Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.774
Filtrar
Más filtros











Intervalo de año de publicación
1.
Food Res Int ; 188: 114433, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823827

RESUMEN

Whey derived peptides have shown potential activity improving brain function in pathological condition. However, there is little information about their mechanism of action on glial cells, which have important immune functions in brain. Astrocytes and microglia are essential in inflammatory and oxidative defense that take place in neurodegenerative disease. In this work we evaluate antioxidant and anti-inflammatory potential bioactivity of whey peptide in glial cells. Peptides were formed during simulated gastrointestinal digestion (Infogest protocol), and low molecular weight (<5kDA) peptides (WPHf) attenuated reactive oxygen species (ROS) production induced by hydrogen peroxide stimulus in both cells in dose-dependent manner. WPHf induced an increase in the antioxidant glutathione (GSH) content and prevented GSH reduction induced by lipopolysaccharides (LPS) stimulus in astrocytes cells in a cell specific form. An increase in cytokine mRNA expression (TNFα and IL6) and nitric oxide secretion induced by LPS was attenuated by WPHf pre-treatment in both cells. The inflammatory pathway was dependent on NFκB activation. Bioactive peptide ranking analysis showed positive correlation with hydrophobicity and negative correlation with high molecular weights. The sequence identification revealed 19 peptides cross-referred with bioactive database. Whey peptides were rich in leucine, valine and tyrosine in the C-terminal region and lysine in the N-terminal region. The anti-inflammatory and antioxidant potential of whey peptides were assessed in glia cells and its mechanisms of action were related, such as modulation of antioxidant enzymes and anti-inflammatory pathways. Features of the peptide structure, such as molecular size, hydrophobicity and types of amino acids present in the terminal region are associated to bioactivity.


Asunto(s)
Antiinflamatorios , Antioxidantes , Neuroglía , Proteína de Suero de Leche , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Proteína de Suero de Leche/farmacología , Proteína de Suero de Leche/química , Proteína de Suero de Leche/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Animales , Especies Reactivas de Oxígeno/metabolismo , Lipopolisacáridos/farmacología , Glutatión/metabolismo , Péptidos/farmacología , Óxido Nítrico/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo
2.
Drug Res (Stuttg) ; 74(5): 241-249, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38830372

RESUMEN

Pentoxifylline (PTX), a non-selective phosphodiesterase inhibitor, has demonstrated protective effects against lung injury in animal models. Given the significance of pulmonary toxicity resulting from paraquat (PQ) exposure, the present investigation was designed to explore the impact of PTX on PQ-induced pulmonary oxidative impairment in male mice.Following preliminary studies, thirty-six mice were divided into six groups. Group 1 received normal saline, group 2 received a single dose of PQ (20 mg/kg; i.p.), and group 3 received PTX (100 mg/kg/day; i.p.). Additionally, treatment groups 4-6 were received various doses of PTX (25, 50, and 100 mg/kg/day; respectively) one hour after a single dose of PQ. After 72 hours, the animals were sacrificed, and lung tissue was collected.PQ administration caused a significant decrease in hematocrit and an increase in blood potassium levels. Moreover, a notable increase was found in the lipid peroxidation (LPO), nitric oxide (NO), and myeloperoxidase (MPO) levels, along with a notable decrease in total thiol (TTM) and total antioxidant capacity (TAC) contents, catalase (CAT) and superoxide dismutase (SOD) enzymes activity in lung tissue. PTX demonstrated the ability to improve hematocrit levels; enhance SOD activity and TTM content; and decrease MPO activity, LPO and NO levels in PQ-induced pulmonary toxicity. Furthermore, these findings were well-correlated with the observed lung histopathological changes.In conclusion, our results suggest that the high dose of PTX may ameliorate lung injury by improving the oxidant/antioxidant balance in animals exposed to PQ.


Asunto(s)
Antioxidantes , Peroxidación de Lípido , Pulmón , Paraquat , Pentoxifilina , Superóxido Dismutasa , Animales , Pentoxifilina/farmacología , Pentoxifilina/uso terapéutico , Paraquat/toxicidad , Ratones , Masculino , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Antioxidantes/farmacología , Superóxido Dismutasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Catalasa/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/uso terapéutico , Óxido Nítrico/metabolismo , Peroxidasa/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Hidrolasas Diéster Fosfóricas/metabolismo
3.
Pak J Pharm Sci ; 37(2(Special)): 423-428, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38822545

RESUMEN

This study assessed the inhibitory effect of sodium valproate (VPA) on apoptosis of cardiomyocytes in lethally scalded rats. The model of a 50% total body surface area (TBSA) third-degree full-thickness scald was produced, 48 male SD rats were randomly divided into three groups (n = 16), the sham group and the scald group were given an intraperitoneal injection of 0.25ml of saline, the scald +VPA group was given an intraperitoneal injection of VPA (300 mg/kg) after scalded, Each group was subdivided into two subgroups (n=8) according to the two observation time points of 3h and 6h after scald. Apoptotic cardiomyocytes were observed, and myocardial tissue levels of nitric oxide (NO), cysteine protease-3 (caspase-3) activity, hypoxia-inducible factor-1α (HIF-1α), inducible nitric oxide synthase (iNOS), BCL2/adenovirus E1B interacting protein 3 (BNIP3) and caspase-3 protein were measured. Compared with sham scald group, severe scald elevated CK-MB, cardiomyocyte apoptosis rate, caspase-3 activity and protein levels, NO content, and HIF-1α signalling pathway proteins; whereas VPA decreased CK-MB, cardiomyocyte apoptosis rate and inhibited HIF-1α signalling pathway protein expression. In conclusion, these results suggested that VPA inhibited early cardiomyocyte apoptosis and attenuated myocardial injury in lethally scalded rats, which may be related to the regulation of the HIF-1α signalling pathway.


Asunto(s)
Apoptosis , Quemaduras , Subunidad alfa del Factor 1 Inducible por Hipoxia , Miocitos Cardíacos , Ácido Valproico , Animales , Masculino , Ratas , Apoptosis/efectos de los fármacos , Quemaduras/tratamiento farmacológico , Quemaduras/metabolismo , Quemaduras/patología , Caspasa 3/metabolismo , Modelos Animales de Enfermedad , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas Sprague-Dawley , Ácido Valproico/farmacología
4.
Cancer Lett ; 592: 216931, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38701892

RESUMEN

The intricate role of inducible nitric oxide synthase (iNOS) in cancer pathophysiology has garnered significant attention, highlighting the complex interplay between tumorigenesis, immune response, and cellular metabolism. As an enzyme responsible for producing nitric oxide (NO) in response to inflammatory stimuli. iNOS is implicated in various aspects of cancer development, including DNA damage, angiogenesis, and evasion of apoptosis. This review synthesizes the current findings from both preclinical and clinical studies on iNOS across different cancer types, reflecting the variability depending on cellular context and tumor microenvironment. We explore the molecular mechanisms by which iNOS modulates cancer cell growth, survival, and metastasis, emphasizing its impact on immune surveillance and response to treatment. Additionally, the potential of targeting iNOS as a therapeutic strategy in cancer treatment is examined. By integrating insights from recent advances, this review aims to elucidate the significant role of iNOS in cancer and pave the way for novel diagnostic and therapeutic approaches.


Asunto(s)
Progresión de la Enfermedad , Neoplasias , Óxido Nítrico Sintasa de Tipo II , Microambiente Tumoral , Humanos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Neoplasias/patología , Neoplasias/enzimología , Animales , Óxido Nítrico/metabolismo , Neovascularización Patológica/patología
5.
PeerJ ; 12: e17252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708345

RESUMEN

Background: Periodontitis is a chronic infectious disease, characterized by an exacerbated inflammatory response and a progressive loss of the supporting tissues of the teeth. Porphyromonas gingivalis is a key etiologic agent in periodontitis. Cystatin C is an antimicrobial salivary peptide that inhibits the growth of P. gingivalis. This study aimed to evaluate the antimicrobial activity of this peptide and its effect on cytokine production, nitric oxide (NO) release, reactive oxygen species (ROS) production, and programmed cell death in human macrophages infected with P. gingivalis. Methods: Monocyte-derived macrophages generated from peripheral blood were infected with P. gingivalis (MOI 1:10) and stimulated with cystatin C (2.75 µg/ml) for 24 h. The intracellular localization of P. gingivalis and cystatin C was determined by immunofluorescence and transmission electron microscopy (TEM). The intracellular antimicrobial activity of cystatin C in macrophages was assessed by counting Colony Forming Units (CFU). ELISA assay was performed to assess inflammatory (TNFα, IL-1ß) and anti-inflammatory (IL-10) cytokines. The production of nitrites and ROS was analyzed by Griess reaction and incubation with 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), respectively. Programmed cell death was assessed with the TUNEL assay, Annexin-V, and caspase activity was also determined. Results: Our results showed that cystatin C inhibits the extracellular growth of P. gingivalis. In addition, this peptide is internalized in the infected macrophage, decreases the intracellular bacterial load, and reduces the production of inflammatory cytokines and NO. Interestingly, peptide treatment increased ROS production and substantially decreased bacterial-induced macrophage apoptosis. Conclusions: Cystatin C has antimicrobial and immuno-regulatory activity in macrophages infected with P. gingivalis. These findings highlight the importance of understanding the properties of cystatin C for its possible therapeutic use against oral infections such as periodontitis.


Asunto(s)
Cistatina C , Macrófagos , Óxido Nítrico , Porphyromonas gingivalis , Especies Reactivas de Oxígeno , Porphyromonas gingivalis/inmunología , Humanos , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/microbiología , Cistatina C/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Óxido Nítrico/metabolismo , Citocinas/metabolismo , Periodontitis/microbiología , Periodontitis/inmunología , Periodontitis/tratamiento farmacológico , Periodontitis/patología , Apoptosis/efectos de los fármacos
6.
Clin Oral Investig ; 28(6): 337, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795217

RESUMEN

OBJECTIVES: Mechano-sensitive odontoblast cells, which sense mechanical loading and various stresses in the tooth structure, synthesize early signaling molecules such as prostaglandin E2 (PGE2) and nitric oxide (NO) as an adaptive response. It is thought that these synthesized molecules can be used for the diagnosis and treatment of periodontal and periapical diseases. The aim of this study was to investigate the relationship between the severity of apical periodontitis (AP) and chronic periodontitis (CP) and serum (s) TNF-α, IL-10, PGE2 and NO levels, as well as PGE2 and NO levels in gingival crevicular fluid (GCF) samples. MATERIALS & METHODS: A total of 185 subjects were divided into three categories: AP group (n = 85), CP group (n = 50) and healthy control group (n = 50). The AP group was divided into 3 subgroups according to abscess scoring (AS-PAI 1, 2 and 3) based on the periapical index. The CP group was divided into 4 subgroups according to the periodontitis staging system (PSS1, 2,3 and 4). After recording the demographic and clinical characteristics of all participants, serum (s) and gingival crevicular fluid (GCF) samples were taken. TNF-α, IL-10, PGE2 and NO levels were measured in these samples. RESULTS: Unlike serum measurements (sTNF-α, sIL-10, sNO and sPGE2), GCF-NO and GCF-PGE levels of the AP group were significantly higher than the control group in relation to abscess formation (54.4 ± 56.3 vs. 22.5 ± 12.6 µmol/mL, p < 0.001 and 100 ± 98 vs. 41 ± 28 ng/L, p < 0.001, respectively). Confirming this, the GCF-NO and GCF-PGE levels of the AS-PAI 1 group, in which abscesses have not yet formed, were found to be lower than those in AS-PAI 2 and 3, which are characterized by abscess formation [(16.7(3.7-117.8), 32.9(11.8-212.8) and 36.9(4.3-251.6) µmol/mL, p = 0,0131; 46.0(31.4-120.0), 69.6(40.3-424.2) and 74.4(32.1-471.0) ng/L, p = 0,0020, respectively]. Consistent with the increase in PSS, the levels of sTNF [29.8 (8.2-105.5) vs. 16.7(6.3-37.9) pg/mL, p < 0.001], sIL-10 [542(106-1326) vs. 190(69-411) pg/mL, p < 0.001], sNO [182.1(36.3-437) vs. 57.0(15.9-196) µmol/mL, p < 0.001], sPGE2 [344(82-1298) vs. 100(35-1178) ng/L, p < 0.001], GCF-NO [58.9 ± 33.6 vs. 22.5 ± 12.6 ng/L, p < 0.001] and GCF-PGE2 [ 99(37-365) vs. 30(13-119), p < 0.001] in the CP group were higher than the control group. Comparison ROC analysis revealed that the GCF-PGE2 test had the best diagnostic value for both AP and CP (sensitivity: 94.1 and 88.0; specificity: 64.0 and 78.0, respectively; p < 0.001). CONCLUSIONS: GCF-PE2 and GCF-NO have high diagnostic value in the determination of AP and CP, and can be selected as targets to guide treatment. In addition, the measurements of PGE2 and NO in GCF can be used as an important predictor of pulpal necrosis leading to abscess in patients with AP. CLINICAL RELEVANCE: In this article, it is reported that syntheses of early signaling molecules such as PGE2 and NO can be used for the diagnosis and treatment target of periapical and periodontal infections.


Asunto(s)
Periodontitis Crónica , Dinoprostona , Líquido del Surco Gingival , Interleucina-10 , Óxido Nítrico , Periodontitis Periapical , Factor de Necrosis Tumoral alfa , Humanos , Periodontitis Periapical/metabolismo , Masculino , Femenino , Periodontitis Crónica/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/biosíntesis , Líquido del Surco Gingival/química , Adulto , Dinoprostona/metabolismo , Interleucina-10/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Persona de Mediana Edad , Ensayo de Inmunoadsorción Enzimática , Estudios de Casos y Controles
7.
Bull Exp Biol Med ; 176(5): 555-561, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38717567

RESUMEN

The levels of NO metabolites in the plasma and mRNA of the NOS3, ATG9B, and NOS2 genes in peripheral blood leukocytes of healthy people and patients with early forms of non-alcoholic fatty liver disease (steatosis and weak activity non-alcoholic steatohepatitis) were studied. In patients with steatohepatitis, the concentration of NO metabolites in the blood and the level of mRNA of the NOS2 gene were higher than in patients with steatosis and healthy people. These differences can be of diagnostic value for distinguishing between steatosis and weak activity steatohepatitis in non-alcoholic fatty liver disease. A correlation between the levels of NO metabolites and the expression of the NOS2 gene in weak activity steatohepatitis was established, which indicates activation of NO synthesis in non-alcoholic steatohepatitis due to the expression of the inducible NO synthase gene. The level of the NOS2 gene mRNA in peripheral blood leukocytes of patients with weak activity steatohepatitis correlated with the level of TNFα and IL-6 cytokines. An increase in the level of NO in the blood in weak activity steatohepatitis correlated with the level of MDA, an indicator of oxidative stress.


Asunto(s)
Interleucina-6 , Óxido Nítrico Sintasa de Tipo III , Óxido Nítrico Sintasa de Tipo II , Óxido Nítrico , Enfermedad del Hígado Graso no Alcohólico , Factor de Necrosis Tumoral alfa , Humanos , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Óxido Nítrico/sangre , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Masculino , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Femenino , Adulto , Interleucina-6/sangre , Interleucina-6/genética , Persona de Mediana Edad , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/genética , ARN Mensajero/genética , ARN Mensajero/sangre , ARN Mensajero/metabolismo , Estrés Oxidativo/genética , Estudios de Casos y Controles , Malondialdehído/sangre
8.
Sci Rep ; 14(1): 11047, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744989

RESUMEN

Callicarpa kwangtungensis Chun (CK) is a common remedy exhibits anti-inflammatory properties and has been used in Chinese herbal formulations, such as KangGongYan tablets. It is the main component of KangGongYan tablets, which has been used to treat chronic cervicitis caused by damp heat, red and white bands, cervical erosion, and bleeding. However, the anti-inflammatory effects of CK water extract remains unknown. This study assessed the anti-inflammatory effects of CK in vivo and in vitro, characterized its main components in the serum of rats and verified the anti-inflammatory effects of serum containing CK. Nitric oxide (NO), tumour necrosis factor α (TNF-α) and interleukin-6 (IL-6) release by RAW264.7 cells was examined by ELISA and Griess reagents. Inflammation-related protein expression in LPS-stimulated RAW264.7 cells was measured by western blotting. Furthermore, rat model of foot swelling induced by λ-carrageenan and a collagen-induced arthritis (CIA) rat model were used to explore the anti-inflammatory effects of CK. The components of CK were characterized by LC-MS, and the effects of CK-containing serum on proinflammatory factors levels and the expression of inflammation-related proteins were examined by ELISA, Griess reagents and Western blotting. CK suppressed IL-6, TNF-α, and NO production, and iNOS protein expression in LPS-stimulated RAW264.7 cells. Mechanistic studies showed that CK inhibited the phosphorylation of ERK, P38 and JNK in the MAPK signaling pathway, promoted the expression of IκBα in the NF-κB signaling pathway, and subsequently inhibited the expression of iNOS, thereby exerting anti-inflammatory effects. Moreover, CK reduced the swelling rates with λ-carrageenan induced foot swelling, and reduced the arthritis score and incidence in the collagen-induced arthritis (CIA) rat model. A total of 68 compounds in CK water extract and 31 components in rat serum after intragastric administration of CK were characterized. Serum pharmacological analysis showed that CK-containing serum suppressed iNOS protein expression and NO, TNF-α, and IL-6 release. CK may be an anti-inflammatory agent with therapeutic potential for acute and chronic inflammatory diseases, especially inflammatory diseases associated with MAPK activation.


Asunto(s)
Antiinflamatorios , Artritis Experimental , Óxido Nítrico , Extractos Vegetales , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Ratas , Células RAW 264.7 , Extractos Vegetales/farmacología , Extractos Vegetales/química , Óxido Nítrico/metabolismo , Artritis Experimental/tratamiento farmacológico , Agua/química , Carragenina , Modelos Animales de Enfermedad , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/sangre , Masculino , Interleucina-6/metabolismo , Interleucina-6/sangre , Edema/tratamiento farmacológico , Inflamación/tratamiento farmacológico
9.
J Nanobiotechnology ; 22(1): 277, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783332

RESUMEN

Spinal Cord Injury (SCI) is a condition characterized by complete or incomplete motor and sensory impairment, as well as dysfunction of the autonomic nervous system, caused by factors such as trauma, tumors, or inflammation. Current treatment methods primarily include traditional approaches like spinal canal decompression and internal fixation surgery, steroid pulse therapy, as well as newer techniques such as stem cell transplantation and brain-spinal cord interfaces. However, the above methods have limited efficacy in promoting axonal and neuronal regeneration. The challenge in medical research today lies in promoting spinal cord neuron regeneration and regulating the disrupted microenvironment of the spinal cord. Studies have shown that gas molecular therapy is increasingly used in medical research, with gasotransmitters such as hydrogen sulfide, nitric oxide, carbon monoxide, oxygen, and hydrogen exhibiting neuroprotective effects in central nervous system diseases. The gas molecular protect against neuronal death and reshape the microenvironment of spinal cord injuries by regulating oxidative, inflammatory and apoptotic processes. At present, gas therapy mainly relies on inhalation for systemic administration, which cannot effectively enrich and release gas in the spinal cord injury area, making it difficult to achieve the expected effects. With the rapid development of nanotechnology, the use of nanocarriers to achieve targeted enrichment and precise control release of gas at Sites of injury has become one of the emerging research directions in SCI. It has shown promising therapeutic effects in preclinical studies and is expected to bring new hope and opportunities for the treatment of SCI. In this review, we will briefly outline the therapeutic effects and research progress of gasotransmitters and nanogas in the treatment of SCI.


Asunto(s)
Gasotransmisores , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/terapia , Humanos , Animales , Gasotransmisores/uso terapéutico , Gasotransmisores/metabolismo , Óxido Nítrico/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Sulfuro de Hidrógeno/uso terapéutico , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Monóxido de Carbono/metabolismo , Monóxido de Carbono/uso terapéutico , Oxígeno/metabolismo , Médula Espinal , Hidrógeno/uso terapéutico , Hidrógeno/farmacología
10.
Biomolecules ; 14(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38785947

RESUMEN

Hydrogen sulfide (H2S), previously regarded as a toxic exhaust and atmospheric pollutant, has emerged as the third gaseous signaling molecule following nitric oxide (NO) and carbon monoxide (CO). Recent research has revealed significant biological effects of H2S in a variety of systems, such as the nervous, cardiovascular, and digestive systems. Additionally, H2S has been found to impact reproductive system function and may have therapeutic implications for reproductive disorders. This paper explores the relationship between H2S and male reproductive disorders, specifically erectile dysfunction, prostate cancer, male infertility, and testicular damage. Additionally, it examines the impact of H2S regulation on the pathophysiology of the female reproductive system, including improvements in preterm birth, endometriosis, pre-eclampsia, fetal growth restriction, unexplained recurrent spontaneous abortion, placental oxidative damage, embryo implantation, recovery of myometrium post-delivery, and ovulation. The study delves into the regulatory functions of H2S within the reproductive systems of both genders, including its impact on the NO/cGMP pathway, the activation of K+ channels, and the relaxation mechanism of the spongy smooth muscle through the ROCK pathway, aiming to broaden the scope of potential therapeutic strategies for treating reproductive system disorders in clinical settings.


Asunto(s)
Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/uso terapéutico , Humanos , Femenino , Masculino , Embarazo , Animales , Óxido Nítrico/metabolismo , Reproducción/efectos de los fármacos
11.
Mar Drugs ; 22(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786610

RESUMEN

Octocoral of the genus Clavularia is a kind of marine invertebrate possessing abundant cytotoxic secondary metabolites, such as prostanoids and dolabellanes. In our continuous natural product study of C. spp., two previously undescribed prostanoids [clavulone I-15-one (1) and 12-O-deacetylclavulone I (2)] and eleven known analogs (3-13) were identified. The structures of these new compounds were elucidated based on analysis of their 1D and 2D NMR, HRESIMS, and IR data. Additionally, all tested prostanoids (1 and 3-13) showed potent cytotoxic activities against the human oral cancer cell line (Ca9-22). The major compound 3 showed cytotoxic activity against the Ca9-22 cells with the IC50 value of 2.11 ± 0.03 µg/mL, which echoes the cytotoxic effect of the coral extract. In addition, in silico tools were used to predict the possible effects of isolated compounds on human tumor cell lines and nitric oxide production, as well as the pharmacological potentials.


Asunto(s)
Antozoos , Antineoplásicos , Prostaglandinas , Humanos , Antozoos/química , Animales , Línea Celular Tumoral , Prostaglandinas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Óxido Nítrico/metabolismo , Concentración 50 Inhibidora , Organismos Acuáticos , Estructura Molecular
12.
Anal Chem ; 96(21): 8689-8695, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38748889

RESUMEN

Tumor microenvironment-responsive phototheranostic agents are highly sought after for their ability to improve diagnostic accuracy and treatment specificity. Here, we introduce a novel single-molecule probe, POZ-NO, which is activated by nitric oxide (NO) and weak acidity, enabling dual-mode imaging and photothermal therapy (PTT) of tumors. In acidic environments with elevated NO levels, POZ-NO exhibits a distinctive ratiometric fluorescence signal shift from the red to near-infrared, accompanied by a 700 nm photoacoustic signal. Additionally, POZ-NO demonstrated potent photothermal effects upon NO and acidity activation, achieving an impressive conversion efficiency of 74.3% under 735 nm laser irradiation. In vivo studies confirm POZ-NO's ability to accurately image tumors through ratiometric fluorescence and photoacoustic modes while selectively treating tumors with PTT.


Asunto(s)
Óxido Nítrico , Técnicas Fotoacústicas , Terapia Fototérmica , Microambiente Tumoral , Óxido Nítrico/análisis , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Animales , Humanos , Ratones , Imagen Óptica , Concentración de Iones de Hidrógeno , Nanomedicina Teranóstica , Ratones Endogámicos BALB C , Femenino , Colorantes Fluorescentes/química , Fluorescencia
13.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2722-2727, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812172

RESUMEN

This study investigated the chemical and biological activity of the secondary metabolites from an endophytic fungus Fusa-rium solani MBM-5 of Datura arborea. A total of six alkenoic acid compounds, including a new compound and five known ones, were isolated from the ethyl acetate extract of F. solani MBM-5 by using the chromatographic methods(open ODS column chromatography, silica gel column chromatography, Sephadex LH-20, and semi-preparative HPLC). The structures of the compounds were identified by using their physical and chemical data, spectroscopic methods(UV, IR, NMR, and HR-ESI-MS), and Mosher's reaction, which were fusaridioic acid E(1), fusaridioic acid C(2), fusaridioic acid A(3), L660282(4), hymeglusin(5), and hymeglnone(6). Compound 1 is new. MTT assay and Griss method were used to evaluate the growth inhibition of all the compounds against two tumor cells, as well as their influence and anti-inflammatory action on the release of NO from LPS-induced RAW264.7 cells. The results showed that compound 5 had strong growth inhibition activity against A549 and HepG2 cell lines, with IC_(50) values of 4.70 and 13.57 µmol·L~(-1), respectively. Compounds 1 and 6 significantly inhibited the release of NO from LPS-induced RAW264.7 cells, with IC_(50) values of 77.00 and 70.33 µmol·L~(-1), respectively.


Asunto(s)
Endófitos , Fusarium , Metabolismo Secundario , Fusarium/efectos de los fármacos , Fusarium/química , Ratones , Humanos , Animales , Endófitos/química , Línea Celular Tumoral , Células RAW 264.7 , Estructura Molecular , Óxido Nítrico/metabolismo , Proliferación Celular/efectos de los fármacos
14.
Life Sci ; 349: 122723, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754816

RESUMEN

Endothelial dysfunction is the most common pathological feature of cardiovascular diseases, including diabetes mellitus, hypertension and atherosclerosis. It affects both macro- and micro-vasculatures, causing functional impairment of multiple organs. Pien Tze Huang (PZH) is a well-studied traditional Chinese medicine (TCM) with multiple pharmacological properties that produces therapeutic benefits against colorectal cancer, non-alcoholic steatohepatitis and neurodegenerative diseases. However, it is unknown how PZH affects vascular function under pathological conditions. Therefore, this study aimed to investigate the effect of PZH on endothelial function and the underlying mechanisms in db/db diabetic mice. The results showed that chronic treatment of PZH (250 mg/kg/day, 5 weeks) improved endothelial function by restoring endothelium-dependent relaxation through the activation of the Akt-eNOS pathway and inhibition of endothelial oxidative stress, which increased nitric oxide bioavailability. Furthermore, PZH treatment increased insulin sensitivity and suppressed inflammation in diabetic mice. These new findings suggest that PZH may have vaso-protective properties and the potential to protect against diabetic vasculopathy by preserving endothelial function.


Asunto(s)
Diabetes Mellitus Experimental , Medicamentos Herbarios Chinos , Endotelio Vascular , Estrés Oxidativo , Animales , Ratones , Medicamentos Herbarios Chinos/farmacología , Masculino , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Endotelio Vascular/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/fisiopatología , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Resistencia a la Insulina
15.
Biomaterials ; 309: 122622, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38797119

RESUMEN

Nondestructive penetration of the blood-brain barrier (BBB) to specifically prevent iron deposition and the generation of reactive oxygen species (ROS) shows great potential for treating Parkinson's disease (PD). However, effective agents with distinct mechanisms of action remain scarce. Herein, a N-doping carbon dot (CD) emitting red light was prepared, which can sacrifice ROS and produce nitric oxide (NO) owing to its surface N-involved groups conjugated to the sp2-hybrided π-system. Meanwhile, CD can chelate iron ions, thus depressing the catalytic Fe cycle and *OH detaching to inhibit the Fenton reaction. By modifying lactoferrin (Lf) via polyethylene glycol (PEG), the resulting CD-PEG-Lf (CPL) can nondestructively cross the BBB, targeting the dopaminergic neurons via both NO-mediated reversible BBB opening and Lf receptor-mediated transportation. Accordingly, it can serve as an antioxidant, reducing oxidative stress via its unique iron chelation, free radical sacrificing, and synergy with iron reflux prevention originating from Lf. Thus, it can significantly reduce brain inflammation and improve the behavioral performance of PD mice. Additionally, CPL can image the PD via its red fluorescence. Finally, this platform can be metabolized out of the brain through cerebrospinal fluid circulation without causing obvious side effects, promising a robust treatment for PD.


Asunto(s)
Antioxidantes , Barrera Hematoencefálica , Carbono , Hierro , Óxido Nítrico , Enfermedad de Parkinson , Animales , Óxido Nítrico/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Carbono/química , Hierro/metabolismo , Hierro/química , Antioxidantes/química , Antioxidantes/metabolismo , Ratones , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Masculino , Lactoferrina/química , Lactoferrina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Polietilenglicoles/química , Puntos Cuánticos/química , Estrés Oxidativo/efectos de los fármacos , Nanopartículas/química , Iones , Humanos , Ratones Endogámicos C57BL
16.
Acta Biochim Pol ; 71: 12433, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721304

RESUMEN

The study aimed to determine the osteointegration markers after dental implantation and evaluate their predictive value. The study was performed on 60 practically healthy persons who needed teeth rehabilitation using dental implants. The conical-shaped implants (CI) and hexagonal implants (HI) were used. The content of Osteopontin (OPN), Osteocalcin (OC), Alkaline Phosphatase (ALP), Osteoprotegerin (OPG), and nitric oxide (NO) was determined in patients' gingival crevicular fluid (GCF) and peri-implant sulcular fluid (PISF), collected 1, 3, and 6 months after implantation. During the 3-6 months of observation level of OPN increased in patients with CIs (<50 years > 50 years) and HIs (<50 years) (CI: <50 years F = 36.457, p < 0.001; >50 years F = 30.104, p < 0.001; HI < 50 years F = 2.246, p < 0.001), ALP increased in patients with CIs (<50 years: F = 19.58, p < 0.001; >50 years: F = 12.01; p = 0.001) and HIs (<50 years) (F = 18.51, p < 0.001), OC increased in patients <50 years (CI: F = 33.72, p < 0.001; HI: F = 55.57, p < 0.001), but in patients >50 years - on the 3 days month (CI: F = 18.82, p < 0.001; HI: F = 26.26, p < 0.001), but sharply decreased at the end of sixth month. OPG increased during 1-3 months of the observation in patients <50 years (CI: F = 4.63, p = 0.037; HI: F = 2.8927, p = 0.046), but at the end of the sixth month returned to the initial level; NO content in PISF increased in patients with CI (>50 years) during 1-6 months of the observation (F = 27.657, p < 0.001). During the post-implantation period, age-related differences in osteointegration were observed. Patients <50 years old had relatively high levels of OPN, ALP, OC, and OPG in PISF, resulting in less alveolar bone destruction around dental implants and more intensive osteointegration. These indicators may be used as biological markers for monitoring implant healing. The process of osseointegration was more intense in CIs due to their comparatively high mechanical loading.


Asunto(s)
Fosfatasa Alcalina , Biomarcadores , Implantes Dentales , Líquido del Surco Gingival , Oseointegración , Osteocalcina , Osteopontina , Osteoprotegerina , Humanos , Persona de Mediana Edad , Biomarcadores/metabolismo , Femenino , Masculino , Osteoprotegerina/metabolismo , Líquido del Surco Gingival/metabolismo , Fosfatasa Alcalina/metabolismo , Osteocalcina/metabolismo , Adulto , Osteopontina/metabolismo , Pronóstico , Óxido Nítrico/metabolismo , Implantación Dental/métodos , Factores de Tiempo
17.
J Nanobiotechnology ; 22(1): 232, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720301

RESUMEN

Diabetic wounds pose a challenge to healing due to increased bacterial susceptibility and poor vascularization. Effective healing requires simultaneous bacterial and biofilm elimination and angiogenesis stimulation. In this study, we incorporated polyaniline (PANI) and S-Nitrosoglutathione (GSNO) into a polyvinyl alcohol, chitosan, and hydroxypropyltrimethyl ammonium chloride chitosan (PVA/CS/HTCC) matrix, creating a versatile wound dressing membrane through electrospinning. The dressing combines the advantages of photothermal antibacterial therapy and nitric oxide gas therapy, exhibiting enduring and effective bactericidal activity and biofilm disruption against methicillin-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli. Furthermore, the membrane's PTT effect and NO release exhibit significant synergistic activation, enabling a nanodetonator-like burst release of NO through NIR irradiation to disintegrate biofilms. Importantly, the nanofiber sustained a uniform release of nitric oxide, thereby catalyzing angiogenesis and advancing cellular migration. Ultimately, the employment of this membrane dressing culminated in the efficacious amelioration of diabetic-infected wounds in Sprague-Dawley rats, achieving wound closure within a concise duration of 14 days. Upon applying NIR irradiation to the PVA-CS-HTCC-PANI-GSNO nanofiber membrane, it swiftly eradicates bacteria and biofilm within 5 min, enhancing its inherent antibacterial and anti-biofilm properties through the powerful synergistic action of PTT and NO therapy. It also promotes angiogenesis, exhibits excellent biocompatibility, and is easy to use, highlighting its potential in treating diabetic wounds.


Asunto(s)
Antibacterianos , Vendajes , Biopelículas , Óxido Nítrico , Terapia Fototérmica , Ratas Sprague-Dawley , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Óxido Nítrico/farmacología , Óxido Nítrico/metabolismo , Ratas , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/uso terapéutico , Biopelículas/efectos de los fármacos , Terapia Fototérmica/métodos , Masculino , Quitosano/química , Quitosano/farmacología , Nanofibras/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Staphylococcus aureus/efectos de los fármacos , Alcohol Polivinílico/química , Alcohol Polivinílico/farmacología , S-Nitrosoglutatión/farmacología , S-Nitrosoglutatión/química
18.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732088

RESUMEN

Pregnancy at advanced maternal age (AMA) is a condition of potential risk for the development of maternal-fetal complications with possible repercussions even in the long term. Here, we analyzed the changes in plasma redox balance and the effects of plasma on human umbilical cord mesenchymal cells (hUMSCs) in AMA pregnant women (patients) at various timings of pregnancy. One hundred patients and twenty pregnant women younger than 40 years (controls) were recruited and evaluated at various timings during pregnancy until after delivery. Plasma samples were used to measure the thiobarbituric acid reactive substances (TBARS), glutathione and nitric oxide (NO). In addition, plasma was used to stimulate the hUMSCs, which were tested for cell viability, reactive oxygen species (ROS) and NO release. The obtained results showed that, throughout pregnancy until after delivery in patients, the levels of plasma glutathione and NO were lower than those of controls, while those of TBARS were higher. Moreover, plasma of patients reduced cell viability and NO release, and increased ROS release in hUMSCs. Our results highlighted alterations in the redox balance and the presence of potentially harmful circulating factors in plasma of patients. They could have clinical relevance for the prevention of complications related to AMA pregnancy.


Asunto(s)
Edad Materna , Células Madre Mesenquimatosas , Óxido Nítrico , Oxidación-Reducción , Especies Reactivas de Oxígeno , Sustancias Reactivas al Ácido Tiobarbitúrico , Cordón Umbilical , Humanos , Femenino , Embarazo , Adulto , Células Madre Mesenquimatosas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/sangre , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Cordón Umbilical/citología , Cordón Umbilical/metabolismo , Glutatión/metabolismo , Glutatión/sangre , Supervivencia Celular , Estrés Oxidativo , Plasma/metabolismo
19.
Plant Cell Rep ; 43(6): 139, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735908

RESUMEN

KEY MESSAGE: Nitric oxide functions downstream of the melatonin in adjusting Cd-induced osmotic and oxidative stresses, upregulating the transcription of D4H and DAT genes, and increasing total alkaloid and vincristine contents. A few studies have investigated the relationship between melatonin (MT) and nitric oxide (NO) in regulating defensive responses. However, it is still unclear how MT and NO interact to regulate the biosynthesis of alkaloids and vincristine in leaves of Catharanthus roseus (L.) G. Don under Cd stress. Therefore, this context was explored in the present study. Results showed that Cd toxicity (200 µM) induced oxidative stress, decreased biomass, Chl a, and Chl b content, and increased the content of total alkaloid and vinblastine in the leaves. Application of both MT (100 µM) and sodium nitroprusside (200 µM SNP, as NO donor) enhanced endogenous NO content and accordingly increased metal tolerance index, the content of total alkaloid and vinblastine. It also upregulated the transcription of two respective genes (D4H and DAT) under non-stress and Cd stress conditions. Moreover, the MT and SNP treatments reduced the content of H2O2 and malondialdehyde, increased the activities of superoxide dismutase and ascorbate peroxidase, enhanced proline accumulation, and improved relative water content in leaves of Cd-exposed plants. The scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (cPTIO) averted the effects of MT on the content of total alkaloid and vinblastine and antioxidative responses. Still, the effects conferred by NO on attributes mentioned above were not significantly impaired by p-chlorophenylalanine (p-CPA as an inhibitor of MT biosynthesis). These findings and multivariate analyses indicate that MT motivated terpenoid indole alkaloid biosynthesis and mitigated Cd-induced oxidative stress in the leaves of periwinkle in a NO-dependent manner.


Asunto(s)
Cadmio , Catharanthus , Regulación de la Expresión Génica de las Plantas , Melatonina , Óxido Nítrico , Estrés Oxidativo , Hojas de la Planta , Vinblastina , Catharanthus/metabolismo , Catharanthus/genética , Catharanthus/efectos de los fármacos , Óxido Nítrico/metabolismo , Cadmio/metabolismo , Cadmio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Vinblastina/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
20.
Biomacromolecules ; 25(5): 3190-3199, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38693753

RESUMEN

Intracellular bacteria in dormant states can escape the immune response and tolerate high-dose antibiotic treatment, leading to severe infections. To overcome this challenge, cascade-targeted nanoplatforms that can target macrophages and intracellular bacteria, exhibiting synergetic antibiotic/reactive oxygen species (ROS)/nitric oxide (NO)/immunotherapy, were developed. These nanoplatforms were fabricated by encapsulating trehalose (Tr) and vancomycin (Van) into phosphatidylserine (PS)-coated poly[(4-allylcarbamoylphenylboric acid)-ran-(arginine-methacrylamide)-ran-(N,N'-bisacryloylcystamine)] nanoparticles (PABS), denoted as PTVP. PS on PTVP simulates a signal of "eat me" to macrophages to promote cell uptake (the first-step targeting). After the uptake, the nanoplatform in the acidic phagolysosomes could release Tr, and the exposed phenylboronic acid on the nanoplatform could target bacteria (the second-step targeting). Nanoplatforms can release Van in response to infected intracellular overexpressed glutathione (GSH) and weak acid microenvironment. l-arginine (Arg) on the nanoplatforms could be catalyzed by upregulated inducible nitric oxide synthase (iNOS) in the infected macrophages to generate nitric oxide (NO). N,N'-Bisacryloylcystamine (BAC) on nanoplatforms could deplete GSH, allow the generation of ROS in macrophages, and then upregulate proinflammatory activity, leading to the reinforced antibacterial capacity. This nanoplatform possesses macrophage and bacteria-targeting antibiotic delivery, intracellular ROS, and NO generation, and pro-inflammatory activities (immunotherapy) provides a new strategy for eradicating intracellular bacterial infections.


Asunto(s)
Antibacterianos , Nanopartículas , Óxido Nítrico , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Óxido Nítrico/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Ratones , Animales , Células RAW 264.7 , Nanopartículas/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Inmunoterapia/métodos , Vancomicina/farmacología , Vancomicina/química , Vancomicina/administración & dosificación , Infecciones Bacterianas/tratamiento farmacológico , Trehalosa/química , Trehalosa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA