Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.588
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2405473121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38950361

RESUMEN

Cycling cells replicate their DNA during the S phase through a defined temporal program known as replication timing. Mutation frequencies, epigenetic chromatin states, and transcriptional activities are different for genomic regions that are replicated early and late in the S phase. Here, we found from ChIP-Seq analysis that DNA polymerase (Pol) κ is enriched in early-replicating genomic regions in HEK293T cells. In addition, by feeding cells with N 2-heptynyl-2'-deoxyguanosine followed by click chemistry-based enrichment and high-throughput sequencing, we observed elevated Pol κ activities in genomic regions that are replicated early in the S phase. On the basis of the established functions of Pol κ in accurate and efficient nucleotide insertion opposite endogenously induced N 2-modified dG lesions, our work suggests that active engagement of Pol κ may contribute to diminished mutation rates observed in early-replicating regions of the human genome, including cancer genomes. Together, our work expands the functions of Pol κ and offered a plausible mechanism underlying replication timing-dependent mutation accrual in the human genome.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN , Fase S , Humanos , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Células HEK293 , Genoma Humano , Momento de Replicación del ADN
2.
Mikrochim Acta ; 191(7): 437, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951284

RESUMEN

A stable DNA signal amplification sensor was developed on account of rolling circle amplification (RCA). This sensor includes target DNA-controlled rolling circle amplification technology and locking probe DNA replacement technology, which can be used to detect DNA fragments with genetic information, thus constructing a biosensor for universal detection of DNA. This study takes the homologous DNA of human immunodeficiency virus (HIV) and let-7a as examples to describe this biosensor. The padlock probe is first cyclized by T4 DNA ligase in response to the target's reaction with it. Then, rolling cycle amplification is initiated by Phi29 DNA polymerase, resulting in the formation of a lengthy chain with several triggers. These triggers can open the locked probe LP1 with the fluorescence signal turned off, so that it can continue to react with H2 to form a stable H1-H2 double strand. This regulates the distance between B-DNA modified by the quenching group and H1 modified by fluorescent group, and the fluorescence signal is recovered.


Asunto(s)
Técnicas Biosensibles , Sondas de ADN , Técnicas de Amplificación de Ácido Nucleico , Técnicas Biosensibles/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , Sondas de ADN/química , Sondas de ADN/genética , Colorantes Fluorescentes/química , ADN Viral/análisis , ADN Viral/genética , ADN/química , ADN/genética , Espectrometría de Fluorescencia/métodos , Fluorescencia , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , Límite de Detección , VIH/genética
3.
Proc Natl Acad Sci U S A ; 121(25): e2320782121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38875150

RESUMEN

Human bocavirus 1 (HBoV1) is a human parvovirus that causes lower respiratory tract infections in young children. It contains a single-stranded (ss) DNA genome of ~5.5 kb that encodes a small noncoding RNA of 140 nucleotides known as bocavirus-encoded small RNA (BocaSR), in addition to viral proteins. Here, we determined the secondary structure of BocaSR in vivo by using DMS-MaPseq. Our findings reveal that BocaSR undergoes N6-methyladenosine (m6A) modification at multiple sites, which is critical for viral DNA replication in both dividing HEK293 cells and nondividing cells of the human airway epithelium. Mechanistically, we found that m6A-modified BocaSR serves as a mediator for recruiting Y-family DNA repair DNA polymerase (Pol) η and Pol κ likely through a direct interaction between BocaSR and the viral DNA replication origin at the right terminus of the viral genome. Thus, this report represents direct involvement of a viral small noncoding RNA in viral DNA replication through m6A modification.


Asunto(s)
Adenosina , Replicación del ADN , ADN Viral , ADN Polimerasa Dirigida por ADN , ARN Viral , Replicación Viral , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Replicación Viral/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Viral/genética , ADN Viral/metabolismo , Células HEK293 , ARN Viral/genética , ARN Viral/metabolismo , Bocavirus Humano/genética , Bocavirus Humano/metabolismo , Genoma Viral/genética , Infecciones por Parvoviridae/virología
4.
Cancer Genomics Proteomics ; 21(4): 399-404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38944428

RESUMEN

BACKGROUND/AIM: BRCA1/2 mutations in breast cancer cells impair homologous recombination and promote alternative end joining (Alt-EJ) for DNA-damage repair. DNA polymerase theta, encoded by POLQ, plays a crucial role in Alt-EJ, making it a potential therapeutic target, particularly in BRCA1/2-mutant cancers. Methionine restriction is a promising approach to target cancer cells due to their addiction to this amino acid. The present study investigated the expression of POLQ in BRCA1/2 wild-type and BRCA1-mutant breast cancer cells under methionine restriction. MATERIALS AND METHODS: POLQ mRNA expression was measured using qRT-PCR in BRCA1/2 wild-type (MDA-MB-231) and BRCA1- mutant (HCC1937 and MDA-MB-436) breast-cancer cells under normal, or serum-restricted, or serum- and methionine-restricted conditions. RESULTS: Compared to BRCA1/2 wild-type cells, BRCA1-mutant cells displayed significantly higher basal POLQ expression in normal medium. Methionine restriction further increased POLQ expression in the BRCA1-mutant cells but decreased it in the BRCA1/2 wild-type cells. CONCLUSION: The present findings suggest that methionine restriction showed differential effects on POLQ expression, potentially impacting Alt-EJ activity, in BRCA1/2 wild-type and BRCA1-mutant breast-cancer cells. Further investigation is needed to explore the potential of combining methionine restriction with DNA-repair inhibitors, such as PARP inhibitors, to overcome drug resistance in BRCA1/2 mutant cancers.


Asunto(s)
Proteína BRCA1 , Neoplasias de la Mama , ADN Polimerasa theta , Metionina , Mutación , Humanos , Metionina/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Reparación del ADN , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteína BRCA2/genética , Proteína BRCA2/metabolismo
5.
Nature ; 630(8017): 744-751, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867042

RESUMEN

DNA base damage is a major source of oncogenic mutations1. Such damage can produce strand-phased mutation patterns and multiallelic variation through the process of lesion segregation2. Here we exploited these properties to reveal how strand-asymmetric processes, such as replication and transcription, shape DNA damage and repair. Despite distinct mechanisms of leading and lagging strand replication3,4, we observe identical fidelity and damage tolerance for both strands. For small alkylation adducts of DNA, our results support a model in which the same translesion polymerase is recruited on-the-fly to both replication strands, starkly contrasting the strand asymmetric tolerance of bulky UV-induced adducts5. The accumulation of multiple distinct mutations at the site of persistent lesions provides the means to quantify the relative efficiency of repair processes genome wide and at single-base resolution. At multiple scales, we show DNA damage-induced mutations are largely shaped by the influence of DNA accessibility on repair efficiency, rather than gradients of DNA damage. Finally, we reveal specific genomic conditions that can actively drive oncogenic mutagenesis by corrupting the fidelity of nucleotide excision repair. These results provide insight into how strand-asymmetric mechanisms underlie the formation, tolerance and repair of DNA damage, thereby shaping cancer genome evolution.


Asunto(s)
Daño del ADN , Reparación del ADN , Replicación del ADN , Mutagénesis , Mutación , Humanos , Animales , Aductos de ADN/metabolismo , Rayos Ultravioleta , ADN/metabolismo , ADN/química , ADN/genética , Alquilación , ADN Polimerasa Dirigida por ADN/metabolismo
6.
J Biol Chem ; 300(6): 107361, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735473

RESUMEN

Nucleoside analogue drugs are pervasively used as antiviral and chemotherapy agents. Cytarabine and gemcitabine are anti-cancer nucleoside analogue drugs that contain C2' modifications on the sugar ring. Despite carrying all the required functional groups for DNA synthesis, these two compounds inhibit DNA extension once incorporated into DNA. It remains unclear how the C2' modifications on cytarabine and gemcitabine affect the polymerase active site during substrate binding and DNA extension. Using steady-state kinetics, static and time-resolved X-ray crystallography with DNA polymerase η (Pol η) as a model system, we showed that the sugar ring C2' chemical groups on cytarabine and gemcitabine snugly fit within the Pol η active site without occluding the steric gate. During DNA extension, Pol η can extend past gemcitabine but with much lower efficiency past cytarabine. The Pol η crystal structures show that the -OH modification in the ß direction on cytarabine locks the sugar ring in an unfavorable C2'-endo geometry for product formation. On the other hand, the addition of fluorine atoms on gemcitabine alters the proper conformational transition of the sugar ring for DNA synthesis. Our study illustrates mechanistic insights into chemotherapeutic drug inhibition and resistance and guides future optimization of nucleoside analogue drugs.


Asunto(s)
Citarabina , ADN Polimerasa Dirigida por ADN , Desoxicitidina , Gemcitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacología , Citarabina/química , Citarabina/farmacología , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , Humanos , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , ADN/biosíntesis , Dominio Catalítico , Replicación del ADN/efectos de los fármacos , Cinética
7.
J Org Chem ; 89(11): 7680-7691, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38739842

RESUMEN

Safrole is a natural product present in many plants and plant products, including spices and essential oils. During cellular metabolism, it converts to a highly reactive trans-isosafrole (SF) intermediate that reacts with genomic DNA and forms N2-SF-dG and N6-SF-dA DNA adducts, which are detected in the oral tissue of cancer patients with betel quid chewing history. To study the SF-induced carcinogenesis and to probe the role of low fidelity translesion synthesis (TLS) polymerases in bypassing SF adducts, herein, we report the synthesis of N2-SF-dG modified DNAs using phosphoramidite chemistry. The N2-SF-dG modification in the duplex DNA does not affect the thermal stability and retains the B-form of helical conformation, indicating that this adduct may escape the radar of common DNA repair mechanisms. Primer extension studies showed that the N2-SF-dG adduct is bypassed by human TLS polymerases hpolκ and hpolη, which perform error-free replication across this adduct. Furthermore, molecular modeling and dynamics studies revealed that the adduct reorients to pair with the incoming nucleotide, thus allowing the effective bypass. Overall, the results indicate that hpolκ and hpolη do not distinguish the N2-SF-dG adduct, suggesting that they may not be involved in the safrole-induced carcinogenicity.


Asunto(s)
Aductos de ADN , ADN Polimerasa Dirigida por ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , Humanos , Aductos de ADN/química , Aductos de ADN/metabolismo , Aductos de ADN/síntesis química , Safrol/química , Safrol/análogos & derivados , ADN/química , ADN/metabolismo , Estructura Molecular
8.
J Chem Inf Model ; 64(10): 4231-4249, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38717969

RESUMEN

Human DNA polymerases are vital for genetic information management. Their function involves catalyzing the synthesis of DNA strands with unparalleled accuracy, which ensures the fidelity and stability of the human genomic blueprint. Several disease-associated mutations and their functional impact on DNA polymerases have been reported. One particular polymerase, human DNA polymerase kappa (Pol κ), has been reported to be susceptible to several cancer-associated mutations. The Y432S mutation in Pol κ, associated with various cancers, is of interest due to its impact on polymerization activity and markedly reduced thermal stability. Here, we have used computational simulations to investigate the functional consequences of the Y432S using classical molecular dynamics (MD) and coupled quantum mechanics/molecular mechanics (QM/MM) methods. Our findings suggest that Y432S induces structural alterations in domains responsible for nucleotide addition and ternary complex stabilization while retaining structural features consistent with possible catalysis in the active site. Calculations of the minimum energy path associated with the reaction mechanism of the wild type (WT) and Y432S Pol κ indicate that, while both enzymes are catalytically competent (in terms of energetics and the active site's geometries), the cancer mutation results in an endoergic reaction and an increase in the catalytic barrier. Interactions with a third magnesium ion and environmental effects on nonbonded interactions, particularly involving key residues, contribute to the kinetic and thermodynamic distinctions between the WT and mutant during the catalytic reaction. The energetics and electronic findings suggest that active site residues favor the catalytic reaction with dCTP3- over dCTP4-.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Simulación de Dinámica Molecular , Neoplasias , Humanos , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , Teoría Cuántica , Mutación , Termodinámica , Dominio Catalítico , Conformación Proteica
9.
Proc Natl Acad Sci U S A ; 121(23): e2405771121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805295

RESUMEN

The phylum Preplasmiviricota (kingdom Bamfordvirae, realm Varidnaviria) is a broad assemblage of diverse viruses with comparatively short double-stranded DNA genomes (<50 kbp) that produce icosahedral capsids built from double jelly-roll major capsid proteins. Preplasmiviricots infect hosts from all cellular domains, testifying to their ancient origin, and, in particular, are associated with six of the seven supergroups of eukaryotes. Preplasmiviricots comprise four major groups of viruses, namely, polintons, polinton-like viruses (PLVs), virophages, and adenovirids. We used protein structure modeling and analysis to show that protein-primed DNA polymerases (pPolBs) of polintons, virophages, and cytoplasmic linear plasmids encompass an N-terminal domain homologous to the terminal proteins (TPs) of prokaryotic PRD1-like tectivirids and eukaryotic adenovirids that are involved in protein-primed replication initiation, followed by a viral ovarian tumor-like cysteine deubiquitinylase (vOTU) domain. The vOTU domain is likely responsible for the cleavage of the TP from the large pPolB polypeptide and is inactivated in adenovirids, in which TP is a separate protein. Many PLVs and transpovirons encode a distinct derivative of polinton-like pPolB that retains the TP, vOTU, and pPolB polymerization palm domains but lacks the exonuclease domain and instead contains a superfamily 1 helicase domain. Analysis of the presence/absence and inactivation of the vOTU domains and replacement of pPolB with other DNA polymerases in eukaryotic preplasmiviricots enabled us to outline a complete scenario for their origin and evolution.


Asunto(s)
Proteínas de la Cápside , Virus ADN , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Virus ADN/genética , Eucariontes/virología , Eucariontes/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Modelos Moleculares , Filogenia
10.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119743, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705361

RESUMEN

Human DNA polymerase ι (Polι) belongs to the Y-family of specialized DNA polymerases engaged in the DNA damage tolerance pathway of translesion DNA synthesis that is crucial to the maintenance of genome integrity. The extreme infidelity of Polι and the fact that both its up- and down-regulation correlate with various cancers indicate that Polι expression and access to the replication fork should be strictly controlled. Here, we identify RNF2, an E3 ubiquitin ligase, as a new interacting partner of Polι that is responsible for Polι stabilization in vivo. Interestingly, while we report that RNF2 does not directly ubiquitinate Polι, inhibition of the E3 ubiquitin ligase activity of RNF2 affects the cellular level of Polι thereby protecting it from destabilization. Additionally, we indicate that this mechanism is more general, as DNA polymerase η, another Y-family polymerase and the closest paralogue of Polι, share similar features.


Asunto(s)
ADN Polimerasa iota , ADN Polimerasa Dirigida por ADN , Ubiquitina-Proteína Ligasas , Ubiquitinación , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Replicación del ADN , Daño del ADN , Células HEK293 , Estabilidad de Enzimas , Complejo Represivo Polycomb 1
11.
Bioorg Med Chem ; 106: 117755, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38749343

RESUMEN

Translesion synthesis (TLS) is a cellular mechanism through which actively replicating cells recruit specialized, low-fidelity DNA polymerases to damaged DNA to allow for replication past these lesions. REV1 is one of these TLS DNA polymerases that functions primarily as a scaffolding protein to organize the TLS heteroprotein complex and ensure replication occurs in the presence of DNA lesions. The C-Terminal domain of REV1 (REV1-CT) forms many protein-protein interactions (PPIs) with other TLS polymerases, making it essential for TLS function and a promising drug target for anti-cancer drug development. We utilized several lead identification strategies to identify various small molecules capable of disrupting the PPI between REV1-CT and the REV1 Interacting Regions (RIR) present in several other TLS polymerases. These lead compounds were profiled in several in vitro potency and PK assays to identify two scaffolds (1 and 6) as the most promising for further development. Both 1 and 6 synergized with cisplatin in a REV1-dependent fashion and demonstrated promising in vivo PK and toxicity profiles.


Asunto(s)
Nucleotidiltransferasas , Bibliotecas de Moléculas Pequeñas , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/metabolismo , Humanos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Animales , Relación Estructura-Actividad , Unión Proteica , Estructura Molecular , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Relación Dosis-Respuesta a Droga , ADN Polimerasa Dirigida por ADN/metabolismo , Ratones , Síntesis Translesional de ADN
12.
Biosci Rep ; 44(5)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38717250

RESUMEN

Temozolomide (TMZ) is the leading therapeutic agent for combating Glioblastoma Multiforme (GBM). Nonetheless, the persistence of chemotherapy-resistant GBM cells remains an ongoing challenge, attributed to various factors, including the translesion synthesis (TLS) mechanism. TLS enables tumor cells to endure genomic damage by utilizing specialized DNA polymerases to bypass DNA lesions. Specifically, TLS polymerase Kappa (Polκ) has been implicated in facilitating DNA damage tolerance against TMZ-induced damage, contributing to a worse prognosis in GBM patients. To better understand the roles of Polκ in TMZ resistance, we conducted a comprehensive assessment of the cytotoxic, antiproliferative, antimetastatic, and genotoxic effects of TMZ on GBM (U251MG) wild-type (WTE) and TLS Polκ knockout (KO) cells, cultivated as three-dimensional (3D) tumor spheroids in vitro. Initial results revealed that TMZ: (i) induces reductions in GBM spheroid diameter (10-200 µM); (ii) demonstrates significant cytotoxicity (25-200 µM); (iii) exerts antiproliferative effects (≤25 µM) and promotes cell cycle arrest (G2/M phase) in Polκ KO spheroids when compared with WTE counterparts. Furthermore, Polκ KO spheroids exhibit elevated levels of cell death (Caspase 3/7) and display greater genotoxicity (53BP1) than WTE following TMZ exposure. Concerning antimetastatic effects, TMZ impedes invadopodia (3D invasion) more effectively in Polκ KO than in WTE spheroids. Collectively, the results suggest that TLS Polκ plays a vital role in the survival, cell death, genotoxicity, and metastatic potential of GBM spheroids in vitro when subjected to TMZ treatment. While the precise mechanisms underpinning this resistance remain elusive, TLS Polκ emerges as a potential therapeutic target for GBM patients.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Resistencia a Antineoplásicos , Glioblastoma , Esferoides Celulares , Temozolomida , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/genética , Glioblastoma/enzimología , Temozolomida/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/enzimología , Antineoplásicos Alquilantes/farmacología
13.
Cancer Sci ; 115(6): 1808-1819, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38572512

RESUMEN

Rev1 has two important functions in the translesion synthesis pathway, including dCMP transferase activity, and acts as a scaffolding protein for other polymerases involved in translesion synthesis. However, the role of Rev1 in mutagenesis and tumorigenesis in vivo remains unclear. We previously generated Rev1-overexpressing (Rev1-Tg) mice and reported that they exhibited a significantly increased incidence of intestinal adenoma and thymic lymphoma (TL) after N-methyl-N-nitrosourea (MNU) treatment. In this study, we investigated mutagenesis of MNU-induced TL tumorigenesis in wild-type (WT) and Rev1-Tg mice using diverse approaches, including whole-exome sequencing (WES). In Rev1-Tg TLs, the mutation frequency was higher than that in WT TL in most cases. However, no difference in the number of nonsynonymous mutations in the Catalogue of Somatic Mutations in Cancer (COSMIC) genes was observed, and mutations involved in Notch1 and MAPK signaling were similarly detected in both TLs. Mutational signature analysis of WT and Rev1-Tg TLs revealed cosine similarity with COSMIC mutational SBS5 (aging-related) and SBS11 (alkylation-related). Interestingly, the total number of mutations, but not the genotypes of WT and Rev1-Tg, was positively correlated with the relative contribution of SBS5 in individual TLs, suggesting that genetic instability could be accelerated in Rev1-Tg TLs. Finally, we demonstrated that preleukemic cells could be detected earlier in Rev1-Tg mice than in WT mice, following MNU treatment. In conclusion, Rev1 overexpression accelerates mutagenesis and increases the incidence of MNU-induced TL by shortening the latency period, which may be associated with more frequent DNA damage-induced genetic instability.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Metilnitrosourea , Mutagénesis , Nucleotidiltransferasas , Neoplasias del Timo , Animales , Ratones , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Secuenciación del Exoma , Linfoma/genética , Linfoma/inducido químicamente , Linfoma/patología , Metilnitrosourea/toxicidad , Ratones Transgénicos , Mutación , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Neoplasias del Timo/genética , Neoplasias del Timo/inducido químicamente , Neoplasias del Timo/patología
14.
Cancer Sci ; 115(6): 1910-1923, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558246

RESUMEN

Chemoresistance is a major cause of high mortality and poor survival in patients with ovarian cancer (OVCA). Understanding the mechanisms of chemoresistance is urgently required to develop effective therapeutic approaches to OVCA. Here, we show that expression of the long noncoding RNA, taurine upregulated gene 1 (TUG1), is markedly upregulated in samples from OVCA patients who developed resistance to primary platinum-based therapy. Depletion of TUG1 increased sensitivity to cisplatin in the OVCA cell lines, SKOV3 and KURAMOCHI. Combination therapy of cisplatin with antisense oligonucleotides targeting TUG1 coupled with a drug delivery system effectively relieved the tumor burden in xenograft mouse models. Mechanistically, TUG1 acts as a competing endogenous RNA by downregulating miR-4687-3p and miR-6088, both of which target DNA polymerase eta (POLH), an enzyme required for translesion DNA synthesis. Overexpression of POLH reversed the effect of TUG1 depletion on cisplatin-induced cytotoxicity. Our data suggest that TUG1 upregulation allows OVCA to tolerate DNA damage via upregulation of POLH; this provides a strong rationale for targeting TUG1 to overcome cisplatin resistance in OVCA.


Asunto(s)
Cisplatino , ADN Polimerasa Dirigida por ADN , Resistencia a Antineoplásicos , Neoplasias Ováricas , ARN Largo no Codificante , Animales , Femenino , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Desnudos , MicroARNs/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , ARN Largo no Codificante/genética , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Nat Commun ; 15(1): 2862, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580648

RESUMEN

The DNA damage response (DDR) protein DNA Polymerase θ (Polθ) is synthetic lethal with homologous recombination (HR) factors and is therefore a promising drug target in BRCA1/2 mutant cancers. We discover an allosteric Polθ inhibitor (Polθi) class with 4-6 nM IC50 that selectively kills HR-deficient cells and acts synergistically with PARP inhibitors (PARPi) in multiple genetic backgrounds. X-ray crystallography and biochemistry reveal that Polθi selectively inhibits Polθ polymerase (Polθ-pol) in the closed conformation on B-form DNA/DNA via an induced fit mechanism. In contrast, Polθi fails to inhibit Polθ-pol catalytic activity on A-form DNA/RNA in which the enzyme binds in the open configuration. Remarkably, Polθi binding to the Polθ-pol:DNA/DNA closed complex traps the polymerase on DNA for more than forty minutes which elucidates the inhibitory mechanism of action. These data reveal a unique small-molecule DNA polymerase:DNA trapping mechanism that induces synthetic lethality in HR-deficient cells and potentiates the activity of PARPi.


Asunto(s)
Proteína BRCA1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteína BRCA1/genética , Proteína BRCA2/genética , ADN/metabolismo , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Recombinación Homóloga , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Humanos
16.
Biochemistry ; 63(9): 1107-1117, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38671548

RESUMEN

DNA polymerase θ (Pol θ or POLQ) is primarily involved in repairing double-stranded breaks in DNA through an alternative pathway known as microhomology-mediated end joining (MMEJ) or theta-mediated end joining (TMEJ). Unlike other DNA repair polymerases, Pol θ is thought to be highly error-prone yet critical for cell survival. We have identified several POLQ gene variants from human melanoma tumors that experience altered DNA polymerase activity, including a propensity for incorrect nucleotide selection and reduced polymerization rates compared to WT Pol θ. Variants are 30-fold less efficient at incorporating a nucleotide during repair and up to 70-fold less accurate at selecting the correct nucleotide opposite a templating base. This suggests that aberrant Pol θ has reduced DNA repair capabilities and may also contribute to increased mutagenesis. Moreover, the variants were identified in established tumors, suggesting that cancer cells may use mutated polymerases to promote metastasis and drug resistance.


Asunto(s)
ADN Polimerasa theta , ADN Polimerasa Dirigida por ADN , Melanoma , Humanos , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , Melanoma/genética , Melanoma/enzimología , Reparación del ADN , Mutación
17.
Analyst ; 149(10): 3026-3033, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38618891

RESUMEN

Alkaline phosphatase (ALP) is a class of hydrolase that catalyzes the dephosphorylation of phosphorylated species in biological tissues, playing an important role in many physiological and pathological processes. Sensitive imaging of ALP activity in living cells is contributory to the research on these processes. Herein, we propose an acid-responsive DNA hydrogel to deliver a cascaded enzymatic nucleic acid amplification system into cells for the sensitive imaging of intracellular ALP activity. The DNA hydrogel is formed by two kinds of Y-shaped DNA monomers and acid-responsive cytosine-rich linkers. The amplification system contained Bst DNA polymerase (Bst DP), Nt.BbvCI endonuclease, a Recognition Probe (RP, containing a DNAzyme sequence, a Nt.BbvCI recognition sequence, and a phosphate group at the 3'-end), and a Signal Probe (SP, containing a cleavage site for DNAzyme, Cy3 and BHQ2 at the two ends). The amplification system was trapped into the DNA hydrogel and taken up by cells, and the cytosine-rich linkers folded into a quadruplex i-motif in the acidic lysosomes, leading to the collapse of the hydrogel and releasing the amplification system. The phosphate groups on RPs were recognized and removed by the target ALP, triggering a polymerization-nicking cycle to produce large numbers of DNAzyme sequences, which then cleaved multiple SPs, restoring Cy3 fluorescence to indicate the ALP activity. This strategy achieved sensitive imaging of ALP in living HeLa, MCF-7, and NCM460 cells, and realized the sensitive detection of ALP in vitro with a detection limit of 2.0 × 10-5 U mL-1, providing a potential tool for the research of ALP-related physiological and pathological processes.


Asunto(s)
Fosfatasa Alcalina , ADN Catalítico , ADN , Técnicas de Amplificación de Ácido Nucleico , Humanos , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/química , Técnicas de Amplificación de Ácido Nucleico/métodos , ADN/química , ADN/genética , ADN Catalítico/química , ADN Catalítico/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Límite de Detección , Concentración de Iones de Hidrógeno , Hidrogeles/química , Células HeLa
18.
Genes Dev ; 38(5-6): 213-232, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38503516

RESUMEN

Purified translesion synthesis (TLS) DNA polymerases (Pols) replicate through DNA lesions with a low fidelity; however, TLS operates in a predominantly error-free manner in normal human cells. To explain this incongruity, here we determine whether Y family Pols, which play an eminent role in replication through a diversity of DNA lesions, are incorporated into a multiprotein ensemble and whether the intrinsically high error rate of the TLS Pol is ameliorated by the components in the ensemble. To this end, we provide evidence for an indispensable role of Werner syndrome protein (WRN) and WRN-interacting protein 1 (WRNIP1) in Rev1-dependent TLS by Y family Polη, Polι, or Polκ and show that WRN, WRNIP1, and Rev1 assemble together with Y family Pols in response to DNA damage. Importantly, we identify a crucial role of WRN's 3' → 5' exonuclease activity in imparting high fidelity on TLS by Y family Pols in human cells, as the Y family Pols that accomplish TLS in an error-free manner manifest high mutagenicity in the absence of WRN's exonuclease function. Thus, by enforcing high fidelity on TLS Pols, TLS mechanisms have been adapted to safeguard against genome instability and tumorigenesis.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Síntesis Translesional de ADN , Helicasa del Síndrome de Werner , Humanos , Daño del ADN , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Exonucleasas/metabolismo , Síntesis Translesional de ADN/genética , Helicasa del Síndrome de Werner/genética , Helicasa del Síndrome de Werner/metabolismo
19.
J Mol Biol ; 436(9): 168542, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492718

RESUMEN

PrimPol is a human DNA primase-polymerase which restarts DNA synthesis beyond DNA lesions and non-B DNA structures blocking replication. Disfunction of PrimPol in cells leads to slowing of DNA replication rates in mitochondria and nucleus, accumulation of chromosome aberrations, cell cycle delay, and elevated sensitivity to DNA-damaging agents. A defective PrimPol has been suggested to be associated with the development of ophthalmic diseases, elevated mitochondrial toxicity of antiviral drugs and increased cell resistance to chemotherapy. Here, we describe a rare missense PrimPol variant V102A with altered biochemical properties identified in patients suffering from ovarian and cervical cancer. The Val102 to Ala substitution dramatically reduced both the primase and DNA polymerase activities of PrimPol as well as specifically decreased its ability to incorporate ribonucleotides. Structural analysis indicates that the V102A substitution can destabilize the hydrophobic pocket adjacent to the active site, affecting dNTP binding and catalysis.


Asunto(s)
ADN Primasa , ADN Polimerasa Dirigida por ADN , Enzimas Multifuncionales , Mutación Missense , Neoplasias Ováricas , Neoplasias del Cuello Uterino , Femenino , Humanos , Sustitución de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , ADN Primasa/metabolismo , ADN Primasa/química , ADN Primasa/genética , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/química , Modelos Moleculares , Enzimas Multifuncionales/metabolismo , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/química , Conformación Proteica , Neoplasias del Cuello Uterino/genética , Neoplasias Ováricas/genética
20.
Anal Chem ; 96(13): 5323-5330, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38501982

RESUMEN

Oxidative DNA damage is closely associated with the occurrence of numerous human diseases and cancers. 8-Oxo-7,8-dihydroguanine (8-oxoG) is the most prevalent form of DNA damage, and it has become not only an oxidative stress biomarker but also a new epigenetic-like biomarker. However, few approaches are available for the locus-specific detection of 8-oxoG because of the low abundance of 8-oxoG damage in DNA and the limited sensitivity of existing assays. Herein, we demonstrate the elongation and ligation-mediated differential coding for label-free and locus-specific analysis of 8-oxoG in DNA. This assay is very simple without the involvement of any specific labeled probes, complicated steps, and large sample consumption. The utilization of Bsu DNA polymerase can specifically initiate a single-base extension reaction to incorporate dATP into the opposite position of 8-oxoG, endowing this assay with excellent selectivity. The introduction of cascade amplification reaction significantly enhances the sensitivity. The proposed method can monitor 8-oxoG with a limit of detection of 8.21 × 10-19 M (0.82 aM), and it can identify as low as 0.001% 8-oxoG damage from a complex mixture with excessive undamaged DNAs. This method can be further applied to measure 8-oxoG levels in the genomic DNA of human cells under diverse oxidative stress, holding prospect potential in the dynamic monitoring of critical 8-oxoG sites, early clinical diagnosis, and gene damage-related biomedical research.


Asunto(s)
ADN Polimerasa Dirigida por ADN , ADN , Guanina/análogos & derivados , Humanos , ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Daño del ADN , Biomarcadores , Reparación del ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA