Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 547
Filtrar
1.
Sci Rep ; 14(1): 15538, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969729

RESUMEN

Drug delivery is the process or method of delivering a pharmacological product to have therapeutic effects on humans or animals. The use of nanoparticles to deliver medications to cells is driving the present surge in interest in improving human health. Green nanodrug delivery methods are based on chemical processes that are acceptable for the environment or that use natural biomaterials such as plant extracts and microorganisms. In this study, zinc oxide-superparamagnetic iron oxide-silver nanocomposite was synthesized via green synthesis method using Fusarium oxysporum fungi mycelia then loaded with sorafenib drug. The synthesized nanocomposites were characterized by UV-visibile spectroscopy, FTIR, TEM and SEM techniques. Sorafenib is a cancer treatment and is also known by its brand name, Nexavar. Sorafenib is the only systemic medication available in the world to treat hepatocellular carcinoma. Sorafenib, like many other chemotherapeutics, has side effects that restrict its effectiveness, including toxicity, nausea, mucositis, hypertension, alopecia, and hand-foot skin reaction. In our study, 40 male albino rats were given a single dose of diethyl nitrosamine (DEN) 60 mg/kg b.wt., followed by carbon tetrachloride 2 ml/kg b.wt. twice a week for one month. The aim of our study is using the zinc oxide-superparamagnetic iron oxide-silver nanocomposite that was synthesized by Fusarium oxysporum fungi mycelia as nanocarrier for enhancement the sorafenib anticancer effect.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Plata , Sorafenib , Óxido de Zinc , Animales , Sorafenib/farmacología , Sorafenib/química , Sorafenib/administración & dosificación , Óxido de Zinc/química , Óxido de Zinc/farmacología , Plata/química , Ratas , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Masculino , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Portadores de Fármacos/química , Fusarium/efectos de los fármacos , Nanopartículas de Magnetita/química , Nanocompuestos/química , Humanos , Nanopartículas Magnéticas de Óxido de Hierro/química
2.
PeerJ ; 12: e17588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948224

RESUMEN

In the present study, zinc oxide nanoparticles (ZnO-NPs) were synthesized using neem leaf aqueous extracts and characterized using transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV-Vis), and dynamic light scattering (DLS). Then compare its efficacy as anticancer and antibacterial agents with chemically synthesized ZnO-NPs and the neem leaf extract used for the green synthesis of ZnO-NPs. The TEM, UV-vis, and particle size confirmed that the developed ZnO-NPs are nanoscale. The chemically and greenly synthesized ZnO-NPs showed their optical absorbance at 328 nm and 380 nm, respectively, and were observed as spherical particles with a size of about 85 nm and 62.5 nm, respectively. HPLC and GC-MS were utilized to identify the bioactive components in the neem leaf aqueous extract employed for the eco-friendly production of ZnO-NPs. The HPLC analysis revealed that the aqueous extract of neem leaf contains 19 phenolic component fractions. The GC-MS analysis revealed the existence of 21 bioactive compounds. The antiproliferative effect of green ZnO-NPs was observed at different concentrations (31.25 µg/mL-1000 µg/mL) on Hct 116 and A 549 cancer cells, with an IC50 value of 111 µg/mL for A 549 and 118 µg/mL for Hct 116. On the other hand, the antibacterial activity against gram-positive and gram-negative bacteria was estimated. The antibacterial result showed that the MIC of green synthesized ZnO-NPs against gram-positive and gram-negative bacteria were 5, and 1 µg/mL. Hence, they could be utilized as effective antibacterial and antiproliferative agents.


Asunto(s)
Antibacterianos , Antineoplásicos , Extractos Vegetales , Hojas de la Planta , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Humanos , Hojas de la Planta/química , Antineoplásicos/farmacología , Antineoplásicos/química , Azadirachta/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Tecnología Química Verde/métodos , Tamaño de la Partícula , Línea Celular Tumoral
3.
J Inorg Biochem ; 258: 112623, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38823065

RESUMEN

A strategy for cancer treatment was implemented, based on chemo-photodynamic therapy, utilizing a novel formulation, low-cost system called Cas-ZnONPs. This system consisted of the incorporation of Casiopeina III-ia (CasIII-ia), a hydrophilic copper coordination compound with well-documented anti-neoplastic activity, on Zinc oxide nanoparticles (ZnONPs) with apoptotic activity and lipophilicity, allowing them to permeate biological barriers. Additionally, ZnONPs exhibited fluorescence, with emission at different wavelengths depending on their agglomeration and enabling real-time tracking biodistribution. Also, ZnONPs served as a sensitizer, generating reactive oxygen species (ROS) in situ. In in vitro studies on HeLa and MDA-MB-231 cell lines, a synergistic effect was observed with the impregnated CasIII-ia on ZnONPs. The anticancer activity had an increase in cellular inhibition, depending on the dose of exposure to UV-vis irradiation. In in vivo studies utilized zebrafish models for xenotransplanting stained MDA-MB-231 cells and testing the effectiveness of Cas-ZnONPs treatment. The treatment successfully eliminated cancer cells, both when combined with Photodynamic Therapy (PDT) and when used alone. However, a significantly higher concentration (50 times) of Cas-ZnONPs was required in the absence of PDT. This demonstrates the potential of Cas-ZnONPs in cancer treatment, especially when combined with PDT.


Asunto(s)
Antineoplásicos , Fotoquimioterapia , Pez Cebra , Humanos , Fotoquimioterapia/métodos , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Óxido de Zinc/química , Óxido de Zinc/farmacología , Células HeLa , Especies Reactivas de Oxígeno/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Línea Celular Tumoral , Nanopartículas/química , Apoptosis/efectos de los fármacos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Cobre/química
4.
J Mater Chem B ; 12(25): 6257-6274, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38845545

RESUMEN

Despite enormous advancements in its management, cancer is the world's primary cause of mortality. Therefore, tremendous strides were made to produce intelligent theranostics with mitigated side effects and improved specificity and efficiency. Thus, we developed a pH-sensitive theranostic platform composed of dextran immobilized zinc oxide nanoparticles, loaded with doxorubicin and radiolabeled with the technetium-99m radionuclide (99mTc-labelled DOX-loaded ZnO@dextran). The platform measured 11.5 nm in diameter with -12 mV zeta potential, 88% DOX loading efficiency and 98.5% radiolabeling efficiency. It showed DOX release in a pH-responsive manner, releasing 93.1% cumulatively at pH 5 but just 7% at pH 7.4. It showed improved intracellular uptake, which resulted in a high growth suppressive effect against MCF-7 cancer cells as compared to the free DOX. It boasted a 4 times lower IC50 than DOX, indicating its significant anti-proliferative potential (0.14 and 0.55 µg ml-1, respectively). The in vitro biological evaluation revealed that its molecular mode of anti-proliferative action included downregulating Cdk-2, which provoked G1/S cell cycle arrest, and upregulating both the intracellular ROS level and caspase-3, which induced apoptosis and necrosis. The in vivo experiments in Ehrlich-ascites carcinoma bearing mice demonstrated that DOX-loaded ZnO@dextran showed a considerable 4-fold increase in anti-tumor efficacy compared to DOX. Moreover, by utilizing the diagnostic radionuclide (99mTc), the radiolabeled platform (99mTc-labelled DOX-loaded ZnO@dextran) was in vivo monitored in tumor-bearing mice, revealing high tumor accumulation (14% ID g-1 at 1 h p.i.) and reduced uptake in non-target organs with a 17.5 T/NT ratio at 1 h p.i. Hence, 99mTc-labelled DOX-loaded ZnO@dextran could be recommended as a rectified tumor-targeted theranostic platform.


Asunto(s)
Apoptosis , Puntos de Control del Ciclo Celular , Proliferación Celular , Doxorrubicina , Nanomedicina Teranóstica , Óxido de Zinc , Doxorrubicina/farmacología , Doxorrubicina/química , Óxido de Zinc/química , Óxido de Zinc/farmacología , Humanos , Animales , Apoptosis/efectos de los fármacos , Ratones , Concentración de Iones de Hidrógeno , Proliferación Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Células MCF-7 , Nanopartículas/química , Distribución Tisular , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Dextranos/química , Portadores de Fármacos/química , Tecnecio/química , Tamaño de la Partícula
5.
BMC Oral Health ; 24(1): 715, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907185

RESUMEN

BACKGROUND: Dental pathogens play a crucial role in oral health issues, including tooth decay, gum disease, and oral infections, and recent research suggests a link between these pathogens and oral cancer initiation and progression. Innovative therapeutic approaches are needed due to antibiotic resistance concerns and treatment limitations. METHODS: We synthesized and analyzed piperine-coated zinc oxide nanoparticles (ZnO-PIP NPs) using UV spectroscopy, SEM, XRD, FTIR, and EDAX. Antioxidant and antimicrobial effectiveness were evaluated through DPPH, ABTS, and MIC assays, while the anticancer properties were assessed on KB oral squamous carcinoma cells. RESULTS: ZnO-PIP NPs exhibited significant antioxidant activity and a MIC of 50 µg/mL against dental pathogens, indicating strong antimicrobial properties. Interaction analysis revealed high binding affinity with dental pathogens. ZnO-PIP NPs showed dose-dependent anticancer activity on KB cells, upregulating apoptotic genes BCL2, BAX, and P53. CONCLUSIONS: This approach offers a multifaceted solution to combatting both oral infections and cancer, showcasing their potential for significant advancement in oral healthcare. It is essential to acknowledge potential limitations and challenges associated with the use of ZnO NPs in clinical applications. These may include concerns regarding nanoparticle toxicity, biocompatibility, and long-term safety. Further research and rigorous testing are warranted to address these issues and ensure the safe and effective translation of ZnO-PIP NPs into clinical practice.


Asunto(s)
Alcaloides , Apoptosis , Benzodioxoles , Biopelículas , Neoplasias de la Boca , Piperidinas , Alcamidas Poliinsaturadas , Proteínas Proto-Oncogénicas c-bcl-2 , Proteína p53 Supresora de Tumor , Óxido de Zinc , Proteína X Asociada a bcl-2 , Óxido de Zinc/farmacología , Humanos , Piperidinas/farmacología , Apoptosis/efectos de los fármacos , Alcaloides/farmacología , Benzodioxoles/farmacología , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/efectos de los fármacos , Biopelículas/efectos de los fármacos , Alcamidas Poliinsaturadas/farmacología , Nanopartículas , Antioxidantes/farmacología , Pruebas de Sensibilidad Microbiana , Nanopartículas del Metal/uso terapéutico , Antineoplásicos/farmacología , Microscopía Electrónica de Rastreo , Difracción de Rayos X , Línea Celular Tumoral , Células KB
6.
Sci Rep ; 14(1): 13459, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38862646

RESUMEN

Although, different plant species were utilized for the fabrication of polymorphic, hexagonal, spherical, and nanoflower ZnO NPs with various diameters, few studies succeeded in synthesizing small diameter ZnO nanorods from plant extract at ambient temperature. This work sought to pioneer the ZnO NPs fabrication from the aqueous extract of a Mediterranean salt marsh plant species Limoniastrum monopetalum (L.) Boiss. and assess the role of temperature in the fabrication process. Various techniques have been used to evaluate the quality and physicochemical characteristics of ZnO NPs. Ultraviolet-visible spectroscopy (UV-VIS) was used as the primary test for formation confirmation. TEM analysis confirmed the formation of two different shapes of ZnO NPs, nano-rods and near hexagonal NPs at varying reaction temperatures. The nano-rods were about 25.3 and 297.9 nm in diameter and in length, respectively while hexagonal NPs were about 29.3 nm. The UV-VIS absorption spectra of the two forms of ZnO NPs produced were 370 and 365 nm for nano-rods and hexagonal NPs, respectively. FT-IR analysis showed Zn-O stretching at 642 cm-1 and XRD confirmed the crystalline structure of the produced ZnO NPs. Thermogravimetric analysis; TGA was also used to confirm the thermal stability of ZnO NPs. The anti-tumor activities of the two prepared ZnO NPs forms were investigated by the MTT assay, which revealed an effective dose-dependent cytotoxic effect on A-431 cell lines. Both forms displayed considerable antioxidant potential, particularly the rod-shaped ZnO NPs, with an IC50 of 148.43 µg mL-1. The rod-shaped ZnO NPs were superior candidates for destroying skin cancer, with IC50 of 93.88 ± 1 µg mL-1 ZnO NPs. Thus, rod-shaped ZnO NPs are promising, highly biocompatible candidate for biological and biomedical applications. Furthermore, both shapes of phyto-synthesized NPs demonstrated effective antimicrobial activity against various pathogens. The outcomes highlight the potential of phyto-synthesized ZnO NPs as an eco-friendly alternative for water and wastewater disinfection.


Asunto(s)
Nanopartículas del Metal , Extractos Vegetales , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Nanopartículas del Metal/química , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Tecnología Química Verde/métodos , Línea Celular Tumoral , Espectroscopía Infrarroja por Transformada de Fourier
7.
Sci Rep ; 14(1): 13470, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866790

RESUMEN

The growing interest in using plant extracts for the biogenic synthesis of zinc oxide nanoparticles (ZnO NPs) stems from their facile, eco-friendly, and biologically safe approach instead of chemical routes. For the first time, ZnO NPs were successfully biosynthesized using Rhus coriaria fruit aqueous extract as a reducing and capping agent. Characterization revealed that the biosynthesized ZnO NPs possessed a maximum absorbance of approximately 359 nm and closely resembled the hexagonal ZnO wurtzite crystalline structure, with an average crystalline size of 16.69 nm. The transmission electron microscope (TEM) showed the presence of spherical and hexagonal morphologies, with an average grain size of 20.51 ± 3.90 nm. Moreover, the elemental composition of the synthesized ZnO NPs was assessed via energy-dispersive X-ray spectrometry (EDX), and the presence of phytocompounds on their surface was subsequently verified through FT-IR analysis. The ζ-potential of ZnO NPs was recorded at - 19.9 ± 0.1663 mV. Regarding anti-cancer properties, ZnO NPs were found to possess potent anti-tumor effects on MCF-7 and MDA-MB-231 breast cancer cells. Their efficacy was dose-dependent, with IC50 values ranging from 35.04-44.86 µg/mL for MCF-7 and 55.54-63.71 µg/mL for MDA-MB-231 cells. Mechanistic studies in MDA-MB-231 cells revealed apoptosis induction, validated by DAPI staining, confocal microscopy, and Annexin V/PI staining, showing apoptosis by 12.59% and 81.57% at ½ IC50 and IC50 values, respectively. Additionally, ZnO NPs were observed to provoke S-phase arrest and inhibit colony-forming and metastatic potential by modulating apoptosis and metastasis-related genes. This study unravels new insights into how ZnO NPs provoke cancer cell death and inhibit metastasis, revealing new prospects in cancer nanotechnology.


Asunto(s)
Tecnología Química Verde , Nanopartículas del Metal , Extractos Vegetales , Rhus , Neoplasias de la Mama Triple Negativas , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Rhus/química , Tecnología Química Verde/métodos , Nanopartículas del Metal/química , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Femenino , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Células MCF-7 , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
8.
ACS Appl Bio Mater ; 7(6): 3731-3745, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38842103

RESUMEN

Photosensitizing agents have received increased attention from the medical community, owing to their higher photothermal efficiency, induction of hyperthermia, and sustained delivery of bioactive molecules to their targets. Micro/nanorobots can be used as ideal photosensitizing agents by utilizing various physical stimuli for the targeted killing of pathogens (e.g., bacteria) and cancer cells. Herein, we report sunflower-pollen-inspired spiky zinc oxide (s-ZnO)-based nanorobots that effectively kill bacteria and cancer cells under near-infrared (NIR) light irradiation. The as-fabricated s-ZnO was modified with a catechol-containing photothermal agent, polydopamine (PDA), to improve its NIR-responsive properties, followed by the addition of antimicrobial (e.g., tetracycline/TCN) and anticancer (e.g., doxorubicin/DOX) drugs. The fabricated s-ZnO/PDA@Drug nanobots exhibited unique locomotory behavior with an average speed ranging from 13 to 14 µm/s under 2.0 W/cm2 NIR light irradiation. Moreover, the s-ZnO/PDA@TCN nanobots exhibited superior antibacterial activity against E. coli and S. epidermidis under NIR irradiation. The s-ZnO/PDA@DOX nanobots also displayed sufficient reactive oxygen species (ROS) amplification in B16F10 melanoma cells and induced apoptosis under NIR light, indicating their therapeutic efficacy. We hope the sunflower pollen-inspired s-ZnO nanorobots have tremendous potential in biomedical engineering from the phototherapy perspective, with the hope to reduce pathogen infections.


Asunto(s)
Antibacterianos , Antineoplásicos , Materiales Biocompatibles , Ensayos de Selección de Medicamentos Antitumorales , Helianthus , Tamaño de la Partícula , Fármacos Fotosensibilizantes , Óxido de Zinc , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Helianthus/química , Antineoplásicos/farmacología , Antineoplásicos/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Óxido de Zinc/química , Óxido de Zinc/farmacología , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Polen/química , Escherichia coli/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral , Indoles/química , Indoles/farmacología , Animales , Ratones , Doxorrubicina/farmacología , Doxorrubicina/química , Rayos Infrarrojos
9.
Environ Sci Technol ; 58(23): 10262-10274, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38809112

RESUMEN

Zinc oxide nanoparticles (ZnO NPs) expedite the conversion of organic phosphorus (OP) into PO4-P (Pi), facilitating phosphorus (P) absorption by algae. Our study explored the mechanisms of converting OP (2-aminoethylphosphonic acid (AEP) and ß-glycerol phosphate (ß-GP)) into Pi in Chlorella pyrenoidosa under P deficiency with sunscreen and ZnO NPs. Cell density followed the order of K2HPO4 > ß-GP+ZnO > ß-GP > AEP+ZnO > AEP > P-free. ZnO NPs promoted the conversion of ß-GP, containing C-O-P bonds (0.028-0.041 mg/L), into Pi more efficiently than AEP, which possesses C-P bonds (0.022-0.037 mg/L). Transcriptomics revealed Pi transport/metabolism (phoB (3.99-12.01 fold), phoR (2.20-5.50 fold), ppa (4.49-10.40 fold), and ppk (2.50-5.40 fold)) and phospholipid metabolism (SQD1 (1.85-2.79 fold), SQD2 (2.60-6.53 fold), MGD (2.13-3.21 fold), and DGD (4.08-7.56 fold)) were up-regulated compared to K2HPO4. 31P nuclear magnetic resonance spectroscopy identified intracellular P as polyphosphate, orthophosphate, and pyrophosphate. Synchrotron radiation-based X-ray near-edge structure spectroscopy indicated that K2HPO4 and Zn3(PO4)2 in ß-GP+ZnO were increased by 8.09% and 7.28% compared to AEP+ZnO, suggesting superior P storage in ß-GP+ZnO. Overall, ZnO NPs improved photoinduced electron-hole pair separation and charge separation efficiency and amplified the ·OH and ·O2- levels, promoting OP photoconversion into Pi and algae growth.


Asunto(s)
Chlorella , Nanopartículas , Fósforo , Protectores Solares , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Chlorella/metabolismo , Nanopartículas/química
10.
Int J Biol Macromol ; 271(Pt 1): 132335, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38768923

RESUMEN

Development of renewable and biodegradable plastics with good properties, such as the gas barrier, UV-shielding, solvent resistance, and antibacterial activity, remains a challenge. Herein, cellulose/ZnO based bioplastics were fabricated by dissolving cellulose carbamate in an aqueous solution of NaOH/Zn(OH)42-, followed by coagulation in aqueous Na2SO4 solution, and subsequent hot-pressing. The carbamate groups detached from cellulose, and ZnO which transformed from cosolvent to nanofiller was uniformly immobilized in the cellulose matrix during the dissolution/regeneration process. The appropriate addition of ZnO (below 10.67 wt%) not only improved the mechanical properties but also enhanced the water and oxygen barrier properties of the material. Additionally, our cellulose/ZnO based bioplastic demonstrated excellent UV-blocking capabilities, increased water contact angle, and enhanced antibacterial activity against S. aureus and E. coli, deriving from the incorporation of ZnO nanoparticles. Furthermore, the material exhibited resistance to organic solvents such as acetone, THF, and toluene. Indeed, the herein developed cellulose/ZnO based bioplastic presents a promising candidate to replace petrochemical plastics in various applications, such as plastic toys, anti-UV guardrails, window shades, and oil storage containers, offering a combination of favorable mechanical, gas barrier, UV-blocking, antibacterial, and solvent-resistant properties.


Asunto(s)
Antibacterianos , Celulosa , Escherichia coli , Staphylococcus aureus , Rayos Ultravioleta , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Celulosa/química , Celulosa/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Plásticos Biodegradables/química , Plásticos Biodegradables/farmacología , Gases/química , Solventes/química
11.
ACS Appl Mater Interfaces ; 16(19): 24410-24420, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709954

RESUMEN

Sonophotodynamic antimicrobial therapy (SPDAT) is recognized as a highly efficient biomedical treatment option, known for its versatility and remarkable healing outcomes. Nevertheless, there is a scarcity of sonophotosensitizers that demonstrate both low cytotoxicity and exceptional antibacterial effectiveness in clinical applications. In this paper, a novel ZnO nanowires (NWs)@TiO2-xNy core-sheath composite was developed, which integrates the piezoelectric effect and heterojunction to build dual built-in electric fields. Remarkably, it showed superb antibacterial effectiveness (achieving 95% within 60 min against S. aureus and ∼100% within 40 min against E. coli, respectively) when exposed to visible light and ultrasound. Due to the continuous interference caused by light and ultrasound, the material's electrostatic equilibrium gets disrupted. The modification in electrical properties facilitates the composite's ability to attract bacterial cells through electrostatic forces. Moreover, Zn-O-Ti and Zn-N-Ti bonds formed at the interface of ZnO NWs@TiO2-xNy, further enhancing the dual internal electric fields to accelerate the excited carrier separation to generate more reactive oxygen species (ROS), and thereby boosting the antimicrobial performance. In addition, the TiO2 layer limited Zn2+ dissolution into solution, leading to good biocompatibility and low cytotoxicity. Lastly, we suggest a mechanistic model to offer practical direction for the future development of antibacterial agents that are both low in toxicity and high in efficacy. In comparison to the traditional photodynamic therapy systems, ZnO NWs@TiO2-xNy composites exhibit super piezo-photocatalytic antibacterial activity with low toxicity, which shows great potential for clinical application as an antibacterial nanomaterial.


Asunto(s)
Antibacterianos , Escherichia coli , Nanocables , Staphylococcus aureus , Titanio , Óxido de Zinc , Titanio/química , Titanio/farmacología , Titanio/efectos de la radiación , Óxido de Zinc/química , Óxido de Zinc/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Nanocables/química , Catálisis , Especies Reactivas de Oxígeno/metabolismo , Pruebas de Sensibilidad Microbiana , Humanos , Luz , Ratones , Animales
12.
Sci Rep ; 14(1): 10406, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710736

RESUMEN

Active pharmaceutical ingredients have emerged as an environmentally undesirable element because of their widespread exploitation and consequent pollution, which has deleterious effects on living things. In the pursuit of sustainable environmental remediation, biomedical applications, and energy production, there has been a significant focus on two-dimensional materials (2D materials) owing to their unique electrical, optical, and structural properties. Herein, we have synthesized 2D zinc oxide nanosheets (ZnO NSs) using a facile and practicable hydrothermal method and characterized them thoroughly using spectroscopic and microscopic techniques. The 2D nanosheets are used as an efficient photocatalyst for antibiotic (herein, end-user ciprofloxacin (CIP) was used as a model antibiotic) degradation under sunlight. It is observed that ZnO NSs photodegrade ~ 90% of CIP within two hours of sunlight illumination. The molecular mechanism of CIP degradation is proposed based on ex-situ IR analysis. Moreover, the 2D ZNO NSs are used as an antimicrobial agent and exhibit antibacterial qualities against a range of bacterial species, including Escherichia coli, Staphylococcus aureus, and MIC of the bacteria are found to be 5 µg/l and 10 µg/l, respectively. Despite having the biocompatible nature of ZnO, as-synthesized nanosheets have also shown cytotoxicity against two types of cancer cells, i.e. A549 and A375. Thus, ZnO nanosheets showed a nontoxic nature, which can be exploited as promising alternatives in different biomedical applications.


Asunto(s)
Antibacterianos , Antineoplásicos , Nanoestructuras , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Catálisis , Antineoplásicos/farmacología , Antineoplásicos/química , Nanoestructuras/química , Escherichia coli/efectos de los fármacos , Ciprofloxacina/farmacología , Ciprofloxacina/química , Staphylococcus aureus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Línea Celular Tumoral , Procesos Fotoquímicos , Fotólisis
13.
Cell Biochem Funct ; 42(4): e4062, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38807490

RESUMEN

Since most solid tumors have a low pH value, a pH-responsive drug delivery system may offer a broad method for tumor-targeting treatment. The present study is used to analyze the anticancer activity of carvacrol-zinc oxide quantum dots (CVC-ZnO QDs) against breast cancer cells (MDA-MB-231). CVC-ZnO QDs demonstrate pH responsive and are specifically released within the acidic pH tumor microenvironment. This property enables targeted drug delivery exclusively to cancer cells while minimizing the impact on normal cells. To the synthesized ZnO QDs, the CVC was loaded and then examined by X-ray diffraction, ultraviolet-visible, Fourier transform infrared spectrophotometer, scanning electron microscopy-energy dispersive X-ray, and transmission electron microscopy. For up to 20 h, CVC release was examined in different pH-buffered solutions. The results showed that carvacrol release was stable in an acidic pH solution. Further, cytotoxicity assay, antioxidant, and lipid peroxidation activity, reactive oxygen species, mitochondrial membrane potential, nuclear damage, and the ability of CVC-ZnO QDs to cause apoptosis were all examined. Apoptosis markers such as Bcl2, Bax, caspase-3, and caspase-9, were also studied. In conclusion, the CVC-ZnO QDs destabilized the MDA-MB-231cells under its acidic tumor microenvironment and regulated apoptosis.


Asunto(s)
Antineoplásicos , Apoptosis , Neoplasias de la Mama , Cimenos , Puntos Cuánticos , Óxido de Zinc , Humanos , Puntos Cuánticos/química , Óxido de Zinc/química , Óxido de Zinc/farmacología , Óxido de Zinc/síntesis química , Cimenos/farmacología , Cimenos/química , Concentración de Iones de Hidrógeno , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Femenino , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos
14.
J Hazard Mater ; 472: 134502, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38743980

RESUMEN

The development of intelligently released and environmentally safe nanocarriers not only aligns with the sustainable agricultural strategy but also offers a potential solution for controlling severe soil-borne bacterial diseases. Herein, the core-shell structured nanocarrier loaded with honokiol bactericide (honokiol@ZnO-ZIF-8) was synthesized via a one-pot method for the targeted control of Ralstonia solanacearum, the causative agent of tobacco bacterial wilt disease. Results indicated that honokiol@ZnO-ZIF-8 nanoparticles induced bacterial cell membrane and DNA damage through the production of excessive reactive oxygen species (ROS), thereby reducing bacterial cell viability and ultimately leading to bacterial death. Additionally, the dissociation mechanism of the nanocarriers was elucidated for the first time through thermodynamic computational simulation. The nanocarriers dissociate primarily due to H+ attacking the N atom on imidazole, causing the rupture of the Zn-N bond under acidic conditions and at room temperature. Furthermore, honokiol@ZnO-ZIF-8 exhibited potent inhibitory effects against other prominent Solanaceae pathogenic bacteria (Pseudomonas syringae pv. tabaci), demonstrating its broad-spectrum antibacterial activity. Biosafety assessment results indicated that honokiol@ZnO-ZIF-8 exhibited non-phytotoxicity towards tobacco and tomato plants, with its predominant accumulation in the roots and no translocation to aboveground tissues within a short period. This study provides potential application value for the intelligent release of green pesticides. ENVIRONMENT IMPLICATION: The indiscriminate use of agrochemicals poses a significant threat to environmental, ecological security, and sustainable development. Slow-release pesticides offer a green and durable strategy for crop disease control. In this study, we developed a non-phytotoxic and pH-responsive honokiol@ZnO-ZIF-8 nano-bactericide based on the pathogenesis of Ralstonia solanacearum. Thermodynamic simulation revealed the dissociation mechanism of ZIF-8, with different acidity controlling the dissociation rate. This provides a theoretical basis for on-demand pesticide release while reducing residue in the. Our findings provide strong evidence for effective soil-borne bacterial disease control and on-demand pesticide release.


Asunto(s)
Antibacterianos , Compuestos de Bifenilo , Lignanos , Ralstonia solanacearum , Ralstonia solanacearum/efectos de los fármacos , Lignanos/farmacología , Lignanos/química , Compuestos de Bifenilo/química , Concentración de Iones de Hidrógeno , Antibacterianos/farmacología , Antibacterianos/química , Óxido de Zinc/química , Óxido de Zinc/toxicidad , Óxido de Zinc/farmacología , Microbiología del Suelo , Nanopartículas/química , Nanopartículas/toxicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Especies Reactivas de Oxígeno/metabolismo , Compuestos Alílicos , Fenoles
15.
Pak J Pharm Sci ; 37(1): 1-8, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38741394

RESUMEN

The current study was proposed to evaluate the mortal impacts of either alone or mixed treatments of zinc oxide nanoparticles (ZnO NPs) and mureer or Senecio glaucus L. plant (SP) on spleen tissue via immunological and histological studies and to estimate the likely immunomodulatory effect of gallic acid (GA) for 30 days in rats. Rats were classified into eight groups with orally treated: Control, GA (100mg/kg), ZnO NPs (150mg/kg), SP (400mg/kg), GA+ZnO NPs (100,150mg/kg), GA+SP (100,400mg/kg), ZnONPs+SP (150,400mg/kg) and GA+ZnONPs+SP (100,150,400mg/kg). Interleukin-6 (IL-6) level was measured using an enzyme-linked immunoassay (ELISA). Also, the pro-apoptotic protein (caspase-3) expression was estimated using an immunohistochemistry assay. Our data revealed that ZnO NPs and SP triggered a significant increase in the levels of IL-6 and total lipids (TL) and the activity of lactate dehydrogenase (LDH), (p<0.001). Furthermore, they overexpressed caspase-3 and caused lymphoid depletion. They revealed that the immunotoxic outcome of mixed treatment was more than the outcome of the alone treatment. However, GA restored the spleen damage from these adverse results. Finally, this study indicated that ZnO NPs and SP might be immunotoxic and splenotoxic agents; however, GA may be displayed as an anti-inflammatory and splenic-protective agent.


Asunto(s)
Antiinflamatorios , Caspasa 3 , Ácido Gálico , Interleucina-6 , Bazo , Óxido de Zinc , Animales , Óxido de Zinc/farmacología , Óxido de Zinc/toxicidad , Ácido Gálico/farmacología , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/metabolismo , Antiinflamatorios/farmacología , Interleucina-6/metabolismo , Ratas , Caspasa 3/metabolismo , Masculino , Nanopartículas , Nanopartículas del Metal , Ratas Wistar , Extractos Vegetales/farmacología , Inmunohistoquímica
16.
Nanotechnology ; 35(33)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38746972

RESUMEN

Traditional therapies often struggle with specificity and resistance in case of cancer treatments. It is therefore important to investigate new approaches for cancer treatment based on nanotechnology. Zinc oxide nanoparticles (ZnONPs) are known to exhibit anti-cancer properties by inducing oxidative stress, apoptosis, and cell cycle arrest. Methotrexate (MTX) a known anti-folate shows specificity to folate receptors and interrupts healthy functioning of cells. This study proposes the use of previously characterized biocompatible Methotrexate loaded Zinc oxide nanoparticles (MTX-ZnONPs) as a dual action therapeutic strategy against breast cancer cell lines, MCF-7 (MTX-sensitive) and MDA-MB-231 (MTX-resistant). To elucidate the cytotoxicity mechanism of MTX-ZnONPs an in depthIn vitrostudy was carried out.In vitroassays, including cell cycle analysis, apoptosis assay, and western blot analysis to study the protein expression were performed. Results of these assays, further supported the anti-cancer activity of MTX-ZnONPs showing apoptotic and necrotic activity in MCF-7 and MDA-MB-231 cell line respectively.In vivoacute oral toxicity study to identify the LD50in animals revealed no signs of toxicity and mortality up to 550 mg kg-1body weight of animal, significantly higher LD50values than anticipated therapeutic levels and safety of the synthesized nanosystem. The study concludes that MTX-ZnONPs exhibit anti-cancer potential against breast cancer cells offering a promising strategy for overcoming resistance.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Metotrexato , Óxido de Zinc , Metotrexato/farmacología , Metotrexato/química , Metotrexato/administración & dosificación , Humanos , Óxido de Zinc/química , Óxido de Zinc/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Células MCF-7 , Apoptosis/efectos de los fármacos , Animales , Línea Celular Tumoral , Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos
17.
Environ Pollut ; 350: 123952, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38641035

RESUMEN

The adversities of cadmium (Cd) contamination are quite distinguished among other heavy metals (HMs), and so is the efficacy of zinc (Zn) nutrition in mitigating Cd toxicity. Rice (Oryza sativa) crop, known for its ability to absorb HMs, inadvertently facilitates the bioaccumulation of Cd, posing a significant risk to both the plant itself and to humans consuming its edible parts, and damaging the environment as well. The use of nanoparticles, such as nano-zinc oxide (nZnO), to improve the nutritional quality of crops and combat the harmful effects of HMs, have gained substantial attention among scientists and farmers. While previous studies have explored the individual effects of nZnO or Serendipita indica (referred to as S.i) on Cd toxicity, the synergistic action of these two agents has not been thoroughly investigated. Therefore, the gift of nature, i.e., S. indica, was incorporated alongside nZnO (50 mg L-1) against Cd stress (15 µM L-1) and their alliance manifested as phenotypic level modifications in two rice genotypes (Heizhan43; Hz43 and Yinni801; Yi801). Antioxidant activities were enhanced, specifically peroxidase (61.5 and 122.5% in Yi801 and Hz43 roots, respectively), leading to a significant decrease in oxidative burst; moreover, Cd translocation was reduced (85% for Yi801 and 65.5% for Hz43 compared to Cd alone treatment). Microstructural study showed a decrease in number of vacuoles and starch granules with ameliorative treatments. Overall, plants treated with nZnO displayed gene expression pattern (particularly of ZIP genes), different from the ones with alone or combined S.i and Cd. Inferentially, the integration of nZnO and S.i holds great promise as an effective strategy for alleviating Cd toxicity in rice plants. By immobilizing Cd ions in the soil and promoting their detoxification, this novel approach contributes to environmental restoration and ensures food safety worldwide.


Asunto(s)
Antioxidantes , Cadmio , Oryza , Contaminantes del Suelo , Oryza/genética , Oryza/metabolismo , Cadmio/toxicidad , Antioxidantes/metabolismo , Contaminantes del Suelo/toxicidad , Zinc/toxicidad , Óxido de Zinc/toxicidad , Óxido de Zinc/farmacología , Nanopartículas del Metal/toxicidad
18.
Nanotheranostics ; 8(3): 312-329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577319

RESUMEN

Cancer chemotherapy remains a serious challenge, and new approaches to therapy are urgently needed to build novel treatment regimens. The methanol extract of the stem of Tinospora Cordifolia was used to synthesize biogenic zinc oxide nanoparticles (ZnO-NPs) that display anticancer activities against colorectal cancer. Biogenic ZnO-NPs synthesized from methanol extract of Tinospora Cordifolia stem (ZnO-NPs TM) were tested against HCT-116 cell lines to assess anticancer activity. UV-Vis, FTIR, XRD, SEM, and TEM analysis characterized the biogenic ZnO-NPs. To see how well biogenic ZnO-NPs fight cancer, cytotoxicity, AO/EtBr staining, Annexin V/PI staining, mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) analysis, and caspase cascade activity analysis were performed to assess the anticancer efficacy of biogenic ZnO-NPs. The IC50 values of biogenic ZnO-NPs treated cells (HCT-116 and Caco-2) were 31.419 ± 0.682µg/ml and 36.675 ± 0.916µg/ml, respectively. qRT-PCR analysis showed that cells treated with biogenic ZnO-NPs Bax and P53 mRNA levels increased significantly (p ≤ 0.001). It showed to have impaired MMP and increased ROS generation. In a corollary, our in vivo study showed that biogenic ZnO-NPs have an anti-tumour effect. Biogenic ZnO-NPs TM showed both in vitro and in vivo anticancer effects that could be employed as anticancer drugs.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas , Tinospora , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Especies Reactivas de Oxígeno/metabolismo , Tinospora/metabolismo , Células CACO-2 , Metanol/farmacología , Apoptosis , Estrés Oxidativo , Neoplasias Colorrectales/tratamiento farmacológico
19.
Nanotechnology ; 35(30)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38631326

RESUMEN

In the current investigation, zinc oxide (ZnO) nanoparticles and Fe-doped ZnO nanoparticles were sustainably synthesized utilizing an extract derived from theRumex dentatusplant through a green synthesis approach. The Scanning electron microscope (SEM), X-ray diffraction (XRD), Energy-dispersive x-ray spectroscopy (EDX), Ultra-violet visible spectroscopy (UV-vis) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and Thermogravimetric analysis (TGA) techniques were used to examine the compositional, morphological, optical, and thermal properties of both samples. The doping of iron into ZnO NPs has significantly influenced their properties. The analysis firmly established that both ZnO NPs and Fe-doped ZnO NPs have hexagonal wurtzite structures and spherical shapes by XRD and SEM. The EDX analysis suggests that iron atoms have been successfully integrated into the ZnO lattice. The change in color observed during the reaction indicated the formation of nanoparticles. The UV-vis peaks at 364 nm and 314 nm confirmed the presence of ZnO NPs and Fe-doped ZnO NPs, respectively. The band gap of ZnO NPs by Fe dopant displayed a narrowing effect. This indicates that adding iron ions to ZnO NPs offers a control band gap. The thermal study TGA revealed that Fe-doped ZnO NPs remain stable when heated up to 600 °C. The antibacterial efficacy of ZnO NPs and Fe-doped ZnO NPs was evaluated against several bacterial strains. The evaluation is based on the zone of inhibition (ZOI). Both samples exhibited excellent antibacterial properties as compared to conventional pharmaceutical agents. These results suggest that synthesizing nanoparticles through plant-based methods is a promising approach to creating versatile and environmentally friendly biomedical products.


Asunto(s)
Antibacterianos , Hierro , Nanopartículas del Metal , Extractos Vegetales , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hierro/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Difracción de Rayos X , Staphylococcus aureus/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier
20.
J Trace Elem Med Biol ; 84: 127437, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38564977

RESUMEN

INTRODUCTION: Bimetallic nanoparticles, specifically Zinc oxide (ZnO) and Silver (Ag), continue to much outperform other nanoparticles investigated for a variety of biological uses in the field of cancer therapy. This study introduces biosynthesis of bimetallic silver/zinc oxide nanocomposites (Ag@ZnO NCs) using the Crocus sativus extract and evaluates their anti-cancer properties against cervical cancer. METHODS: The process of generating bimetallic nanoparticles (NPs), namely Ag@ZnO NCs, through the utilization of Crocus sativus extract proved to be uncomplicated and eco-friendly. Various methods, such as UV-vis, DLS, FTIR, EDX, and SEM analyses, were utilized to characterize the generated Ag@ZnO NCs. The MTT assay was employed to assess the cytotoxic properties of biosynthesized bimetallic Ag@ZnO NCs against the HeLa cervical cancer cell line. Moreover, the impact of Ag@ZnO NCs on HeLa cells was assessed by examining cell survival, ROS production, MMP levels, and induced apoptosis. Through western blot analysis, the expression levels of the PI3K, AKT, mTOR, Cyclin D, and CDK proteins seemed to be ascertained. Using flow cytometry, the cancer cells' progression through necrosis and apoptosis, in addition to the cell cycle analysis, were investigated. RESULTS: Bimetallic Ag@ZnO NCs that were biosynthesized showed a high degree of stability, as demonstrated by the physicochemical assessments. The median size of the particles in these NCs was approximately 80-90 nm, and their zeta potential was -14.70 mV. AgNPs and ZnO were found, according to EDX data. Further, Ag@ZnO NCs hold promise as a potential treatment for cervical cancer. After 24 hours of treatment, a dosage of 5 µg/mL or higher resulted in a maximum inhibitory effect of 58 ± 2.9. The concurrent application of Ag/ZnO NPs to HeLa cells resulted in elevated apoptotic signals and a significant generation of reactive oxygen species (ROS). As a result, the bimettalic Ag@ZnO NCs treatment has been recognized as a chemotherapeutic intervention by inhibiting the production of PI3K, AKT, and mTOR-mediated regulation of propagation and cell cycle-regulating proteins. CONCLUSIONS: The research yielded important insights into the cytotoxic etiology of biosynthesized bimetallic Ag@ZnO NCs against HeLa cells. The biosynthesized bimetallic Ag@ZnO NCs have a significant antitumor potential, which appears to be associated with the development of oxidative stress, which inhibits the development of the cell cycle and the proliferation of cells. Therefore, in the future, biosynthesized bimetallic Ag@ZnO NCs may be used as a powerful anticancer drug to treat cervical cancer.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Nanocompuestos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Plata , Serina-Treonina Quinasas TOR , Neoplasias del Cuello Uterino , Óxido de Zinc , Humanos , Óxido de Zinc/química , Óxido de Zinc/farmacología , Plata/química , Plata/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Femenino , Células HeLa , Fosfatidilinositol 3-Quinasas/metabolismo , Nanocompuestos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Nanopartículas del Metal/química , Ensayos de Selección de Medicamentos Antitumorales , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA