivo cytotoxicity compared with the nontargeted liposomal doxorubicin (L-DOX), and its pharmacokinetic parameters indicate that Lac-L-DOX has a long blood circulation time (t(1/2) 8.73 hours). Tissue distribution and therapeutic efficacy studies in nude mice bearing HepG2 xenografts show that Lac-L-DOX had significantly stronger tumor inhibitory activity compared with L-DOX and free doxorubicin, along with a higher accumulation of drug within the tumor site and greater cellular uptake by tumor cells. CONCLUSION: These data suggest that lactosylated liposomes are promising drug delivery vehicles for hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Doxorrubicina/administración & dosificación , Glucolípidos/farmacocinética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Nanocápsulas/química , Éteres Fosfolípidos/farmacocinética , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/química , Línea Celular Tumoral , Doxorrubicina/química , Femenino , Glucolípidos/química , Células Hep G2 , Humanos , Liposomas/química , Ratones , Éteres Fosfolípidos/química , Resultado del Tratamiento
7.
Biochim Biophys Acta ; 1821(4): 706-18, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22333180

RESUMEN

The truncated phospholipids 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) are oxidation products of 1-palmitoyl-2-arachidonoyl phosphatidylcholine. Depending on concentration and the extent of modification, these compounds induce growth and death, differentiation and inflammation of vascular cells thus playing a role in the development of atherosclerosis. Here we describe the import of fluorescent POVPC and PGPC analogs into cultured RAW 264.7 macrophages and the identification of their primary protein targets. We found that the fluorescent oxidized phospholipids were rapidly taken up by the cells. The cellular target sites depended on the chemical reactivity of these compounds but not on the donor (aqueous lipid suspension, albumin or LDL). The great differences in cellular uptake of PGPC and POVPC are a direct consequence of the subtle structural differences between both molecules. The former compound (carboxyl lipid) can only physically interact with the molecules in its immediate vicinity. In contrast, the aldehydo-lipid covalently reacts with free amino groups of proteins by forming covalent Schiff bases, and thus becomes trapped in the cell surface. Despite covalent binding, POVPC is exchangeable between (lipo)proteins and cells, since imines are subject to proton-catalyzed base exchange. Protein targeting by POVPC is a selective process since only a limited subfraction of the total proteome was labeled by the fluorescent aldehydo-phospholipid. Chemically stabilized lipid-protein conjugates were identified by MS/MS. The respective proteins are involved in apoptosis, stress response, lipid metabolism and transport. The identified target proteins may be considered primary signaling platforms of the oxidized phospholipid.


Asunto(s)
Colorantes Fluorescentes/química , Macrófagos/química , Éteres Fosfolípidos/química , Proteínas/química , Animales , Compuestos de Boro/química , Bovinos , Línea Celular , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Humanos , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Microscopía Fluorescente , Modelos Químicos , Estructura Molecular , Oxidación-Reducción , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/farmacocinética , Éteres Fosfolípidos/metabolismo , Éteres Fosfolípidos/farmacocinética , Unión Proteica , Proteínas/metabolismo , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Espectrometría de Masas en Tándem
8.
J Control Release ; 156(3): 421-6, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-21821074

RESUMEN

Edelfosine is the prototype molecule of a family of anticancer drugs collectively known as synthetic alkyl-lysophospholipids. This drug holds promise as a selective antitumor agent, and a number of preclinical assays are in progress. In this study, we observe the accumulation of edelfosine in brain tissue after its oral administration in Compritol® and Precirol® lipid nanoparticles (LN). The high accumulation of edelfosine in brain was due to the inhibition of P-glycoprotein by Tween® 80, as verified using a P-glycoprotein drug interaction assay. Moreover, these LN were tested in vitro against the C6 glioma cell line, which was later employed to establish an in vivo xenograft mouse model of glioma. In vitro studies revealed that edelfosine-loaded LN induced an antiproliferative effect in C6 glioma cell line. In addition, in vivo oral administration of drug-loaded LN in NMRI nude mice bearing a C6 glioma xenograft tumor induced a highly significant reduction in tumor growth (p<0.01) 14days after the beginning of the treatment. Our results showed that Tween® 80 coated Compritol® and Precirol® LN can effectively inhibit the growth of C6 glioma cells in vitro and suggest that edelfosine-loaded LN represent an attractive option for the enhancement of antitumor activity on brain tumors in vivo.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Lípidos/química , Nanopartículas/química , Éteres Fosfolípidos/administración & dosificación , Administración Oral , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioma/patología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Éteres Fosfolípidos/farmacocinética , Éteres Fosfolípidos/uso terapéutico , Polisorbatos/química
9.
Curr Pharm Des ; 14(21): 2061-74, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18691116

RESUMEN

Synthetic anticancer alkylphospholipids (APLs), such as edelfosine, miltefosine and perifosine, are a group of structurally related lipids that act on cellular membranes rather than the DNA. APLs have essentially one long hydrocarbon chain that allows easy partitioning into membrane lipid bilayers, but they resist catabolic degradation. APLs therefore accumulate in cell membranes and can interfere with normal lipid metabolism and lipid-dependent signal transduction. This action, often leading to apoptosis, is most effective in metabolically active, proliferating cells, such as cancer cells, but not in quiescent normal cells. This review describes the general mechanisms of APL cellular uptake and action. Most important for their biological effect are the inhibition of phosphatidylcholine synthesis, the inhibition of the MAP-kinase/ERK proliferative and phosphatidylinositol 3-kinase/ Akt survival pathways and the stimulation of the Stress-activated protein kinase/JNK pathway, which may lead to apoptosis in cancer cells. APLs are most promising in combination with conventional cancer therapies. For example, ALPs increase the cancer cell sensitivity to radiotherapy in vitro and in vivo. We highlight the clinical potential of perifosine, an orally available APL.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Éteres Fosfolípidos/farmacología , Animales , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Transporte Biológico , Ensayos Clínicos como Asunto , Terapia Combinada , Resistencia a Antineoplásicos , Humanos , Neoplasias/fisiopatología , Neoplasias/radioterapia , Éteres Fosfolípidos/farmacocinética , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacocinética , Fosforilcolina/farmacología , Transducción de Señal/efectos de los fármacos
10.
J Med Chem ; 49(7): 2155-65, 2006 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-16570911

RESUMEN

Radioiodinated phospholipid ether analogues have shown a remarkable ability to selectively accumulate in a variety of human and animal tumors in xenograft and spontaneous tumor rodent models. It is believed that this tumor avidity arises as a consequence of metabolic differences between tumor and corresponding normal tissues. The results of this study indicate that one factor in the tumor retention of these compounds in tumors is the length of the alkyl chain that determines their hydrophobic properties. Decreasing the chain length from C12 to C7 resulted in little or no tumor accumulation and rapid clearance of the compound in tumor-bearing rats within 24 h of administration. Increasing the chain length had the opposite effect, with the C15 and C18 analogues displaying delayed plasma clearance and enhanced tumor uptake and retention in tumor-bearing rats. Tumor uptake displayed by propanediol analogues NM-412 and NM-413 was accompanied by high levels of liver and abdominal radioactivity 24 h postinjection to tumor-bearing rats. Addition of a 2-O-methyl moiety to the propanediol backbone also retarded tumor uptake significantly. A direct comparison between NM-404 and its predecessor, NM-324, in human PC-3 tumor bearing immune-compromised mice revealed a dramatic enhancement in both tumor uptake and total body elimination of NM-404 relative to NM-324. On the basis of imaging and tissue distribution studies in several rodent tumor models, the C18 analogue, NM-404, was chosen for follow-up evaluation in human lung cancer patients. Preliminary results have been extremely promising in that selective uptake and retention of the agent in tumors is accompanied by rapid clearance of background radioactivity from normal tissues, especially those in the abdomen. These results strongly suggest that extension of the human trials to include other cancers is warranted, especially when NM-404 is radiolabeled with iodine-124, a new commercially available positron-emitting isotope. The relatively long physical half-life of 4 days afforded by this isotope appears well-suited to the pharmacodynamic profile of NM-404.


Asunto(s)
Éteres Fosfolípidos/síntesis química , Fosforilcolina/análogos & derivados , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Radioisótopos de Yodo , Riñón/metabolismo , Hígado/metabolismo , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones SCID , Trasplante de Neoplasias , Éteres Fosfolípidos/química , Éteres Fosfolípidos/farmacocinética , Fosforilcolina/síntesis química , Fosforilcolina/química , Fosforilcolina/farmacocinética , Conejos , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Distribución Tisular , Pruebas de Toxicidad Aguda , Trasplante Heterólogo
11.
Artículo en Inglés | MEDLINE | ID: mdl-15358311

RESUMEN

Edelfosine is a synthetic alkyl ether phospholipid that represents a promising class of antitumor agents. However, analytical methods to measure these type compounds are scarce. The lack of a reliable methodology to quantify edelfosine is a major problem in ongoing and scheduled preclinical and clinical trials with this drug. We evaluated the applicability of high-performance liquid chromatography-mass spectrometry to determine edelfosine in biological samples and polymeric delivery systems. Sample pre-treatment involved polymer precipitation or cell lysis with methanol. HPLC separation was performed on an Alltima RPC(18) narrow-bore column and edelfosine quantification was done by electrospray ionization mass spectrometry (ESI-MS) using positive ion mode and selected ion monitoring. Assays were linear in the tested range of 0.3-10 microg/ml. The limit of quantification was 0.3 ng/sample in both matrices, namely biological samples and polymeric delivery systems. The interassay precision ranging from 0.79 to 1.49%, with relative errors of -6.7 and 12.8%. Mean extraction recovery was 95.6%. HPLC-ESI-MS is a reliable system for edelfosine analysis and quantification in samples from different sources, combining advantages of full automation (rapidity, ease of use, no need of extensive extraction procedures) with high analytical performance and throughput.


Asunto(s)
Antineoplásicos/análisis , Éteres Fosfolípidos/análisis , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Calibración , Química Farmacéutica , Cromatografía Líquida de Alta Presión , Sistemas de Liberación de Medicamentos , Células HL-60 , Humanos , Indicadores y Reactivos , Éteres Fosfolípidos/administración & dosificación , Éteres Fosfolípidos/farmacocinética , Control de Calidad , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray
12.
Clin Cancer Res ; 10(4): 1282-8, 2004 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-14977826

RESUMEN

PURPOSE: A Phase I trial was performed to determine the dose-limiting toxicity and maximum tolerated dose, and to describe the pharmacokinetics of the alkyl-lysophospholipid, ilmofosine, when administered as a weekly 2-h infusion in patients with solid tumors. EXPERIMENTAL DESIGN: Thirty-nine patients were entered into a trial of ilmofosine administered weekly for 4 weeks followed by a 2-week rest period. Dose escalation occurred in 10 levels from 12 to 650 mg/m(2). RESULTS: Thirty-six patients were evaluable for toxicity. The median number of cycles per patient was 1 (range, 1-4). Dose-limiting gastrointestinal toxicity occurred at 650 mg/m(2) with grade 3 nausea in two patients and grade 3 vomiting and diarrhea in one patient. Grade 2 diarrhea was observed in four of six patients treated at 550 mg/m(2). In addition, two patients treated at 550 mg/m(2) and two patients treated at 650 mg/m(2) experienced a decline in performance status of two or more levels that was determined to be due to treatment. There were no tumor responses. Stabilization of disease for at least 8 weeks occurred in six patients. Plasma concentrations of ilmofosine and its sulfoxide metabolite were evaluated by high-pressure liquid chromatography. The elimination of both compounds was biexponential with terminal half-lives of approximately 40 h for ilmofosine and 48 h for the sulfoxide. The area under the concentration-time curve was dose-proportional for each compound, and there was no evidence of saturable kinetics. CONCLUSIONS: The dose-limiting toxicity of ilmofosine is gastrointestinal and the recommended dose for Phase II trials is 450 mg/m(2) as a 2-h weekly infusion. The relatively long half-life of ilmofosine and its active metabolite support the use of this intermittent schedule.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias/tratamiento farmacológico , Éteres Fosfolípidos/administración & dosificación , Adulto , Anciano , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Área Bajo la Curva , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Infusiones Intravenosas , Cinética , Lípidos/uso terapéutico , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Éteres Fosfolípidos/efectos adversos , Éteres Fosfolípidos/farmacocinética , Factores de Tiempo
13.
Anticancer Drugs ; 14(6): 481-6, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12853892

RESUMEN

TLC ELL-12 is a liposomal formulation of the novel antineoplastic compound 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine (L-ET-18-OCH(3)). The purpose of these studies was to evaluate the activity and tissue distribution of L-ET-18-OCH(3) when administered i.v. as TLC ELL-12 to rats bearing solid tumors. Growth-inhibitory activity of L-ET-18-OCH(3) and TLC ELL-12 against methylnitrosourea (MNU)-induced tumors grown in vitro was evaluated. Female Buffalo rats were injected s.c. with transplantable MNU-induced tumor cells. Four days later, animals were treated i.v. with L-ET-18-OCH(3) administered as TLC ELL-12 once daily for 5 consecutive days. Another group of MNU-tumor bearing rats was given a single 12.5 mg/kg dose of TLC ELL-12 containing [14C]L-ET-18-OCH(3) by i.v. injection into a tail vein. The 50% growth inhibitory concentration for TLC ELL-12 against MNU tumor cells in vitro was 63 microM (about 30 microg/ml). Tumor growth was significantly inhibited in ELL-12-treated rats versus controls. After a single dose, whole blood L-ET-18-OCH(3) concentrations declined in a multiphasic fashion with C(max) and terminal half-life values of approximately 91.1 microg L-ET-18-OCH(3)/ml and 13.1 h, respectively. Tumor L-ET-18-OCH(3) levels increased through the first 16-24 h post-dosing to about 23 microg/g and remained elevated at the terminal time point with little evidence of metabolism. Concentration-time profiles for selected tissues indicate rapid distribution of L-ET-18-OCH(3) from the circulation into tissues with highest concentrations in spleen, liver, lungs, kidneys and gastrointestinal tract. L-ET-18-OCH(3) as TLC ELL-12 shows both in vitro and in vivo activity against the MNU tumor line. When i.v. administered, L-ET-18-OCH(3) from ELL-12 is well distributed and slowly eliminated by metabolism in tissues.


Asunto(s)
Alquilantes/toxicidad , Antineoplásicos/farmacocinética , Metilnitrosourea/toxicidad , Neoplasias Experimentales/tratamiento farmacológico , Éteres Fosfolípidos/farmacocinética , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Área Bajo la Curva , Femenino , Semivida , Inyecciones Intravenosas , Liposomas , Tasa de Depuración Metabólica , Neoplasias Experimentales/inducido químicamente , Neoplasias Experimentales/metabolismo , Éteres Fosfolípidos/administración & dosificación , Éteres Fosfolípidos/uso terapéutico , Ratas , Distribución Tisular
14.
Antimicrob Agents Chemother ; 45(9): 2468-74, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11502516

RESUMEN

Drug resistance has emerged as a major impediment in the treatment of leishmaniasis. Alkyl-lysophospholipids (ALP), originally developed as anticancer drugs, are considered to be the most promising antileishmanial agents. In order to anticipate probable clinical failure in the near future, we have investigated possible mechanisms of resistance to these drugs in Leishmania spp. The results presented here support the involvement of a member of the ATP-binding cassette (ABC) superfamily, the Leishmania P-glycoprotein-like transporter, in the resistance to ALP. (i) First, a multidrug resistance (MDR) Leishmania tropica line overexpressing a P-glycoprotein-like transporter displays significant cross-resistance to the ALP miltefosine and edelfosine, with resistant indices of 9.2- and 7.1-fold, respectively. (ii) Reduced expression of P-glycoprotein in the MDR line correlates with a significant decrease in ALP resistance. (iii) The ALP were able to modulate the P-glycoprotein-mediated resistance to daunomycin in the MDR line. (iv) We have found a new inhibitor of this transporter, the sesquiterpene C-3, that completely sensitizes MDR parasites to ALP. (v) Finally, the MDR line exhibits a lower accumulation than the wild-type line of bodipy-C(5)-PC, a fluorescent analogue of phosphatidylcholine that has a structure resembling that of edelfosine. Also, C-3 significantly increases the accumulation of the fluorescent analogue to levels similar to those of wild-type parasites. The involvement of the Leishmania P-glycoprotein-like transporter in resistance to drugs used in the treatment of leishmaniasis also supports the importance of developing new specific inhibitors of this ABC transporter.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Resistencia a Múltiples Medicamentos/fisiología , Leishmania tropica/metabolismo , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Animales , Antibióticos Antineoplásicos/farmacología , Antiprotozoarios/farmacocinética , Antiprotozoarios/farmacología , Daunorrubicina/farmacología , Fluorescencia , Humanos , Leishmania tropica/efectos de los fármacos , Pruebas de Sensibilidad Parasitaria , Éteres Fosfolípidos/química , Éteres Fosfolípidos/farmacocinética , Éteres Fosfolípidos/farmacología , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología
15.
Int J Cancer ; 85(5): 674-82, 2000 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-10699948

RESUMEN

Antitumor ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH(3); edelfosine) induces apoptosis in cancer cells, sparing normal cells. We have found that the apoptotic action of ET-18-OCH(3) required drug uptake and Fas in the target cell. Failure to accomplish one of these requirements prevents cell killing by the ether lipid. In human lymphoid leukemic cells, ET-18-OCH(3) does not promote Fas or FasL expression and ET-18-OCH(3)-induced apoptosis is not inhibited by pre-incubation with an anti-Fas blocking antibody that abrogates cell killing mediated by Fas/FasL interactions. ET-18-OCH(3)-resistant normal human Fas-positive fibroblasts do not incorporate ET-18-OCH(3), but undergo apoptosis upon ET-18-OCH(3) microinjection. Murine fibroblasts L929 and L929-Fas, stably transfected with human Fas cDNA, do not incorporate ET-18-OCH(3) and are resistant to its action when added exogenously. Microinjection of ET-18-OCH(3) induces apoptosis in L929-Fas cells, but not in wild-type L929 cells. Confocal laser scanning microscopy shows that ET-18-OCH(3) induces Fas clustering and capping during triggering of ET-18-OCH(3)-induced apoptosis. Microinjection-induced apoptosis and Fas clustering are specific for the molecular structure of ET-18-OCH(3). Our data indicate that ET-18-OCH(3) induces apoptosis via Fas after the ether lipid is inside the cell, and this Fas activation is independent of the interaction of Fas with its natural ligand FasL. This explains the selective action of ET-18-OCH(3) on tumors since only cancer cells incorporate sufficient amounts of the drug.


Asunto(s)
Antineoplásicos/toxicidad , Apoptosis/fisiología , Glicoproteínas de Membrana/fisiología , Éteres Fosfolípidos/toxicidad , Receptor fas/fisiología , Animales , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Transporte Biológico , Fragmentación del ADN , Proteína Ligando Fas , Células HL-60 , Humanos , Células Jurkat , Células K562 , Células L , Ratones , Microinyecciones , Modelos Biológicos , Éteres Fosfolípidos/administración & dosificación , Éteres Fosfolípidos/farmacocinética , Transducción de Señal , Células Tumorales Cultivadas
16.
Cancer Res ; 59(19): 4808-15, 1999 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-10519389

RESUMEN

We have previously shown that inhibition of MCF-7 cell proliferation by 1-O-octadecyl-2-O-methyl-glycerophosphocholine (ET-18-OCH3) is linked to a drug-induced decrease in membrane Raf-1 levels and the subsequent inhibition of mitogen-activated protein (MAP) kinase activation in response to growth factor stimulation. We now report that adaptation of MCF-7 cells for growth in a serum-free formulation results in decreased sensitivity to growth inhibition by ET-18-OCH3. The decrease in ET-18-OCH3 sensitivity occurred progressively during the adaptation process and correlated with the presence of increasing amounts of inactive Raf-1 that stably associated with MCF-7 cell membranes. ET-18-OCH3 sensitivity could be restored by growing the adapted cells in serum-containing medium, which resulted in the loss of membrane-associated Raf-1. In human normal mammary epithelial cells, which are insensitive to ET-18-OCH3, Raf-1 was also associated with membranes in quiescent cells. In both cell types, incubation with ET-18-OCH3 had no effect on the membrane-Raf-1 levels, suggesting that ET-18-OCH3-induced reduction of Raf-1 levels in growth factor-stimulated MCF-7 cells is due to inhibition of Raf translocation. The activation and termination of the MAP kinase pathway in response to growth factors in the adapted MCF-7 cells and HNME cells occurred without changes to membrane Raf-1 levels. Because membrane translocation is not required to activate Raf in these cells, inhibition of Raf translocation by ET-18-OCH3 subsequent to cell stimulation has no effect on the activation of the membrane-bound Raf and, consequently, the activation of the MAP kinase pathway. The ability of the cells to activate the MAP kinase pathway in the presence of the drugs enables them to resist the growth-inhibitory effects of the drug, leading to the observed ET-18-OCH3 insensitivity of the cells.


Asunto(s)
Antineoplásicos/farmacología , Membrana Celular/fisiología , Éteres Fosfolípidos/farmacología , Proteínas Proto-Oncogénicas c-raf/metabolismo , Antineoplásicos/farmacocinética , Transporte Biológico , Neoplasias de la Mama , División Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Células Clonales , Medio de Cultivo Libre de Suero , Activación Enzimática , Femenino , Humanos , Cinética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Éteres Fosfolípidos/farmacocinética , Células Tumorales Cultivadas
17.
Biochim Biophys Acta ; 1390(1): 73-84, 1998 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-9487142

RESUMEN

In this study, we confirmed a previous finding that 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (methyl-PAF) expresses higher antineoplastic activity against the promyelocytic leukemia cell line HL-60, than against the erythroleukemic cell line K562, and intended to clarify the reason for this. Using an albumin back-exchange method, we measured the rates of binding and internalization of [3H]methyl-PAF by HL-60 and K562 cells. We found that methyl-PAF associated very rapidly and to similar extents with the two types of cells at low concentrations of extracellular bovine serum albumin, but that when bound to the cell surface, it was internalized into HL-60 cells faster than into K562 cells. The internalization of methyl-PAF by HL-60 cells was concentration-independent, intracellular ATP-independent and susceptible to thiol group-modifying reagents and cytochalasin B. Thus the inward transbilayer movement of methyl-PAF seems to occur by cytochalasin B-sensitive protein-mediated mechanism based on passive diffusion not requiring energy, in which SH-groups of protein play a critical role. We also found that the internalization of 1-hexadecanoyl-2-(4,4-difluoro-5,7- dimethyl-4-bora-3a, 4a-diaza-s-indacene-3-pentanoyl)-sn-glycero-3-phosphocholine (Bodipy-C5-PC), whose structure resembles that of methyl-PAF, into HL-60 cells was faster than that into K562 cells. Using a combination of an albumin back-exchange method and observation by confocal laser scanning microscopy, we next examined the intracellular distribution of this fluorescent phospholipid probe after its internalization. Intracellular membranes, especially those peripheral to nuclei, were fluorescence-labeled in both HL-60 and K562 cells, but fluorescence of the nuclear membranes was weak, suggesting that this probe seems mainly to accumulate in intracellular granules, and may interact directly with several key enzymes for phospholipid metabolism, leading to cell injury. Because the difference between the internalization rates of methyl-PAF in HL-60 and K562 cells was correlated with their different susceptibilities to the cytotoxic effect of methyl-PAF, we suggest that the capacities for uptake of methyl-PAF and its accumulation in intracellular membranes are critical factor for its induction of apoptosis. (c) 1998 Elsevier Science B.V.


Asunto(s)
Antineoplásicos/farmacocinética , Éteres Fosfolípidos/farmacocinética , Adenosina Trifosfato/metabolismo , Citoesqueleto/metabolismo , Células HL-60 , Humanos , Leucemia Eritroblástica Aguda/metabolismo , Leucemia Promielocítica Aguda/metabolismo , Microscopía Confocal , Factores de Tiempo , Células Tumorales Cultivadas
18.
Biochemistry ; 36(26): 8180-8, 1997 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-9201967

RESUMEN

The ABC superfamily of transporters includes the mammalian P-glycoprotein family (Class I and Class II P-gps), the multidrug resistance-associated protein (MRP), the Pgh-1 product of Plasmodium falciparum gene pfmdr1, all of which are associated with cellular pleiotropic drug resistance phenomena. STE6, the yeast transporter for the farnesylated peptide pheromone a, is also a member of this family. Structural similarities in this family translate into functional homology as expression of mouse Mdr3S (P-gp), P. falciparum Pgh-1, and human MRP partially restore mating in a sterile yeast mutant lacking a functional STE6 gene. The demonstration that Class II P-gps function as phosphatidylcholine (PC) translocators raise the possibility that other ABC transporters may also interact with physiological lipids. We report the identification of the synthetic lipid and PC analog ET-18-OCH3 (edelfosine) as a substrate for not only Class II P-gp but also for Class I P-gps and surprisingly for the other ABC transporters MRP, Pgh-1, and STE6. Expression of these proteins in the yeast Saccharomyces cerevisiae JPY201 was found to confer cellular resistance to cytotoxic concentrations of this lipid by a factor of 4-20-fold in a growth inhibition assay. The noted activity of ABC transporters toward this synthetic lipid was specific as a mutant variant of Mdr3 (Mdr3F) with reduced activity could not convey cellular resistance to ET-18-OCH3. ET-18-OCH3 was also found capable of blocking a-peptide pheromone transport and STE6 complementation by these ABC proteins. The inhibitory effect of ET-18-OCH3 on cell growth and a-factor transport could be abrogated by incubation with the lipid acceptor protein BSA or by enzymatic cleavage by microsomal alkylglycerol mono-oxygenase (MAMO). MAMO and BSA reversal of the ether lipid effect was only seen in the presence of a functional transporter. These results suggest that the group of cytotoxic synthetic PC analogs studied reveal possible structural and functional aspects common to the ABC transporters tested. Furthermore, the studies with BSA and MAMO suggest that the mechanism of transport of ET-18-OCH3 by these ABC transporters may be related to the flippase mechanism of PC transport by Mdr2.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/fisiología , Transportadoras de Casetes de Unión a ATP/fisiología , Antineoplásicos/toxicidad , Éteres Fosfolípidos/toxicidad , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Interacciones Farmacológicas , Resistencia a Múltiples Medicamentos , Humanos , Metabolismo de los Lípidos , Ratones , Éteres Fosfolípidos/metabolismo , Éteres Fosfolípidos/farmacocinética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
19.
Cancer Res ; 57(7): 1320-8, 1997 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-9102220

RESUMEN

The ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH3; Edelfosine) has been shown to be a rapid inducer of apoptosis in human leukemic cells and has been considered as a promising drug in cancer treatment. Here we have found that ET-18-OCH3 induced apoptosis not only in human tumor cell lines but also in primary tumor cell cultures from cancer patients. Human leukemic cells were highly sensitive to ET-18-OCH3, whereas normal cells remained unaffected. Among the distinct modifications of the ET-18-OCH3 molecule assayed, we found that substitutions in positions sn-2 and sn-3 of the glycerol backbone resulted in a complete loss of its capacity to induce apoptosis, highlighting the importance of the molecular structure of ET-18-OCH3 in its apoptotic effect. Induction of apoptosis by ET-18-OCH3 was very well correlated with the uptake of this ether lipid. ET-18-OCH3-resistant 3T3 fibroblasts became sensitive and incorporated significant amounts of the ether lipid following transformation with the SV40 virus. ET-18-OCH3-induced apoptosis as well as ET-18-OCH3 uptake were not mediated through binding of the ether lipid to the platelet-activating factor receptor. Overexpression of bcl-2 or bcl-xL by gene transfer in the human erythroleukemic HEL cells abrogated apoptosis induced by ET-18-OCH3. ET-18-OCH3 did not affect the expression of bcl-2, bcl-xL, or bax in HEL and HL-60 human leukemic cells but induced expression of c-myc, an important effector of apoptosis in several systems. Thus, ET-18-OCH3 behaves as a potent and highly selective antitumor drug able to induce an apoptotic pathway of cell death in tumor cells but not in nonmalignant cells.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Genes bcl-2/fisiología , Éteres Fosfolípidos/farmacología , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Proto-Oncogénicas/genética , Albúminas/farmacocinética , Animales , Antineoplásicos/química , Expresión Génica , Humanos , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Ratones , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Éteres Fosfolípidos/química , Éteres Fosfolípidos/farmacocinética , Factor de Activación Plaquetaria/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Suramina/farmacología , Células Tumorales Cultivadas , Proteína bcl-X
20.
J Nucl Med ; 37(9): 1540-5, 1996 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-8790215

RESUMEN

UNLABELLED: Iodine-125-12-[m-iodophenyl]-dodecylphosphocholine (NM-324) has been shown to accumulate in a variety of animal tumor models. Moreover, preliminary pharmacokinetic studies with NM-324 are being conducted in cancer patients. The present study was undertaken to examine the potential application of NM-324 as a breast tumor-imaging agent. METHODS: Two animal models of breast cancer were utilized: namely, syngenic inbred Lewis female rats bearing the rat mammary tumor (RMT) and athymic mice with HT-39 human tumor xenografts. After i.v. administration of NM-324, the tissue distribution of radioactivity was determined at various time points. Gamma camera scintigrams were also acquired to confirm the biodistribution results. Macro- and microautoradiography were used to analyze cellular distribution of radioactivity in tumors. RESULTS: In the rat mammary tumor model, levels of radioactivity in the tumor reached a maximum at 24 hr after i.v. administration (1.65% ID/g, tumor-to-blood 6.4). These tumors could be visualized by gamma camera scintigraphy as early as 1 hour after administration. In the nude mouse model, levels of radioactivity in tumor reached a maximum at 48 hr after i.v. administration (4.96 %ID/g, tumor-to-blood 5.5). Tissues expected to interfere with the resolution of breast lesions such as fat, heart, lung and muscle displayed much lower concentrations of the radioactivity. Gamma camera scintigraphy confirmed the results observed from biodistribution experiments. Lipid extraction of the tumors and major organs in both animal models showed the sole presence of unchanged NM-324. Microautoradiographic analysis of slices of rat mammary and HT-39 tumors provided additional information regarding the intratumoral distribution of radioactivity. CONCLUSION: The ability of radioiodinated phospholipid analogs to accumulate in breast tumors reinforces the need for further investigation of this type of radiopharmaceutical as tumor imaging agents.


Asunto(s)
Radioisótopos de Yodo , Neoplasias Mamarias Experimentales/diagnóstico por imagen , Éteres Fosfolípidos , Animales , Femenino , Humanos , Radioisótopos de Yodo/farmacocinética , Ratones , Ratones Desnudos , Éteres Fosfolípidos/farmacocinética , Cintigrafía , Ratas , Ratas Endogámicas Lew , Distribución Tisular , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA