Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.608
Filtrar
1.
Sci Total Environ ; 945: 174080, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38906281

RESUMEN

Reverse osmosis (RO) plays a pivotal role in shale gas wastewater resource utilization. However, managing the reverse osmosis concentrate (ROC) characterized by high salinity and increased concentrations of organic matter is challenging. In this study, we aimed to elucidate the enhancement effects and mechanisms of pre-ozonation on organic matter removal efficacy in ROC using a biological activated carbon (BAC) system. Our findings revealed that during the stable operation phase, the ozonation (O3 and O3/granular activated carbon)-BAC system removes 43.6-72.2 % of dissolved organic carbon, achieving a 4-7 fold increase in efficiency compared with that in the BAC system alone. Through dynamic analysis of influent and effluent water quality, biofilm performance, and microbial community structure, succession, and function prediction, we elucidated the following primary enhancement mechanisms: 1) pre-ozonation significantly enhances the biodegradability of ROC by 4.5-6 times and diminishes the organic load on the BAC system; 2) pre-ozonation facilitates the selective enrichment of microbes capable of degrading organic compounds in the BAC system, thereby enhancing the biodegradation capacity and stability of the microbial community; and 3) pre-ozonation accelerates the regeneration rate of the granular activated carbon adsorption sites. Collectively, our findings provide valuable insights into treating ROC through pre-oxidation combined with biotreatment.


Asunto(s)
Carbón Orgánico , Ósmosis , Ozono , Eliminación de Residuos Líquidos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Carbón Orgánico/química , Biodegradación Ambiental , Contaminantes Químicos del Agua/análisis , Gas Natural
2.
Environ Sci Pollut Res Int ; 31(27): 39454-39480, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822176

RESUMEN

The forward osmosis (FO) process has recently gained significant interest in treating wastewater, brackish/seawater and concentrating feedstocks for various operations, including desalination. The study investigates the effect of different synthesis conditions of the polyamide-based thin-film composite (TFC) FO membranes on the membranes' final performance. Taguchi statistical analyses were used to fabricate and optimize the polyamide TFC FO membrane. The process parameters as factors were the amount of polyethersulfone (PES), polyethylene glycol 400 (PEG-400), polyvinyl pyrrolidone (PVP), m-phenylenediamine (MPD), and trimesoyl chloride (TMC), and TMC reaction-time (RT). The Taguchi method was adopted to investigate the optimal conditions and the significance of individual factors using an L16 (45) orthogonal array. Another Taguchi analysis (Taguchi 2) was adopted to investigate the influence of other important parameters like optimal conditions for MPD, TMC, and TMC reaction-time factors using an L9 (33) orthogonal array. Confirmation tests validated a maximum water flux of 46.4 ± 2.32 L/m2·h with a specific combination of control factors for membrane synthesis: PES/PEG/PVP/MPD/TMC/TMC RT-16/7/0.5/1/0.05/30. These tests demonstrated a high-water flux of 7.05 ± 0.35 L/m2·h when exposed to industrial wastewater (secondary effluent) as the feed solution (FS) and fertilizer as the draw solution (DS) in the FO process. The R2 values were more than 90%. The experimental validation confirmed the models' predictive ability with different FSs, including industrial wastewater.


Asunto(s)
Membranas Artificiales , Nylons , Ósmosis , Aguas Residuales , Purificación del Agua , Aguas Residuales/química , Nylons/química , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos , Polímeros/química
3.
Chemosphere ; 356: 141960, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604517

RESUMEN

Pesticides are used in agriculture to protect crops from pathogens, insects, fungi and weeds, but the release of pesticides into surface/groundwater by agriculture runoff and rain has raised serious concerns not only for the environment but also for human health. This study aimed to investigate the impact of surface properties on the performance of seven distinct membrane types utilized in nanofiltration (NF), reverse osmosis (RO) and forward osmosis (FO) processes in eliminating multiple pesticides from spiked water. Out of the membranes tested, two are self-fabricated RO membranes while the rest are commercially available membranes. Our results revealed that the self-fabricated RO membranes performed better than other commercial membranes (e.g., SW30XLE, NF270, Duracid and FO) in rejecting the targeted pesticides by achieving at least 99% rejections regardless of the size of pesticides and their log Kow value. Despite the marginally lower water flux exhibited by the self-fabricated membrane compared to the commercial BW30 membrane, its exceptional ability to reject both mono- and divalent salts renders it more apt for treating water sources containing not only pesticides but also various dissolved ions. The enhanced performance of the self-fabricated RO membrane is mainly attributed to the presence of a hydrophilic interlayer (between the polyamide layer and substrate) and the incorporation of hydrophilic nanosheets in tuning its surface characteristics. The findings of the work provide insight into the importance of membrane surface modification for the application of not only the desalination process but also for the removal of contaminants of emerging concern.


Asunto(s)
Filtración , Membranas Artificiales , Ósmosis , Plaguicidas , Contaminantes Químicos del Agua , Purificación del Agua , Plaguicidas/análisis , Plaguicidas/química , Plaguicidas/aislamiento & purificación , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Filtración/métodos , Interacciones Hidrofóbicas e Hidrofílicas
4.
Environ Sci Pollut Res Int ; 31(21): 31123-31134, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627346

RESUMEN

Electrochemical desalination is an effective method for recovering salts from reverse osmosis (RO) brine. However, traditional technologies like bipolar membrane technology often face challenges related to membrane blockage. To overcome this issue, a preparative vertical-flow electrophoresis (PVFE) system was used for the first time to treat RO brine of petrochemical wastewater. In order to optimize the PVFE operation and maximize acids and bases production while minimizing energy consumption, the response surface method was employed. The independent variables selected were the electric field intensity (E) and flow rate (v), while the dependent variables were the acid-base concentration and energy consumption (EC) for acid-base production. Using the central composite design methodology, the operation parameters were optimized to be E = 154.311 V/m and v = 0.83 mL/min. Under these conditions, the base concentrations of the produced bases and acids reached 3183.06 and 2231.63 mg/L, respectively. The corresponding base EC and acid EC were calculated to be 12.57 and 11.62 kW·h/kg. In terms of the acid-base concentration and energy consumption during the PVFE process, the electric field intensity was found to have a greater influence than the flow rate. These findings provide a practical and targeted solution for recycling waste salt resources from RO brine.


Asunto(s)
Ósmosis , Aguas Residuales , Aguas Residuales/química , Electroforesis , Eliminación de Residuos Líquidos/métodos , Sales (Química)
5.
Dev Cell ; 59(12): 1553-1570.e7, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38574732

RESUMEN

Cells remodel their cytoskeletal networks to adapt to their environment. Here, we analyze the mechanisms utilized by the cell to tailor its microtubule landscape in response to changes in osmolarity that alter macromolecular crowding. By integrating live-cell imaging, ex vivo enzymatic assays, and in vitro reconstitution, we probe the impact of cytoplasmic density on microtubule-associated proteins (MAPs) and tubulin posttranslational modifications (PTMs). We find that human epithelial cells respond to fluctuations in cytoplasmic density by modulating microtubule acetylation, detyrosination, or MAP7 association without differentially affecting polyglutamylation, tyrosination, or MAP4 association. These MAP-PTM combinations alter intracellular cargo transport, enabling the cell to respond to osmotic challenges. We further dissect the molecular mechanisms governing tubulin PTM specification and find that MAP7 promotes acetylation and inhibits detyrosination. Our data identify MAP7 in modulating the tubulin code, resulting in microtubule cytoskeleton remodeling and alteration of intracellular transport as an integrated mechanism of cellular adaptation.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Microtúbulos , Procesamiento Proteico-Postraduccional , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Acetilación , Adaptación Fisiológica , Transporte Biológico , Citoesqueleto/metabolismo , Ósmosis , Células Epiteliales/metabolismo
6.
Environ Sci Pollut Res Int ; 31(16): 24584-24598, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448772

RESUMEN

Thin-film nanocomposite (TFN) forward osmosis (FO) membranes have attracted significant attention due to their potential for solving global water scarcity problems. In this study, we investigate the impact of titanium oxide (TiO2) and titanium oxide/reduced graphene (TiO2/rGO) additions on the performance of TFN-FO membranes, specifically focusing on water flux and reverse salt diffusion. Membranes with varying concentrations of TiO2 and TiO2/rGO were fabricated as interfacial polymerizing M-phenylenediamine (MPD) and benzenetricarbonyl tricholoride (TMC) monomers with TiO2 and its reduced graphene composites (TiO2/rGO). The TMC solution was supplemented with TiO2 and its reduced graphene composites (TiO2/rGO) to enhance FO performance and reverse solute flux. All MPD/TMC polyamide membranes are characterized using various techniques such as scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle measurements. The results demonstrate that incorporating TiO2/rGO into the membrane thin layer improves water flux and reduces reverse salt diffusion. In contrast to the TFC membrane (10.24 L m-2h-1 and 6.53 g/m2 h), higher water flux and higher reverse solute flux were detected in the case of TiO2and TiO2/rGO-merged TFC skin membranes (18.81 and 24.52 L m-2h-1 and 2.74 and 2.15 g/m2 h, respectively). The effects of TiO2 and TiO2/rGO stacking on the skin membrane and the performance of TiO2 and TiO2/rGO skin membranes have been thoroughly studied. Additionally, being investigated is the impact of draw solution concentration.


Asunto(s)
Grafito , Nanocompuestos , Titanio , Agua , Membranas Artificiales , Ósmosis , Cloruro de Sodio , Cloruro de Sodio Dietético
7.
Food Environ Virol ; 16(1): 97-108, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38085424

RESUMEN

Human enteric viruses are important etiological agents of waterborne diseases. Environmental waters are usually contaminated with low virus concentration requiring large concentration factors for effective detection by (RT)-qPCR. Low-pressure reverse osmosis is often used to remove water contaminants, but very few studies focused on the effective virus removal of reverse osmosis treatment with feed concentrations as close as possible to environmental concentrations and principally relied on theoretical virus removal. The very low viral concentrations usually reported in the permeates (i.e. at least 5 log of removal rate) mean that very large volumes of water need to be analysed to have sufficient sensitivity and assess the process efficiency. This study evaluates two methods for the concentration of adenoviruses, enteroviruses and MS2 bacteriophages at different viral concentrations in large (< 200 L) and very large (> 200 L) volumes. The first method is composed of two ultrafiltration membranes with low-molecular weight cut-offs while the second method primarily relies on adsorption and elution phases using electropositive-charged filters. The recovery rates were assessed for both methods. For the ultrafiltration-based protocol, recovery rates were similar for each virus studied: 80% on average at high virus concentrations (106-107 viruses L-1) and 50% at low virus concentrations (103-104 viruses L-1). For the electropositive-charged filter-based method, the average recoveries obtained were about 36% for ADV 41, 57% for CV-B5 and 1.6% for MS2. The ultrafiltration-based method was then used to evaluate the performance of a low-pressure reverse osmosis lab-scale pilot plant. The retentions by reverse osmosis were similar for all studied viruses and the validated recovery rates applied to the system confirmed the reliability of the concentration method. This method was effective in concentrating all three viruses over a wide range of viral concentrations. Moreover, the second concentration method using electropositive-charged filters was studied, allowing the filtration of larger volumes of permeate from a semi-industrial low-pressure reverse osmosis pilot plant. This reference method was used because of the inability of the UF method to filter volumes on the order of one cubic metre.


Asunto(s)
Enterovirus , Virus , Purificación del Agua , Humanos , Reproducibilidad de los Resultados , Filtración/métodos , Ultrafiltración/métodos , Purificación del Agua/métodos , Agua , Ósmosis
8.
Bioresour Technol ; 394: 130215, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38122995

RESUMEN

The treatment of reverse osmosis concentrate generated from urban industrial sewage for resource recovery has been hot. In this research, a biofilm reactor was constructed by combining sycamore deciduous biochar, shell powder, and polyurethane sponge loaded with Zobellella denitrificans sp. LX16. For ammonia nitrogen (NH4+-N), calcium (Ca2+), chemical oxygen demand (COD), cadmium (Cd2+), and tetracycline (TC), the removal efficiencies were 98.69 %, 83.95 %, 97.26 %, 98.34 %, and 69.12 % at a hydraulic retention time (HRT) of 4 h, pH of 7.0, and influent salinity, Ca2+, and TC concentrations of 1.0, 180.0, and 3.0 mg/L, respectively. The biofilm reactor packing has a three-dimensional structure to ensure good loading of microorganisms while promoting electron transfer and metabolic activity of microorganisms and increasing the pollutant tolerance and removal efficiency. The reactor provides a practical reference for the sedimentation of reverse osmosis concentrate to remove Cd2+ and TC by microbial induced calcium precipitation (MICP).


Asunto(s)
Carbón Orgánico , Compuestos Heterocíclicos , Aguas Residuales , Cadmio , Eliminación de Residuos Líquidos/métodos , Calcio , Poliuretanos , Polvos , Desnitrificación , Tetraciclina , Antibacterianos , Biopelículas , Ósmosis , Reactores Biológicos , Nitrógeno/metabolismo , Nitrificación
9.
Environ Pollut ; 343: 123271, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38160769

RESUMEN

In order to utilize waste heat such as exhaust steam and hot air passing through air preheater in the waste incineration plant to heat air used for evaporating leachate concentrate (LC) by gas-liquid contact evaporation technology, hot air of 600 °C, 450 °C and 250 °C was used to evaporate LC in a laboratory-scale evaporator to obtain purified condensate used for supplying water for circulating cooling water system. The influence of pH, hot air temperature and evaporation rate on COD and NH3-N in condensate were investigated to identify the optimum operation of this technology. The results showed that COD concentration in condensate obviously decreased with increase in hot air temperature. Higher hot air temperature led to higher initial evaporation temperature, and evaporation rate of water was significantly greater than that of small molecular organic matter with lower boiling point than water with increasing hot air temperature. Reduction in contents of phenol, ketone and benzene was responsible for COD decreasing in condensate. COD in condensate decreased with increase in pH, as the amount of volatile organic matter such as fatty acids escaped from LC to condensate decreased. The pH had little influence on the DOM in condensate according to EEM spectra analysis. Evaporation rate had little influence on COD in the condensate water. NH3-N concentrations in condensate in all experimental groups were far away from the limit value (10 mg/L) in the water quality standard. Under the premise of meeting water quality standard, the lowest temperature (450 °C) of hot air was selected to save energy and use lower grade waste heat. Therefore, the optimum condition was 450 °C of hot air, pH = 7 of LC and CF = 10. At this condition, molecular weight of DOM in the condensate was smaller and humification degree and aromaticity of DOM were lower according to UV-visible absorption spectrum analysis.


Asunto(s)
Incineración , Contaminantes Químicos del Agua , Filtración , Reactores Biológicos , Calor , Ósmosis , Contaminantes Químicos del Agua/análisis
10.
Water Res ; 249: 120866, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101050

RESUMEN

Reverse Osmosis (RO) membrane filtration is a very common process for treating a wide range of groundwater types including produced water from coal seam gas (coalbed methane) wells. Mineral scaling limits water recovery for RO membranes and costs money in terms of treatment and downtime. Silica scaling can be particularly troublesome as it is often irreversible. Mitigating silica scaling requires an understanding of its occurrence, speciation mechanism and its interdependency with other operation factors. This study uses a range of techniques to show that silica colloids form during later stages of an RO process with very high recovery. This happens at silica concentrations above the solubility that would normally indicate high risk of silica scale. However, instead of scale, colloids preferentially formed which means the process can operate at high recoveries with RO performance maintained by regular cleaning cycles. The concentration of the colloidal silica through the RO stages was measured through the difference in total and dissolved silica. Once the existence was established with this technique, the particles were trapped and their size, morphology and composition were investigated with Scanning Electron Microscopy (SEM) in conjunction with Energy Dispersive X-Ray Spectroscopy (EDS). This revealed the particles to be predominantly silica with limited other elements involved.


Asunto(s)
Purificación del Agua , Agua , Agua/química , Dióxido de Silicio/química , Purificación del Agua/métodos , Ósmosis , Filtración/métodos , Coloides , Carbón Mineral , Membranas Artificiales
11.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37762612

RESUMEN

Aluminum (Al) toxicity is a major limiting factor for plant growth and crop production in acidic soils. This study aims to investigate the effects of γ-aminobutyric acid (GABA) priming on mitigating acid-Al toxicity to creeping bentgrass (Agrostis stolonifera) associated with changes in plant growth, photosynthetic parameters, antioxidant defense, key metabolites, and genes related to organic acids metabolism. Thirty-seven-old plants were primed with or without 0.5 mM GABA for three days and then subjected to acid-Al stress (5 mmol/L AlCl3·6H2O, pH 4.35) for fifteen days. The results showed that acid-Al stress significantly increased the accumulation of Al and also restricted aboveground and underground growths, photosynthesis, photochemical efficiency, and osmotic balance, which could be effectively alleviated by GABA priming. The application of GABA significantly activated antioxidant enzymes, including superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, to reduce oxidative damage to cells under acid-Al stress. Metabolomics analysis demonstrated that the GABA pretreatment significantly induced the accumulation of many metabolites such as quinic acid, pyruvic acid, shikimic acid, glycine, threonine, erythrose, glucose-6-phosphate, galactose, kestose, threitol, ribitol, glycerol, putrescine, galactinol, and myo-inositol associated with osmotic, antioxidant, and metabolic homeostases under acid-Al stress. In addition, the GABA priming significantly up-regulated genes related to the transportation of malic acid and citric acid in leaves in response to acid-Al stress. Current findings indicated GABA-induced tolerance to acid-Al stress in relation to scavenging of reactive oxygen species, osmotic adjustment, and accumulation and transport of organic metabolites in leaves. Exogenous GABA priming could improve the phytoremediation potential of perennial creeping bentgrass for the restoration of Al-contaminated soils.


Asunto(s)
Agrostis , Aluminio/toxicidad , Antioxidantes/farmacología , Homeostasis , Ósmosis
12.
Chemosphere ; 341: 139999, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37643647

RESUMEN

N-containing organophosphonate antiscalants such as Aminotris (methylene phosphonic acid) (NTMP/ATMP) and Diethylenetriamine penta(methylene phosphonic acid) (DTPMP) are commonly used in reverse osmosis (RO) to prevent scaling, as well as to increase permeate yields. However, the concentrate in RO still contains antiscalants which can cause adverse effects in the environment such as mobilization of heavy metals. The abatement of antiscalants from RO concentrate can promote the precipitation of oversaturated scale-forming substances and reduce the risk of adverse environmental effects. In the present study, the degradation of NTMP and DTPMP as representatives for N-containing organophosphonate by ozone, hydroxyl radicals (•OH), and sulfate radicals (SO4•-) are studied regarding reaction kinetics and degradation in different matrices. The results show that NTMP and DTPMP react fast with ozone and sulfate radicals (formed in UV/persulfate). Reaction rate constants of ozone showed a strong pH dependency due to the dissociation of the amine. The apparent reaction rates for pH 7 have been determined to be kapp(NTMP + ozone) = 1.44 × 105 M-1 s-1 and kapp(DTPMP + ozone) = 1.16 × 106 M-1 s-1. Reaction kinetics of •OH and SO4•- did not play a distinctive pH dependency (k(•OH) = 109-1010 M-1 s-1 and k(SO4•-) = 107-108 M-1 s-1). Furthermore, real water experiments have shown that ozonation and UV/persulfate are effective tools to abate organophosphonates in RO concentrates. The formation of carcinogenic bromate in ozonation is minimized by the presence of N-containing organophosphonates presumably due to enhanced ozone consumption and scavenging of free bromine.


Asunto(s)
Organofosfonatos , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Purificación del Agua/métodos , Oxidación-Reducción , Cinética , Ósmosis
13.
Environ Sci Pollut Res Int ; 30(42): 95875-95891, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37561306

RESUMEN

The wastewater discharged from crude oil storage tanks (WCOST) contains high concentrations of salt and metal iron ions, and high chemical oxygen demand (COD). It belongs to "3-high" wastewater, which is difficult for purification. In this study, WCOST treatments were comparatively investigated via an advanced pretreatment and the traditional coagulation-microfiltration (CMF) processes. After WCOST was purified through the conventional CMF process, fouling occurred in the microfiltration (MF) membrane, which is rather harmful to the following reverse osmosis (RO) membrane unit, and the effluent featured high COD and UV254 values. The analysis confirmed that the MF fouling was due to the oxidation of ferrous ions, and the high COD and UV254 values were mainly attributable to the organic compounds with small molecular sizes, including aromatic-like and fulvic-like compounds. After the pretreatment of the advanced process consisting of aeration, manganese sand filtration, and activated carbon adsorption in combination with CMF process, the removal efficiencies of organic matter and total iron ions reached 97.3% and 99.8%, respectively. All the water indexes of the effluent, after treatment by the advanced multi-unit process, meet well the corresponding standard. The advanced pretreatment process reported herein displayed a great potential for alleviating the MF membrane fouling and enhanced the lifetime of the RO membrane system in the 3-high WCOST treatment.


Asunto(s)
Petróleo , Purificación del Agua , Aguas Residuales , Eliminación de Residuos Líquidos , Petróleo/análisis , Filtración , Iones/análisis , Hierro/análisis , Ósmosis , Membranas Artificiales
14.
J Mater Chem B ; 11(33): 7950-7960, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37491975

RESUMEN

Membrane fouling induces catastrophic loss of separation performance and seriously restricts the applications of reverse osmosis (RO) membranes. Inspired by the mussel structure, polydopamine (PDA) and cystamine molecules (CA) with excellent anti-fouling properties were used to prepare accessible, biocompatible, and redox-responsive coatings for RO membranes. The PDA/CA-coated RO membranes exhibit a superior water flux of 65 L m-2 h-1 with a favourable NaCl rejection exceeding 99%. The water permeability through the PDA/CA-coated membrane is much higher than that of most membranes with similar rejection rates. Due to the formed protective hydration layers by PDA/CA coatings, anti-fouling properties against proteins, polysaccharides and surfactants were evaluated separately, and ultralow fouling properties were demonstrated. Moreover, the disulfide linkages in CA molecules can cleave in a reducing environment, yielding the degradation of PDA/CA coatings, thereby removing the foulants deposited on the coatings. The degradation endows the coated membranes with satisfying longtime anti-fouling properties, where the flux recovery reaches up to 90%. The construction of redox-responsive smart coatings not only provided a promising route to alleviate membrane fouling but can also be upscaled for use in numerous practical applications like sensors, medical devices, and drug delivery.


Asunto(s)
Biomimética , Filtración , Ósmosis , Agua/química , Oxidación-Reducción
15.
Water Res ; 240: 120085, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37244016

RESUMEN

Membrane-based wastewater reclamation is used to mitigate water scarcity; however, irreversible biofouling is an elusive problem that hinders the efficiency of a forward-osmosis (FO) membrane-based process, and the protein responsible for fouling is unknown. Herein, we identified fouling proteins by analyzing the microbiome and proteome of wastewater extracellular polymeric substances responsible for strong irreversible FO-membrane fouling. The IGLSSLPR peptide of a PilZ domain-containing protein was found to recruit bacterial attachment when immobilized on the membrane surface while suppressing it when dissolved, in a similar manner to the Arg-Gly-Asp (RGD) peptide in mammalian cell cultures. Bacteria adhere to IGLSSLPR and poly-l-lysine-coated membranes with similar energies and exhibit water fluxes that decline similarly, which is ascribable to interaction as strong as electrostatic interactions in the peptide-coated membranes. We conclude that IGLSSLPR is the key domain responsible for membrane fouling and can be used to develop antifouling technology against bacteria, which is similar to the current usage of RGD peptide in mammalian cell cultures.


Asunto(s)
Incrustaciones Biológicas , Purificación del Agua , Aguas Residuales , Incrustaciones Biológicas/prevención & control , Membranas Artificiales , Péptidos , Ósmosis , Bacterias
16.
Environ Res ; 231(Pt 2): 116165, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37196691

RESUMEN

In this study, the deployment of post Reverse Osmosis (RO)-carbon as a adsorbent for dye removal from water has been investigated. The post RO-carbon was thermally activated (RO900), and the material thus obtained exhibited high surface area viz. 753 m2/g. In the batch system, the efficient Methylene Blue (MB) and Methyl Orange (MO) removal was obtained by using 0.08 g and 0.13 g/50 mL adsorbent dosage respectively. Moreover, 420 min was the optimized equilibration time for both the dyes. The maximum adsorption capacities of RO900 for MB and MO dyes were 223.29 and 158.14 mg/g, respectively. The comparatively higher MB adsorption was attributed to the electrostatic attraction between adsorbent and MB. The thermodynamic findings revealed the process as spontaneous, endothermic, and accompanied by entropy increment. Additionally, simulated effluent was treated, and >99% dye removal efficiency was achieved. To mimic an industrial perspective, MB adsorption onto RO900 was also carried out in continuous mode. The initial dye concentration and effluent flow rate were among the process parameters that were optimized using the continuous mode of operation. Further, the experimental data of continuous mode was fitted with Clark, Yan, and Yoon-Nelson models. Py-GC/MS investigation revealed that dye-loaded adsorbents could be pyrolyzed to produce valuable chemicals. The cost and low toxicity associated benefits of discarded RO-carbon over other adsorbents reveal the significance of the present study.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Carbono , Colorantes , Adsorción , Cinética , Termodinámica , Azul de Metileno , Ósmosis , Concentración de Iones de Hidrógeno
17.
Sci Total Environ ; 889: 164283, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37209732

RESUMEN

Highly permeable polyamide reverse osmosis (RO) membranes are desirable for reducing the energy burden and ensuring future water resources in arid and semiarid regions. One notable drawback of thin film composite (TFC) polyamide RO/NF membranes is the polyamide's sensitivity to degradation by free chlorine, the most used biocide in water purification trains. This investigation demonstrated a significant increase in the crosslinking-degree parameter by the m-phenylenediamine (MPD) chemical structure extending in the thin film nanocomposite (TFN) membrane without adding extra MPD monomers to enhance the chlorine resistance and performance. Membrane modification was carried out according to monomer ratio changes and Nanoparticle embedding into the PA layer approaches. A new class of TFN-RO membranes incorporating novel aromatic amine functionalized (AAF)-MWCNTs embedded into the polyamide (PA) layer was introduced. A purposeful strategy was carried out to use cyanuric chloride (2,4,6-trichloro-1,3,5-triazine) as an intermediate functional group in the AAF-MWCNTs. Thus, amidic nitrogen, connected to benzene rings and carbonyl groups, assembles a structure similar to the standard PA, consisting of MPD and trimesoyl chloride. The resulting AAF-MWCNTs were mixed in the aqueous phase during the interfacial polymerization to increase the susceptible positions to chlorine attack and improve the crosslinking degree in the PA network. The characterization and performance results of the membrane demonstrated an increase in ion selectivity and water flux, impressive stability of salt rejection after chlorine exposure, and improved antifouling performance. This purposeful modification resulted in overthrowing two tradeoffs; i) high crosslink density-water flux and ii) salt rejection-permeability. The modified membrane demonstrated ameliorative chlorine resistance relative to the pristine one, with twice the increase in crosslinking degree, more than four times the enhancement of the oxidation resistance, negligible reduction in the salt rejection (0.83 %), and only 5 L/m2.h flux loss following a rigorous static chlorine exposure of 500 ppm.h under acidic conditions. The excellent performance of new chlorine resistant TNF RO membranes fabricated via AAF-MWCNTs together with the facile membrane manufacturing process offered the possibility of postulating them in the desalination field, which could eventually help the current freshwater supply challenge.


Asunto(s)
Cloro , Nylons , Ósmosis , Nylons/química , Cloruros , Agua , Cloruro de Sodio
18.
Water Res ; 240: 120019, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37216784

RESUMEN

Membrane distillation (MD) is a thermally-driven process that can treat high concentration streams and provide a dual barrier for rejection and reduction of pathogens. Thus, MD has potential applications in treating concentrated wastewater brines for enhancing water recovery and potable water reuse. In bench-scale studies, it was demonstrated that MD can provide high rejection of MS2 and PhiX174 bacteriophage viruses, and when operating at temperatures greater than 55 °C, can reduce virus levels in the concentrate. However, bench-scale MD results cannot directly be used to predict pilot-scale contaminant rejection and removal of viruses because of the lower water flux and higher transmembrane hydraulic pressure difference in pilot-scale systems. Thus far, virus rejection and removal have not been quantified in pilot-scale MD systems. In this work, the rejection of MS2 and PhiX174 at low (40 °C) and high (70 °C) inlet temperatures is quantified in a pilot-scale air-gap MD system using tertiary treated wastewater. Both viruses were detected in the distillate which suggests the presence of pore flow; the virus rejection at a hot inlet temperature of 40 °C for MS2 and PhiX174 were 1.6-log10 and 3.1-log10, respectively. At 70 °C, virus concentrations in the brine decreased and were below the detection limit (1 PFU per 100 mL) after 4.5 h, however, viruses were also detected in the distillate in that duration. Results demonstrate that virus rejection is lower in pilot-scale experiments because of increased pore flow that is not captured in bench-scale experiments.


Asunto(s)
Aguas Residuales , Purificación del Agua , Destilación/métodos , Purificación del Agua/métodos , Ósmosis , Membranas Artificiales , Agua
19.
J Environ Manage ; 331: 117293, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657205

RESUMEN

This study applied a life cycle assessment (LCA) methodology for a comparative environmental analysis between an innovative algae resource recovery and near zero-liquid discharge potable reuse system (i.e., the main system) versus a conventional potable reuse system (i.e., the benchmark system) through energy use and greenhouse gas (GHG) emissions. The objective of this study is to demonstrate that pilot-scale data coupled with LCA would provide valuable information for system optimization, integration, and improvements for the design of environmentally sustainable full-scale systems. This study also provides decision-makers valuable information regarding the energy demand and environmental impact of this innovative main system compared to a typical tried-and-true system for potable water reuse. The main system consists of a novel algal-based wastewater treatment coupled with a dual forward osmosis and seawater reverse osmosis (Algal FO-SWRO) membranes system for potable water recovery and hydrothermal liquefaction (HTL) to recover biofuels and valuable nutrients from the harvested algal biomass. The benchmark system refers to the current industry standard technologies for potable water reuse and waste management including a secondary biological treatment, microfiltration (MF), brackish water reverse osmosis (BWRO), ultraviolet/advanced oxidation process (UV-AOP), and granular activated carbon (GAC), as well as anaerobic digestion for sludge treatment. Respective energy and GHG emissions of both systems were normalized and compared considering 1 m3 of water recovered. Based on an overall water recovery of 76% designed for the benchmark system, the energy consumption totaled 4.83 kWh/m3, and the system was estimated to generate 2.42 kg of CO2 equivalent/m3 with most of the emissions coming from the biological treatment. The main system, based on an overall water recovery of 88%, was estimated to consume 4.76 kWh/m3 and emit 1.49 kg of CO2 eq/m3. The main system has high environmental resilience and can recover bioenergy and nutrients from wastewater with zero waste disposal. With the application of energy recovery devices for the HTL and the SWRO, increase in water recovery of the FO membrane, and replacement of the SWRO membrane with BWRO, the main system provides an energy-competitive and environmentally positive alternative with an energy demand of 2.57 kWh/m3 and low GHG emissions of 0.94 kg CO2 eq/m3.


Asunto(s)
Agua Potable , Gases de Efecto Invernadero , Purificación del Agua , Animales , Dióxido de Carbono , Purificación del Agua/métodos , Aguas Residuales , Agua de Mar , Ósmosis , Estadios del Ciclo de Vida
20.
Environ Technol ; 44(20): 3108-3120, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35259064

RESUMEN

Bisphenol-A (BPA) and 17α-ethinylestradiol (EE2) are considered endocrine disrupting compounds (EDC) and they may be harmful to the normal functioning of endocrine systems of humans and animals. Moreover, the presence of these compounds in superficial and groundwater may represent serious risks, even in low concentrations like ng·L-1. The objectives of this study were to remove BPA and EE2 from solutions containing a mixture of these compounds in ultrapure water at low concentrations through reverse osmosis (RO) membrane combined with a UV/H2O2 process. Furthermore, to assess the estrogenic activity reduction after such treatments, in vitro recombinant yeast-estrogen screen (YES) assay was used. The removal efficiencies of target micropollutants increased with the increase of H2O2 dosage. For RO permeate stream, they enhanced from 91% to 96% for EE2 and from 76% to 90% for BPA while, for the concentrate stream, from 70% to 81% for EE2 and 41% to 84% for BPA as the H2O2 concentration were increased from 100 to 1000 µg·L-1. The OH radicals' generation was the dominant factor in the degradation of EDC during the UV/H2O2 treatment since the photolysis itself was not enough to degrade BPA or EE2. The estrogenic activity reduction after UV/H2O2 treatment was high, ranging from 92% to 98% for the permeate stream and from 50% to 93% for the concentrate stream. The EE2 was responsible for the whole observed estrogenic activity since BPA does not present estrogenicity, by in vitro YES assay, in the concentrations observed.


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Animales , Humanos , Etinilestradiol/análisis , Peróxido de Hidrógeno , Estrógenos , Agua , Saccharomyces cerevisiae , Ósmosis , Contaminantes Químicos del Agua/análisis , Disruptores Endocrinos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA