Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.637
Filtrar
Más filtros











Intervalo de año de publicación
1.
Parasites Hosts Dis ; 62(2): 226-237, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38835263

RESUMEN

Ticks, blood-sucking ectoparasites, spread diseases to humans and animals. Haemaphysalis longicornis is a significant vector for tick-borne diseases in medical and veterinary contexts. Identifying protective antigens in H. longicornis for an anti-tick vaccine is a key tick control strategy. Enolase, a multifunctional protein, significantly converts D-2-phosphoglycerate and phosphoenolpyruvate in glycolysis and gluconeogenesis in cell cytoplasm. This study cloned a complete open reading frame (ORF) of enolase from the H. longicornis tick and characterized its transcriptional and silencing effect. We amplified the full-length cDNA of the enolase gene using rapid amplification of cDNA ends. The complete cDNA, with an ORF of 1,297 nucleotides, encoded a 432-amino acid polypeptide. Enolase of the Jeju strain H. longicornis exhibited the highest sequence similarity with H. flava (98%), followed by Dermacentor silvarum (82%). The enolase motifs identified included N-terminal and C-terminal regions, magnesium binding sites, and several phosphorylation sites. Reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that enolase mRNA transcripts were expressed across all developmental stages of ticks and organs such as salivary gland and midgut. RT-PCR showed higher transcript levels in syn-ganglia, suggesting that synganglion nerves influence enolase,s role in tick salivary glands. We injected enolase double-stranded RNA into adult unfed female ticks, after which they were subsequently fed with normal unfed males until they spontaneously dropped off. RNA interference significantly (P<0.05) reduced feeding and reproduction, along with abnormalities in eggs (no embryos) and hatching. These findings suggest enolase is a promising target for future tick control strategies.


Asunto(s)
Secuencia de Aminoácidos , Clonación Molecular , Ixodidae , Fosfopiruvato Hidratasa , Animales , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Ixodidae/genética , Ixodidae/enzimología , Femenino , Datos de Secuencia Molecular , Estadios del Ciclo de Vida/genética , Silenciador del Gen , Masculino , Filogenia , Secuencia de Bases , ADN Complementario/genética , Haemaphysalis longicornis
2.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612464

RESUMEN

Immunodominant alloantigens in pig sperm membranes include 15 known gene products and a previously undiscovered Mr 20,000 sperm membrane-specific protein (SMA20). Here we characterize SMA20 and identify it as the unannotated pig ortholog of PMIS2. A composite SMA20 cDNA encoded a 126 amino acid polypeptide comprising two predicted transmembrane segments and an N-terminal alanine- and proline (AP)-rich region with no apparent signal peptide. The Northern blots showed that the composite SMA20 cDNA was derived from a 1.1 kb testis-specific transcript. A BLASTp search retrieved no SMA20 match from the pig genome, but it did retrieve a 99% match to the Pmis2 gene product in warthog. Sequence identity to predicted PMIS2 orthologs from other placental mammals ranged from no more than 80% overall in Cetartiodactyla to less than 60% in Primates, with the AP-rich region showing the highest divergence, including, in the extreme, its absence in most rodents, including the mouse. SMA20 immunoreactivity localized to the acrosome/apical head of methanol-fixed boar spermatozoa but not live, motile cells. Ultrastructurally, the SMA20 AP-rich domain immunolocalized to the inner leaflet of the plasma membrane, the outer acrosomal membrane, and the acrosomal contents of ejaculated spermatozoa. Gene name search failed to retrieve annotated Pmis2 from most mammalian genomes. Nevertheless, individual pairwise interrogation of loci spanning Atp4a-Haus5 identified Pmis2 in all placental mammals, but not in marsupials or monotremes. We conclude that the gene encoding sperm-specific SMA20/PMIS2 arose de novo in Eutheria after divergence from Metatheria, whereupon rapid molecular evolution likely drove the acquisition of a species-divergent function unique to fertilization in placental mammals.


Asunto(s)
Placenta , Semen , Masculino , Femenino , Embarazo , Porcinos , Animales , Ratones , ADN Complementario , Espermatozoides , Euterios , Alanina , Isoantígenos/genética , Fertilización/genética
3.
Zhongguo Zhong Yao Za Zhi ; 49(3): 661-670, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621870

RESUMEN

Scorpions, a group of oldest animals with wide distribution in the world, have a long history of medicinal use. Scorpio, the dried body of Buthus martensii, is a rare animal medicine mainly used for the treatment of liver diseases, spasm, and convulsions in children in China. The venom has been considered as the active substance of scorpions. However, little is known about the small molecules in the venom of scorpions. According to the articles published in recent years, scorpions contain amino acids, fatty acids, steroids, and alkaloids, which endow scorpions with antimicrobial, anticoagulant, metabolism-regulating, and antitumor activities. This paper summarizes the small molecule chemical components and pharmacological activities of scorpions, with a view to providing valuable information for the discovery of new active molecules and the clinical use of scorpions.


Asunto(s)
Animales Ponzoñosos , Antiinfecciosos , Venenos de Escorpión , Animales , Niño , Humanos , Péptidos/química , Escorpiones/química , Escorpiones/metabolismo , ADN Complementario , Venenos de Escorpión/farmacología
4.
Arch Virol ; 169(3): 61, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441697

RESUMEN

The coat protein (CP) of the cucumber mosaic virus (CMV) yellow strain [CMV(Y)], but not the CMV B2 strain [CMV(B2)], serves as an avirulence determinant against the NB-LRR class RCY1 of Arabidopsis thaliana. To investigate the avirulence function, a series of binary vectors were constructed by partially exchanging the CP coding sequence between CMV(Y) and CMV(B2) or introducing nucleotide substitutions. These vectors were transiently expressed in Nicotiana benthamiana leaves transformed with modified RCY1 cDNA. Analysis of hypersensitive resistance-cell death (HCD), CP accumulation, and defense gene expression at leaf sites infiltrated with Agrobacterium indicated that a single amino acid at position 31 of the CP seems to determine the avirulence function.


Asunto(s)
Arabidopsis , Cucumovirus , Infecciones por Citomegalovirus , Humanos , Aminoácidos , Arabidopsis/genética , Cucumovirus/genética , ADN Complementario
5.
Zhonghua Yi Xue Za Zhi ; 104(10): 758-765, 2024 Mar 12.
Artículo en Chino | MEDLINE | ID: mdl-38462356

RESUMEN

Objective: To investigate the effects of lncRNA SNHG11 on proliferation, migration, invasion and apoptosis of colorectal cancer cancer cells and possible mechanisms. Methods: qRT-PCR was performed to detect the expression level of lncRNA SNHG11 in colorectal cancer tissues and its related cell lines. The correlation between SNHG11 expression and clinical prognosis of patients was assessed by bioinformatics techniques. Cultured CRC cell lines were transfected with shCtrl (shCtrl group), shSNHG11#1 (shSNHG11#1 group), shSNHG11#2 (shSNHG11#2 group), Control cDNA (Control cDNA group), and SNHG11 cDNA (SNHG11 cDNA), respectively. Thiazolyl blue (MTT), clone formation assay, Transwell assay, cell scratch assay, and flow cytometry were used to detect the proliferation, migration, invasion, and apoptosis of CRC cells in each group. Western protein blotting was used to detect the expression of relevant proteins in each group, and the effect of lncRNA SNHG11 knockdown on the growth of tumour cells in vivo was analysed by nude mice tumouring assay. Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signalling pathway inhibitor LY294002 was used for rescue experiments. Results: The expression of lncRNA SNHG11 was significantly higher in colorectal cancer cells and tissues than in normal tissues (P<0.05). Survival analysis showed that the expression level of SNHG11 was not statistically associated with CRC survival (P>0.05). shSNHG11#2 group compared with shCtrl group. MTT OD490/570 values decreased, the number of CRC cell clones decreased, the number of Transwell cells decreased, the area of cell scratch decreased, and the apoptosis rate increased (P<0.05). The mesenchymal markers matrix metalloproteinase (MMP9), N-cadherin and vimentin were significantly reduced, and the expression of the epithelial marker E-cadherin was upregulated. The expression of anti-apoptotic proteins Bcl-2 and Bcl-xl was decreased, and the expression of pro-apoptotic protein Bax was increased (P<0.05).In vivo experiments showed that lncRNA SNHG11 knockdown inhibited the growth of colorectal cancer cells, and the expression of Ki67 was reduced in tumours (P<0.05). LncRNA SNHG11 knockdown inhibited the expression of p-PI3K, p-Akt and p-mTOR.The PI3K/Akt/mTOR signaling pathway inhibitor LY294002 was able to restore the malignant cytological progression of colorectal cancer cells induced by the overexpression of lncRNA SNHG11. Conclusions: LncRNA SNHG11 is highly expressed in colorectal cancer. lncRNA SNHG11 can promote the malignant progression of colorectal cancer cells by regulating the PI3K/Akt/mTOR signaling pathway, and this finding provides a new theoretical basis for targeted therapy of colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , ARN Largo no Codificante , Animales , Ratones , Humanos , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasa/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , ARN Largo no Codificante/genética , Ratones Desnudos , ADN Complementario/farmacología , Línea Celular Tumoral , Proliferación Celular , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/farmacología , Neoplasias Colorrectales/genética , Mamíferos/genética , Mamíferos/metabolismo
6.
Curr Protoc ; 4(3): e938, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38436133

RESUMEN

The main challenge in the "post-GWAS" era is to determine the functional meaning of genetic variants and their contribution to disease pathogenesis. Development of suitable mouse models is critical because disease susceptibility is triggered by complex interactions between genetic, epigenetic, and environmental factors that cannot be modeled by in vitro models. Thyroglobulin (TG) is a key gene for autoimmune thyroid disease (AITD) and several single nucleotide polymorphisms (SNPs) in the TG coding region have been associated with AITD. The classical model of experimental autoimmune thyroiditis (EAT), based on immunization of genetically susceptible mouse strains with purified TG protein in adjuvant, does not allow testing the impact of TG sequence variants on the development of autoimmune thyroiditis. Here we describe a protocol for the induction of EAT by immunization of mice susceptible to thyroiditis with an adenovirus vector carrying full-length human TG cDNA (Ad-TG EAT). We also provide support protocols for evaluation of autoimmune thyroiditis including serological assessment of TG antibodies, in vitro splenocyte proliferation assay and cytokines secretion, thyroid histology, and evaluation of thyroid lymphocytic infiltration by immunostaining. This protocol for EAT induction allows manipulation of the TG cDNA to introduce variants associated with AITD, enabling the testing of the functional effects of susceptible variants and their haplotypes on the immunogenicity of TG. Furthermore, the Ad-TG EAT mouse model is a valuable model for studying the interactions of the TG variants with non-genetic factors influencing AITD development (e.g., cytokines, iodine exposure) or with variants of other susceptible genes (e.g., HLA-DRß1). © 2024 Wiley Periodicals LLC. Basic Protocol: Development of a mouse model of autoimmune thyroiditis induced by immunization with adenovirus containing full-length thyroglobulin cDNA Support Protocol 1: Splenocytes isolation Support Protocol 2: T cell stimulation and carboxyfluorescein diacetate succinimidyl ester (CFSE) based cell proliferation assay Support Protocol 3: Cytokine assays: measuring levels of interferon gamma (IFNγ) and interleukins IL-2, IL-4, and IL-10 in splenocyte supernatants Support Protocol 4: Evaluating thyroid histology and infiltration with immune cells: hematoxylin-eosin staining of mice thyroid glands Support Protocol 5: Immunohistochemistry of thyroid tissues: Immunofluorescence protocol of paraffin-embedded thyroid sections Support Protocol 6: Anti-thyroglobulin antibody measurement in mice sera by enzyme-linked immunosorbent assay (ELISA).


Asunto(s)
Infecciones por Adenoviridae , Enfermedad de Hashimoto , Tiroiditis Autoinmune , Humanos , Animales , Ratones , Tiroglobulina/genética , Adenoviridae/genética , ADN Complementario/genética , Inmunización , Tiroiditis Autoinmune/genética , Citocinas , Modelos Animales de Enfermedad
7.
Cancer Med ; 13(3): e6986, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38426619

RESUMEN

BACKGROUND: PTGS2 encodes cyclooxygenase-2 (COX-2), which catalyses the committed step in prostaglandin synthesis. Various in vivo and in vitro data suggest that COX-2 mediates the VEGF signalling pathway. In silico analysis performed in TCGA, PanCancer Atlas for head and neck cancers, demonstrated significant expression and co-expression of PTGS2 and genes that regulate VEGF signalling. This study was designed to elucidate the expression pattern of PTGS2 and genes regulating VEGF signalling in patients with locally advanced oral squamous cell carcinoma (OSCC). METHODOLOGY: Tumour and normal tissue samples were collected from patients with locally advanced OSCC. RNA was isolated from tissue samples, followed by cDNA synthesis. The cDNA was used for gene expression analysis (RT-PCR) using target-specific primers. The results obtained were compared with the in silico gene expression of the target genes in the TCGA datasets. Co-expression analysis was performed to establish an association between PTGS2 and VEGF signalling genes. RESULTS: Tumour and normal tissue samples were collected from 24 OSCC patients. Significant upregulation of PTGS2 expression was observed. Furthermore, VEGFA, KDR, CXCR1 and CXCR2 were significantly upregulated in tumour samples compared with paired normal samples, except for VEGFB, whose expression was not statistically significant. A similar expression pattern was observed in silico, except for CXCR2 which was highly expressed in the normal samples. Co-expression analysis showed a significant positive correlation between PTGS2 and VEGF signalling genes, except for VEGFB which showed a negative correlation. CONCLUSION: PTGS2 and VEGF signalling genes are upregulated in OSCC, which has a profound impact on clinical outcomes.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/patología , Ciclooxigenasa 2/genética , Factor A de Crecimiento Endotelial Vascular/genética , ADN Complementario
8.
Virology ; 593: 110010, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38364352

RESUMEN

Tomato chlorosis virus (ToCV) is an emerging pathogen that cause severe yellow leaf disorder syndrome in tomato plants. In this study, we aimed to generate a recombinant ToCV tagged with green fluorescent protein (GFP) to enable real-time monitoring of viral infection in living plants. Transformation of the full-length cDNA construct of ToCV RNA1 into Escherichia coli resulted in instability issues, which were successfully overcome by inserting a plant intron into RNA1. Subsequently, a GFP tag was engineered into a cDNA construct of ToCV RNA2. The resulting recombinant ToCV-GFP could systemically infect Nicotiana benthamiana plants, and GFP expression was observed along the major veins. Utilizing ToCV-GFP, we also showed that ToCV engages in antagonistic relationships with two different tomato-infecting viruses in mixed infections in N. benthamiana. This study demonstrates the potential of ToCV-GFP as a valuable tool for the visual tracking of infection and movement of criniviruses in living plants.


Asunto(s)
Crinivirus , Solanum lycopersicum , Animales , Crinivirus/genética , ADN Complementario/genética , Enfermedades de las Plantas , Insectos Vectores , Plantas , Solanum lycopersicum/genética
9.
Virology ; 593: 110013, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38373359

RESUMEN

Tobacco streak virus induces severe diseases on a wide range of plants and becomes an emerging threat to crop yields. However, the infectious clones of TSV remain to be developed for reverse genetics studies. Here, we obtained the full genome sequence of a TSV-CNB isolate and analyzed the phylogenetic characteristics. Subsequently, we developed the full-length infectious cDNA clones of TSV-CNB driven by 35 S promoter using yeast homologous recombination. Furthermore, the host range of TSV-CNB isolate was determined by Agrobacterium infiltration and mechanical inoculation. The results reveal that TSV-CNB can infect 10 plant species in 5 families including Glycine max, Vigna radiate, Lactuca sativa var. Ramosa, Dahlia pinnate, E. purpurea, Calendula officinalis, Helianthus annuus, Nicotiana. Benthamiana, Nicotiana tabacum and Chenopodium quinoa. Taken together, the TSV infectious clones will be a useful tool for future studies on viral pathogenesis and host-virus interactions.


Asunto(s)
Echinacea , Ilarvirus , Humanos , ADN Complementario/genética , Ilarvirus/genética , Echinacea/genética , Filogenia , Enfermedades de las Plantas , Nicotiana , Saccharomyces cerevisiae/genética , Células Clonales , Especificidad del Huésped
10.
Anal Methods ; 16(11): 1639-1648, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38414387

RESUMEN

Benefiting from our discovery that ß-cyclodextrin (ß-CD) could enhance the catalytic activity of invertase through hydrogen bonding to improve detection sensitivity, a highly sensitive and convenient biosensor for the detection of miR-21 was proposed, which is based on the simplicity of reading signals from a personal glucose meter (PGM), combined with self-assembled signal amplification probes and the performance of ß-CD as an enhancer. In the presence of miR-21, magnetic nanoparticle coupled capture DNA (MNPs-cDNA) could capture it and then connect assist DNA/H1-invertase (aDNA/H1) and self-assembled signal amplification probes (H1/H2) in turn. As a result, a "super sandwich" structure was formed. The invertase on MNPs-cDNA could catalyze the hydrolysis of sucrose to glucose and this catalytic process could be enhanced by ß-CD. The PGM signal exhibited a linear correlation with miR-21 concentration within the range of 25 pmol L-1 to 3 nmol L-1, and the detection limit was as low as 5 pmol L-1 with high specificity. Moreover, the recoveries were 103.82-124.65% and RSD was 2.59-6.43%. Furthermore, the biosensor was validated for the detection of miR-21 in serum, and the results showed that miR-21 levels in serum samples from patients with Diffuse Large B-Cell Lymphoma (DLBCL) (n = 12) were significantly higher than those from healthy controls (n = 12) (P < 0.001). Therefore, the ingenious combination of PGM-based signal reading, self-assembled signal amplification probes and ß-CD as an enhancer successfully constructed a convenient, sensitive and specific biosensing method, which is expected to be applied to clinical diagnosis.


Asunto(s)
Automonitorización de la Glucosa Sanguínea , MicroARNs , Humanos , ADN Complementario , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/química , Glucosa , ADN/genética
11.
Anal Chem ; 96(10): 4308-4313, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38418287

RESUMEN

Traditional electrochemiluminescent (ECL) bioanalysis suffers from the demand for excessive external coreactants and the damage of reaction intermediates. In this work, a poly(ethylenimine) (PEI)-coupled ECL emitter was proposed by covalently coupling tertiary amine-rich PEI to polymer dots (Pdots). The coupled PEI might act as a highly efficient coreactant to enhance the ECL emission of Pdots through intramolecular electron transfer, reducing the electron transfer distance between emitter and coreactant intermediates and avoiding the disadvantages of traditional ECL systems. Through modification of the PEI-Pdots with tDNA, a sequence partially complementary to cDNA that was complementary to the aptamer of target protein biomarker (aDNA), tDNA-PEI-Pdots were obtained. The biosensors were produced using Au/indium tin oxide (ITO) with an aDNA/cDNA hybrid, and an ECL imaging biosensor array was constructed for ultrasensitive detection of protein biomarkers. Using vascular endothelial growth factor 165 (VEGF165) as a protein model, the proposed ECL imaging method containing two simple incubations with target samples and then tDNA-PEI-Pdots showed a detectable range of 1 pg mL-1 to 100 ng mL-1 and a detection limit of 0.71 pg mL-1, as well as excellent performance such as low toxicity, high sensitivity, excellent selectivity, good accuracy, and acceptable fabrication reproducibility. The PEI-coupled Pdots provide a new avenue for the design of ECL emitters and the application of ECL imaging in disease biomarker detection.


Asunto(s)
Técnicas Biosensibles , Puntos Cuánticos , Técnicas Electroquímicas , Polietileneimina , Factor A de Crecimiento Endotelial Vascular , Mediciones Luminiscentes , ADN Complementario , Polímeros , Reproducibilidad de los Resultados , Biomarcadores , Límite de Detección
12.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38338897

RESUMEN

Virus infections cause devastative economic losses for various plant species, and early diagnosis and prevention are the most effective strategies to avoid the losses. Exploring virus genomic evolution and constructing virus infectious cDNA clones is essential to achieve a deeper understanding of the interaction between host plant and virus. Therefore, this work aims to guide people to better prevent, control, and utilize the youcai mosaic virus (YoMV). Here, the YoMV was found to infect the Solanum nigrum under natural conditions. Then, an infectious cDNA clone of YoMV was successfully constructed using triple-shuttling vector-based yeast recombination. Furthermore, we established phylogenetic trees based on the complete genomic sequences, the replicase gene, movement protein gene, and coat protein gene using the corresponding deposited sequences in NCBI. Simultaneously, the evolutionary relationship of the YoMV discovered on S. nigrum to others was determined and analyzed. Moreover, the constructed cDNA infectious clone of YoMV from S. nigrum could systematically infect the Nicotiana benthamiana and S. nigrum by agrobacterium-mediated infiltration. Our investigation supplied a reverse genetic tool for YoMV study, which will also contribute to in-depth study and profound understanding of the interaction between YoMV and host plant.


Asunto(s)
Solanum nigrum , Tobamovirus , Humanos , Virulencia , Solanum nigrum/genética , ADN Complementario/genética , Filogenia , Tobamovirus/genética , Enfermedades de las Plantas
13.
Fish Physiol Biochem ; 50(2): 575-588, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38216846

RESUMEN

To investigate the regulatory role of the cyp19a1b aromatase gene in the sexual differentiation of largemouth bass (Micropterus salmoides, LMB), we obtained the full-length cDNA sequence of cyp19a1b using rapid amplification of cDNA ends technique. Tissue expression characteristics and feedback with 17-ß-estradiol (E2) were determined using quantitative real-time PCR (qRT-PCR), while gonad development was assessed through histological section observations. The cDNA sequence of LMB cyp19a1b was found to be1950 base pairs (bp) in length, including a 5' untranslated region of 145 bp, a 3' untranslated region of 278 bp, and an open reading frame encoding a protein consisting of 1527 bp that encoded 508 amino acids. The qRT-PCR results indicated that cyp19a1b abundantly expressed in the brain, followed by the gonads, and its expression in the ovaries was significantly higher than that observed in the testes (P < 0.05). After feeding fish with E2 for 30 days, the expression of cyp19a1b in the pseudo-female gonads (XY-F) was significantly higher than that in males (XY-M) (P < 0.05), whereas expression did not differ significantly between XX-F and XY-F fish (P > 0.05). Although the expression of cyp19a1b in XY-F and XX-F fish was not significantly different after 60 days (P>0.05), both exhibited significantly higher levels than that of XY-M fish (P<0.05). Histological sections analysis showed the presence of oogonia in both XY-F and XX-F fish at 30 days, while spermatogonia were observed in XY-M fish. At 60 days, primary oocytes were abundantly observed in both XY-F and XX-F fish, while a few spermatogonia were visible in XY-M fish. At 90 days, the histological sections' results showed that a large number of oocytes were visible in XY-F and XX-F fish. Additionally, the gonads of XY-M fish contained numerous spermatocytes. These results suggest that cyp19a1b plays a pivotal role in the development of ovaries and nervous system development in LMB.


Asunto(s)
Lubina , Masculino , Femenino , Animales , Lubina/genética , Lubina/metabolismo , Aromatasa/genética , Aromatasa/metabolismo , ADN Complementario/genética , ADN Complementario/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Ovario/metabolismo
14.
Clin Cancer Res ; 30(6): 1152-1159, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38236581

RESUMEN

PURPOSE: HOXB13 is an androgen receptor (AR) coregulator specifically expressed in cells of prostatic lineage. We sought to associate circulating tumor cell (CTC) HOXB13 expression with outcomes in men with mCRPC treated with abiraterone or enzalutamide. EXPERIMENTAL DESIGN: We conducted a retrospective analysis of the multicenter prospective PROPHECY trial of mCRPC men (NCT02269982, n = 118) treated with abiraterone/enzalutamide. CTC detection and HOXB13 complementary DNA (cDNA) expression was measured using a modified Adnatest, grouping patients into 3 categories: CTC 0 (undetectable); CTC+ HOXB13 CTC low (<4 copies); or CTC+ HOXB13 CTC high. The HOXB13 threshold was determined by maximally selected rank statistics for prognostic associations with overall survival (OS) and progression-free survival (PFS). RESULTS: We included 102 men with sufficient CTC HOXB13 cDNA, identifying 25%, 31%, and 44% of patients who were CTC 0, CTC+ HOXB13 low, and CTC+ HOXB13 high, respectively. Median OS were 25.7, 27.8, and 12.1 months whereas the median PFS were 9.0, 7.7, and 3.8 months, respectively. In subgroup analysis among men with CellSearch CTCs ≥5 copies/mL and adjusting for prior abi/enza treatment and Halabi clinical risk score, the multivariate HR for HOXB13 CTC detection was 2.39 (95% CI, 1.06-5.40) for OS and 2.78 (95% CI, 1.38-5.59) for PFS, respectively. Low HOXB13 CTC detection was associated with lower CTC PSA, PSMA, AR-FL, and AR-V7 detection, and more liver/lung metastases (41% vs. 25%). CONCLUSIONS: Higher CTC HOXB13 expression is associated with AR-dependent biomarkers in CTCs and is adversely prognostic in the context of potent AR inhibition in men with mCRPC.


Asunto(s)
Androstenos , Benzamidas , Células Neoplásicas Circulantes , Feniltiohidantoína , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Células Neoplásicas Circulantes/patología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , ARN , Estudios Prospectivos , Estudios Retrospectivos , ADN Complementario/uso terapéutico , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Nitrilos/uso terapéutico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/uso terapéutico , Proteínas de Homeodominio/genética
15.
Anal Chem ; 96(4): 1622-1629, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38215213

RESUMEN

The microfluidic chip-based nucleic acid detection method significantly improves the sensitivity since it precisely controls the microfluidic flow in microchannels. Nonetheless, significant challenges still exist in improving the detection efficiency to meet the demand for rapid detection of trace substances. This work provides a novel magnetic herringbone (M-HB) structure in a microfluidic chip, and its advantage in rapid and sensitive detection is verified by taking complementary DNA (cDNA) sequences of human immunodeficiency virus (HIV) detection as an example. The M-HB structure is designed based on controlling the magnetic field distribution in the micrometer scale and is formed by accumulation of magnetic microbeads (MMBs). Hence, M-HB is similar to a nanopore microstructure, which has a higher contact area and probe density. All of the above is conducive to improving sensitivity in microfluidic chips. The M-HB chip is stable and easy to form, which can linearly detect cDNA sequences of HIV quantitatively ranging from 1 to 20 nM with a detection limit of 0.073 nM. Compared to the traditional herringbone structure, this structure is easier to form and release by controlling the magnetic field, which is flexible and helps in further study. Results show that this chip can sensitively detect the cDNA sequences of HIV in blood samples, demonstrating that it is a powerful platform to rapidly and sensitively detect multiple nucleic acid-related viruses of infectious diseases.


Asunto(s)
Infecciones por VIH , Técnicas Analíticas Microfluídicas , Humanos , ADN Complementario , Microesferas , VIH , Fenómenos Magnéticos , Infecciones por VIH/diagnóstico , Técnicas Analíticas Microfluídicas/métodos
16.
Viruses ; 16(1)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257825

RESUMEN

Tomato black ring virus (TBRV) is a member of the Nepovirus genus in the Secoviridae family, which infects a wide range of important crop species worldwide. In this work, we constructed four cDNA infectious clones of the TBRV tagged with the green fluorescent protein (TBRV-GFP), which varied in (i) the length of the sequences flanking the GFP insert, (ii) the position of the GFP insert within the RNA2 polyprotein, and (iii) the addition of a self-cutting 2A protein. The presence of the GFP coding sequence in infected plants was verified by RT-PCR, while the infectivity and stability of the constructs were verified by mechanical inoculation of the host plants. The systemic spread of TBRV-GFP within plants was observed under UV light at a macroscopic level, monitoring GFP-derived fluorescence in leaves, and at a microscopic level using confocal microscopy. The obtained clones are a valuable tool for future studies of TBRV-host interactions, virus biology, and the long-term monitoring of its distribution in infected plants.


Asunto(s)
Enfermedades Transmisibles , Nepovirus , Humanos , Proteínas Fluorescentes Verdes/genética , ADN Complementario/genética , Células Clonales
17.
Anal Chim Acta ; 1288: 342150, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220284

RESUMEN

BACKGROUND: Maillard reaction involves the polymerization, condensation, and other reactions between compounds containing free amino groups and reducing sugars or carbonyl compounds during heat processing. This process endows unique flavors and colors to food, while it can also produce numerous hazards. Acrylamide (AAm) is one of Maillard's hazards with neurotoxicity and carcinogenicity, these effects can trigger mutations and alternations in gene expression in human cells and accelerate organ aging. An accurate and reliable acrylamide detection method with high sensitivity and specificity for future regulatory activities is urgently needed. RESULTS: Herein, we constructed a colorimetric aptasensor with the hybridization of MIL-glucose oxidase (MGzyme)-cDNA and magnetic nanoparticle-aptamer (MNP-Apt) to specifically detect AAm. The incorporation of MB-Apt and AAm released MGzyme-cDNA in the supernatant, took the supernatant out, with the addition of glucose and TMB, MGzyme would oxidize glucose, the resulting •OH facilitated the oxidation of colorless TMB to blue ox-TMB. The absorbance value at 652 nm, which indicates the characteristic absorption peak of ox-TMB, exhibited a proportion to the concentration of AAm. MGzyme avoided the addition of harmful intermediate H2O2 and created an acid microenvironment for the catalytic reaction. MNP-Apt possessed the advantages of high specificity and simplified separation. Under optimal conditions, this method displayed a linear range of 0.01-100 µM with the limit of detection of 1.53 nM. With the spiked analysis data cross-verified by ELISA kit, this aptasensor was proven to specifically detect AAm at low concentrations. SIGNIFICANCE: This colorimetric aptasensor was the integration of aptamer and the enzyme-cascade system, which could broaden the applicable range of enzyme-cascade system, break the limits of specific detection of substrates, eliminate the need for harmful intermediates, improve the reaction efficiency, implement the specific detection, whilst enabling the accurate detection of AAm. Given these remarkable performances, this method has shown significant potential in the field of food safety inspection.


Asunto(s)
Técnicas Biosensibles , Glucosa Oxidasa , Humanos , Colorimetría/métodos , ADN Complementario , Peróxido de Hidrógeno/química , Glucosa , Acrilamidas , Límite de Detección , Técnicas Biosensibles/métodos
18.
Anal Methods ; 16(7): 1003-1011, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38269430

RESUMEN

Plant viral diseases can seriously affect the yield and quality of crops. In this work, a convenient and highly sensitive biosensor for the visual detection of plant viral disease is proposed by the PCR-induced generation of DNAzyme. In the absence of nucleic acid for a target plant virus, the primers prohibited the production of G-quadruplex by forming a hairpin structure. However, PCR amplification occurred and generated a number of specific PCR products with free G-quadruplex sequences at both ends in the presence of the target cDNA. A catalytically active G-quadruplex DNAzyme was formed with the help of K+ and hemin, resulting in the formation of colored products visible to the naked eye and a strong absorbance by the addition of ABTS2- and H2O2. The absorbance and the logarithm of target cDNA concentrations showed a good linear relationship in the range of 10 fM-1.0 nM, with a linear regression equation of A = 0.1402 lg c + 0.3761 (c: fM) and a detection limit of 0.19 fM. This method was successfully applied to the analysis of emerging tobacco mosaic virus (TMV) infections in tobacco leaf samples collected in the field due to its flexibility and convenience, indicating a potential application for the early detection of plant viral disease.


Asunto(s)
ADN Catalítico , Virus de Plantas , Virosis , Humanos , ADN Catalítico/química , ADN Complementario , Peróxido de Hidrógeno/química , Virus de Plantas/genética , Reacción en Cadena de la Polimerasa
19.
Fish Shellfish Immunol ; 145: 109359, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184182

RESUMEN

The MAPK pathway is the common intersection of signal transduction pathways such as inflammation, differentiation and proliferation and plays an important role in the process of antiviral immunity. Streptococcus agalactiae will have a great impact on tilapia aquaculture, so it is necessary to study the immune response mechanism of tilapia to S. agalactiae. In this study, we isolated the cDNA sequences of TAK1, TAB1 and TAB2 from Nile tilapia (Oreochromis niloticus). The TAK1 gene was 3492 bp in length, contained an open reading frame (ORF) of 1809 bp and encoded a polypeptide of 602 amino acids. The cDNA sequence of the TAB1 gene was 4001 bp, and its ORF was 1491 bp, which encoded 497 amino acids. The cDNA sequence of the TAB2 gene was 4792 bp, and its ORF was 2217 bp, encoding 738 amino acids. TAK1 has an S_TKc domain and a coiled coil structure; the TAB1 protein structure contains a PP2C_SIG domain and a conserved PYVDXA/TXF sequence model; and TAB2 contains a CUE domain, a coiled coil domain and a Znf_RBZ domain. Homology analysis showed that TAK1 and TAB1 had the highest homology with Neolamprologus brichardi, and TAB2 had the highest homology with Simochromis diagramma (98.28 %). In the phylogenetic tree, TAK1, TAB1 and TAB2 formed a large branch with other scleractinian fishes. The tissue expression analysis showed that the expression of TAK1, TAB1 and TAB2 was highest in the muscle. The expression of TAK1, TAB1 and TAB2 was significantly induced in most of the tested tissues after stimulation with LPS, Poly I:C and S. agalactiae. The subcellular localization results showed that TAK1 was located in the cytoplasm, and TAB1 and TAB2 had certain distributions in the cytoplasm and nucleus. Coimmunoprecipitation (Co-IP) results showed that TRAF6 did not interact with the TAK1 protein but interacted with TAB2, while TAB1 did not interact with P38γ but interacted with TAK1. There was also an interaction between TAK1 and TAB2.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Animales , Filogenia , ADN Complementario , Transducción de Señal , Aminoácidos/metabolismo , Streptococcus agalactiae/metabolismo , Proteínas de Peces/genética , Regulación de la Expresión Génica
20.
Biosens Bioelectron ; 249: 116010, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38215638

RESUMEN

Mass probes attached with aptamers and mass tags offer excellent specificity and sensitivity for multiplexed detection, wherein the dissociation of mass tags from the mass probes is as important as their labeling. Herein, aggregation-induced emission luminogen (AIEgen)-tagged mass probes (AIEMPs) were established to analyze estrogens, which integrated aptasensor with an explosive mass-tag signal amplification strategy via a simple ultrasound-assisted emulsification of nanoliposomes. The AIEMPs were assembled by the hybridization of aptamer-modified Fe3O4 nanoparticles (Fe NPs@Apt) and nanoliposomes loaded with massive AIEgen mass tags and partially complementary DNA strands (AIE NLs@cDNA). The aptamer was preferentially and specifically bound to estrogen, resulting in the detachment of AIE NLs from AIEMPs. Subsequently, the AIEMPs were deposited with electrospray solvents for explosive release of mass tags. Using nanoelectrospray ionization mass spectrometry (nanoESI-MS), the AIEMP-based aptasensor achieved ultrasensitive analysis of estrogens with limits of detection of 0.168-0.543 pg/mL and accuracies in the range of 87.9-114.0%. Compared to direct nanoESI-MS detection, the AIEMP-based aptasensor provides a signal amplification of four orders of magnitude. Furthermore, the utilization of different AIEMPs enables multiplexed detection of three estrogens with a miniature mass spectrometer, showing promising potential for on-site detection. This work expands the diversity of mass-tagging strategy and provides a versatile mass probe-based aptasensor platform for routine MS detection of trace analytes.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , ADN Complementario/química , Hibridación de Ácido Nucleico , Aptámeros de Nucleótidos/química , Estrógenos , Límite de Detección , Oro/química , Nanopartículas del Metal/química , Técnicas Electroquímicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA