Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.026
Filtrar
Más filtros











Intervalo de año de publicación
1.
Viruses ; 16(5)2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38793630

RESUMEN

During viral infection, the innate immune system utilizes a variety of specific intracellular sensors to detect virus-derived nucleic acids and activate a series of cellular signaling cascades that produce type I IFNs and proinflammatory cytokines and chemokines. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus that has been associated with a variety of human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Infection with KSHV activates various DNA sensors, including cGAS, STING, IFI16, and DExD/H-box helicases. Activation of these DNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV has developed countless strategies to evade or inhibit DNA sensing and facilitate its own infection. This review summarizes the major DNA-triggered sensing signaling pathways and details the current knowledge of DNA-sensing mechanisms involved in KSHV infection, as well as how KSHV evades antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.


Asunto(s)
ADN Viral , Herpesvirus Humano 8 , Inmunidad Innata , Transducción de Señal , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Humanos , ADN Viral/metabolismo , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/metabolismo , Sarcoma de Kaposi/virología , Nucleotidiltransferasas/metabolismo , Interacciones Huésped-Patógeno , Animales , Proteínas de la Membrana/metabolismo , Proteínas Nucleares , Fosfoproteínas
2.
Microbiol Spectr ; 12(5): e0378823, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38567974

RESUMEN

The key to a curative treatment of hepatitis B virus (HBV) infection is the eradication of the intranuclear episomal covalently closed circular DNA (cccDNA), the stable persistence reservoir of HBV. Currently, established therapies can only limit HBV replication but fail to tackle the cccDNA. Thus, novel therapeutic approaches toward curative treatment are urgently needed. Recent publications indicated a strong association between the HBV core protein SUMOylation and the association with promyelocytic leukemia nuclear bodies (PML-NBs) on relaxed circular DNA to cccDNA conversion. We propose that interference with the cellular SUMOylation system and PML-NB integrity using arsenic trioxide provides a useful tool in the treatment of HBV infection. Our study showed a significant reduction in HBV-infected cells, core protein levels, HBV mRNA, and total DNA. Additionally, a reduction, albeit to a limited extent, of HBV cccDNA could be observed. Furthermore, this interference was also applied for the treatment of an established HBV infection, characterized by a stably present nuclear pool of cccDNA. Arsenic trioxide (ATO) treatment not only changed the amount of expressed HBV core protein but also induced a distinct relocalization to an extranuclear phenotype during infection. Moreover, ATO treatment resulted in the redistribution of transfected HBV core protein away from PML-NBs, a phenotype similar to that previously observed with SUMOylation-deficient HBV core. Taken together, these findings revealed the inhibition of HBV replication by ATO treatment during several steps of the viral replication cycle, including viral entry into the nucleus as well as cccDNA formation and maintenance. We propose ATO as a novel prospective treatment option for further pre-clinical and clinical studies against HBV infection. IMPORTANCE: The main challenge for the achievement of a functional cure for hepatitis B virus (HBV) is the covalently closed circular DNA (cccDNA), the highly stable persistence reservoir of HBV, which is maintained by further rounds of infection with newly generated progeny viruses or by intracellular recycling of mature nucleocapsids. Eradication of the cccDNA is considered to be the holy grail for HBV curative treatment; however, current therapeutic approaches fail to directly tackle this HBV persistence reservoir. The molecular effect of arsenic trioxide (ATO) on HBV infection, protein expression, and cccDNA formation and maintenance, however, has not been characterized and understood until now. In this study, we reveal ATO treatment as a novel and innovative therapeutic approach against HBV infections, repressing viral gene expression and replication as well as the stable cccDNA pool at low micromolar concentrations by affecting the cellular function of promyelocytic leukemia nuclear bodies.


Asunto(s)
Trióxido de Arsénico , Núcleo Celular , ADN Circular , ADN Viral , Virus de la Hepatitis B , Hepatitis B , Sumoilación , Replicación Viral , Trióxido de Arsénico/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Humanos , Replicación Viral/efectos de los fármacos , Hepatitis B/virología , Hepatitis B/tratamiento farmacológico , Hepatitis B/metabolismo , Sumoilación/efectos de los fármacos , ADN Circular/genética , ADN Circular/metabolismo , Núcleo Celular/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Antivirales/farmacología , Proteínas del Núcleo Viral/metabolismo , Proteínas del Núcleo Viral/genética , Células Hep G2
3.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38674125

RESUMEN

Polyomavirus (PyV) Large T-antigen (LT) is the major viral regulatory protein that targets numerous cellular pathways for cellular transformation and viral replication. LT directly recruits the cellular replication factors involved in initiation of viral DNA replication through mutual interactions between LT, DNA polymerase alpha-primase (Polprim), and single-stranded DNA binding complex, (RPA). Activities and interactions of these complexes are known to be modulated by post-translational modifications; however, high-sensitivity proteomic analyses of the PTMs and proteins associated have been lacking. High-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS) of the immunoprecipitated factors (IPMS) identified 479 novel phosphorylated amino acid residues (PAARs) on the three factors; the function of one has been validated. IPMS revealed 374, 453, and 183 novel proteins associated with the three, respectively. A significant transcription-related process network identified by Gene Ontology (GO) enrichment analysis was unique to LT. Although unidentified by IPMS, the ETS protooncogene 1, transcription factor (ETS1) was significantly overconnected to our dataset indicating its involvement in PyV processes. This result was validated by demonstrating that ETS1 coimmunoprecipitates with LT. Identification of a novel PAAR that regulates PyV replication and LT's association with the protooncogenic Ets1 transcription factor demonstrates the value of these results for studies in PyV biology.


Asunto(s)
Replicación del ADN , Poliomavirus , Proteómica , Replicación Viral , Fosforilación , Humanos , Proteómica/métodos , Poliomavirus/metabolismo , Poliomavirus/genética , Espectrometría de Masas en Tándem , Proteína Proto-Oncogénica c-ets-1/metabolismo , Proteína Proto-Oncogénica c-ets-1/genética , Cromatografía Liquida , Antígenos Virales de Tumores/metabolismo , Antígenos Virales de Tumores/genética , Procesamiento Proteico-Postraduccional , ADN Viral/metabolismo , ADN Viral/genética
4.
Virology ; 595: 110065, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38569227

RESUMEN

Nucleot(s)ide analogues, the current antiviral treatments against chronic hepatitis B (CHB) infection, are non-curative due to their inability to eliminate covalently closed circular DNA (cccDNA) from the infected hepatocytes. Preclinical studies have shown that coumarin derivatives can effectively reduce the HBV DNA replication. We evaluated the antiviral efficacy of thirty new coumarin derivatives in cell culture models for studying HBV. Furanocoumarins Fc-20 and Fc-31 suppressed the levels of pre-genomic RNA as well as cccDNA, and reduced the secretion of virions, HBsAg and HBeAg. The antiviral efficacies of Fc-20 and Fc31 improved further when used in combination with the hepatitis B antiviral drug Entecavir. There was a marked reduction in the intracellular HBx level in the presence of these furanocoumarins due to proteasomal degradation resulting in the down-regulation of HBx-dependent viral genes. Importantly, both Fc-20 and Fc-31 were non-cytotoxic to cells even at high concentrations. Further, our molecular docking studies confirmed a moderate to high affinity interaction between furanocoumarins and viral HBx via residues Ala3, Arg26 and Lys140. These data suggest that furanocoumarins could be developed as a new therapeutic for CHB infection.


Asunto(s)
Antivirales , ADN Circular , Furocumarinas , Virus de la Hepatitis B , Complejo de la Endopetidasa Proteasomal , Transactivadores , Proteínas Reguladoras y Accesorias Virales , Replicación Viral , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Virus de la Hepatitis B/metabolismo , Replicación Viral/efectos de los fármacos , Humanos , Transactivadores/metabolismo , Transactivadores/genética , ADN Circular/metabolismo , ADN Circular/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética , Furocumarinas/farmacología , Antivirales/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , ADN Viral/metabolismo , ADN Viral/genética , Regulación hacia Abajo/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Proteolisis/efectos de los fármacos , Regulación Viral de la Expresión Génica/efectos de los fármacos , Células Hep G2
5.
Sci Rep ; 14(1): 7433, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548853

RESUMEN

Epstein-Barr virus (EBV) encoded microRNA BART8-3p (miR-BART8-3p) was significantly associated with the metastasis in nasopharyngeal carcinoma (NPC). To explore the clinical values of plasma miR-BART8-3p in patients with early NPC. We retrospectively analyzed 126 patients with stage I and II NPC. A receiver operating characteristic curve was used to examine the diagnostic performance. Kaplan‒Meier analysis was applied to determine survival differences. Cox regression was used for univariate and multivariate analyses. Compared to healthy subjects, plasma EBV miR-BART8-3p was highly expressed in early NPC patients. The sensitivity, specificity, and area under the curve value of plasma miR-BART8-3p combined with plasma EBV DNA was up to 88.9%, 94.4%, and 0.931. Compared to patients with low expression of miR-BART8-3p, patients with high expression of miR-BART8-3p had poorer 5-year overall survival (OS) (98.9% vs. 91.1%, P = 0.025), locoregional recurrence-free survival (LRRFS) (100% vs. 83.9%, P < 0.001) and distant metastasis-free survival (DMFS) (98.9% vs. 88.0%, P = 0.006). Risk stratification analysis revealed that high-risk patients (with high levels of EBV DNA and miR-BART8-3p) had inferior OS, LRRFS, and DMFS than low-risk patients (without high levels of EBV DNA and miR-BART8-3p). Multivariate analysis verified that the high-risk group was an unfavorable factor for OS, LRRFS, and DMFS. A combination of plasma EBV miR-BART8-3p and EBV DNA could be a potential biomarker for the diagnosis and prognosis in early NPC.


Asunto(s)
Infecciones por Virus de Epstein-Barr , MicroARNs , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Pronóstico , Infecciones por Virus de Epstein-Barr/patología , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Estudios Retrospectivos , Biomarcadores/metabolismo , ADN Viral/metabolismo
6.
J Virol ; 98(3): e0151523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38323812

RESUMEN

Adeno-associated virus (AAV) requires co-infection with helper virus for efficient replication. We previously reported that Human Bocavirus 1 (HBoV1) genes, including NP1, NS2, and BocaSR, were critical for AAV2 replication. Here, we first demonstrate the essential roles of the NP1 protein in AAV2 DNA replication and protein expression. We show that NP1 binds to single-strand DNA (ssDNA) at least 30 nucleotides (nt) in length in a sequence-independent manner. Furthermore, NP1 colocalized with the BrdU-labeled AAV2 DNA replication center, and the loss of the ssDNA-binding ability of NP1 by site-directed mutation completely abolished AAV2 DNA replication. We used affinity-tagged NP1 protein to identify host cellular proteins associated with NP1 in cells cotransfected with the HBoV1 helper genes and AAV2 duplex genome. Of the identified proteins, we demonstrate that NP1 directly binds to the DBD-F domain of the RPA70 subunit with a high affinity through the residues 101-121. By reconstituting the heterotrimer protein RPA in vitro using gel filtration, we demonstrate that NP1 physically associates with RPA to form a heterologous complex characterized by typical fast-on/fast-off kinetics. Following a dominant-negative strategy, we found that NP1-RPA complex mainly plays a role in expressing AAV2 capsid protein by enhancing the transcriptional activity of the p40 promoter. Our study revealed a novel mechanism by which HBoV1 NP1 protein supports AAV2 DNA replication and capsid protein expression through its ssDNA-binding ability and direct interaction with RPA, respectively.IMPORTANCERecombinant adeno-associated virus (rAAV) vectors have been extensively used in clinical gene therapy strategies. However, a limitation of these gene therapy strategies is the efficient production of the required vectors, as AAV alone is replication-deficient in the host cells. HBoV1 provides the simplest AAV2 helper genes consisting of NP1, NS2, and BocaSR. An important question regarding the helper function of HBoV1 is whether it provides any direct function that supports AAV2 DNA replication and protein expression. Also of interest is how HBoV1 interplays with potential host factors to constitute a permissive environment for AAV2 replication. Our studies revealed that the multifunctional protein NP1 plays important roles in AAV2 DNA replication via its sequence-independent ssDNA-binding ability and in regulating AAV2 capsid protein expression by physically interacting with host protein RPA. Our findings present theoretical guidance for the future application of the HBoV1 helper genes in the rAAV vector production.


Asunto(s)
Proteínas de la Cápside , Cápside , ADN de Cadena Simple , ADN Viral , Proteínas de Unión al ADN , Dependovirus , Bocavirus Humano , Proteínas Virales , Humanos , Cápside/metabolismo , Proteínas de la Cápside/biosíntesis , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Dependovirus/genética , Dependovirus/crecimiento & desarrollo , Dependovirus/metabolismo , ADN de Cadena Simple/biosíntesis , ADN de Cadena Simple/metabolismo , ADN Viral/biosíntesis , ADN Viral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Viral de la Expresión Génica , Bocavirus Humano/genética , Bocavirus Humano/metabolismo , Cinética , Mutagénesis Sitio-Dirigida , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
7.
Viruses ; 16(2)2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38400066

RESUMEN

The integration of viral DNA into a host genome is an important step in HIV-1 replication. However, due to the high failure rate of integration, the majority of viral DNA exists in an unintegrated state during HIV-1 infection. In contrast to the robust expression from integrated viral DNA, unintegrated HIV-1 DNA is very poorly transcribed in infected cells, but the molecular machinery responsible for the silencing of unintegrated HIV-1 DNA remains poorly characterized. In this study, we sought to characterize new host factors for the inhibition of expression from unintegrated HIV-1 DNA. A genome-wide CRISPR-Cas9 knockout screening revealed the essential role of phosphatase and tensin homolog (PTEN) in the silencing of unintegrated HIV-1 DNA. PTEN's phosphatase activity negatively regulates the PI3K-Akt pathway to inhibit the transcription from unintegrated HIV-1 DNA. The knockout (KO) of PTEN or inhibition of PTEN's phosphatase activity by point mutagenesis activates Akt by phosphorylation and enhances the transcription from unintegrated HIV-1 DNA. Inhibition of the PI3K-Akt pathway by Akt inhibitor in PTEN-KO cells restores the silencing of unintegrated HIV-1 DNA. Transcriptional factors (NF-κB, Sp1, and AP-1) are important for the activation of unintegrated HIV-1 DNA in PTEN-KO cells. Finally, the knockout of PTEN increases the levels of active epigenetic marks (H3ac and H3K4me3) and the recruitment of PolII on unintegrated HIV-1 DNA chromatin. Our experiments reveal that PTEN targets transcription factors (NF-κB, Sp1, and AP-1) by negatively regulating the PI3K-Akt pathway to promote the silencing of unintegrated HIV-1 DNA.


Asunto(s)
VIH-1 , FN-kappa B , ADN Viral/genética , ADN Viral/metabolismo , VIH-1/fisiología , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción AP-1/metabolismo , Transcripción Genética , Humanos
8.
Nature ; 627(8005): 873-879, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418882

RESUMEN

Cyclic GMP-AMP synthase (cGAS) senses aberrant DNA during infection, cancer and inflammatory disease, and initiates potent innate immune responses through the synthesis of 2'3'-cyclic GMP-AMP (cGAMP)1-7. The indiscriminate activity of cGAS towards DNA demands tight regulatory mechanisms that are necessary to maintain cell and tissue homeostasis under normal conditions. Inside the cell nucleus, anchoring to nucleosomes and competition with chromatin architectural proteins jointly prohibit cGAS activation by genomic DNA8-15. However, the fate of nuclear cGAS and its role in cell physiology remains unclear. Here we show that the ubiquitin proteasomal system (UPS) degrades nuclear cGAS in cycling cells. We identify SPSB3 as the cGAS-targeting substrate receptor that associates with the cullin-RING ubiquitin ligase 5 (CRL5) complex to ligate ubiquitin onto nuclear cGAS. A cryo-electron microscopy structure of nucleosome-bound cGAS in a complex with SPSB3 reveals a highly conserved Asn-Asn (NN) minimal degron motif at the C terminus of cGAS that directs SPSB3 recruitment, ubiquitylation and cGAS protein stability. Interference with SPSB3-regulated nuclear cGAS degradation primes cells for type I interferon signalling, conferring heightened protection against infection by DNA viruses. Our research defines protein degradation as a determinant of cGAS regulation in the nucleus and provides structural insights into an element of cGAS that is amenable to therapeutic exploitation.


Asunto(s)
Proteínas Nucleares , Nucleosomas , Nucleotidiltransferasas , Proteolisis , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ratones , Núcleo Celular/metabolismo , Microscopía por Crioelectrón , Degrones , Infecciones por Virus ADN/inmunología , Virus ADN/inmunología , Virus ADN/metabolismo , ADN Viral/inmunología , ADN Viral/metabolismo , Inmunidad Innata , Reconocimiento de Inmunidad Innata , Interferón Tipo I/inmunología , Proteínas Nucleares/metabolismo , Nucleosomas/química , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/ultraestructura , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Especificidad por Sustrato , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/ultraestructura , Ubiquitinación
9.
Virus Res ; 341: 199316, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38215982

RESUMEN

BACKGROUND: Hepatitis B virus (HBV) infection is a major public health problem. After HBV infection, viral antigens shift the immune balance in favor of viral escape. Sulforaphane (SFN) is a traditional Chinese medicine.It regulates multi-biological activities, including anti-inflammation, anticancer, and antiviral. However, few studies reported that SFN can inhibit HBV infection before. METHODS: An immunocompetent HBV CBA/CaJ mouse model and a co-culture model were used to explore the effect of SFN on HBV and whether SFN altered the immune balance after HBV infection. RESULTS: We found that SFN was able to reduce HBV DNA, cccDNA, HBsAg, HBeAg, and HBcAg levels in serum and liver tissues of HBV-infected mice. In vitro and in vivo experiments showed that SFN could significantly increase the expression of Cd86 and iNOS and inhibit the expression of Arg1 on macrophages after HBV infection. After SFN administration, Th17 markers in liver tissue and serum were significantly increased. There was no significant changes in the proportion of Treg cells in peripheral blood, but a significant increase in the proportion of Th17 cells and decrease of the Treg/Th17 ratio. Using a network pharmacology approach, we predicted macrophage migration inhibitory factor (MIF) as a potential target of SFN and further validated that MIF expression was significantly increased after HBV infection and SFN significantly inhibited MIF expression both in vitro and in vivo. There was an upward trend in HBV markers (p>0.05) after MIF overexpression. Overexpression of MIF combined with the use of SFN resulted in a significant reversion in the expression of HBV markers and polarization of macrophages towards the M1 phenotype. CONCLUSION: Our results indicated that immunocompetent HBV CBA/CaJ mouse model is a good model to evaluate HBV infection. SFN could inhibit the expression of HBV markers, promote polarization of macrophages towards the M1 phenotype after HBV infection, change the proportion of Treg and Th17 cells. Our findings demonstrate that SFN inhibit HBV infection by inhibiting the expression of MIF and promoting the polarization of macrophages towards the M1 phenotype, which illustrates a promising therapeutic approach in HBV infection.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Isotiocianatos , Factores Inhibidores de la Migración de Macrófagos , Sulfóxidos , Animales , Ratones , ADN Viral/metabolismo , Virus de la Hepatitis B/genética , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Ratones Endogámicos CBA , Linfocitos T Reguladores , Células Th17/metabolismo
10.
Virus Res ; 341: 199326, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38253259

RESUMEN

BACKGROUND: PreS1-binding protein (PreS1BP), recognized as a nucleolar protein and tumor suppressor, influences the replication of various viruses, including vesicular stomatitis virus (VSV) and herpes simplex virus type 1 (HSV-1). Its role in hepatitis B virus (HBV) replication and the underlying mechanisms, however, remain elusive. METHODS: We investigated PreS1BP expression levels in an HBV-replicating cell and animal model and analyzed the impact of its overexpression on viral replication metrics. HBV DNA, covalently closed circular DNA (cccDNA), hepatitis B surface antigen (HBsAg), hepatitis B core antigen (HBcAg), and HBV RNA levels were assessed in HBV-expressing stable cell lines under varying PreS1BP conditions. Furthermore, co-immunoprecipitation and ubiquitination assays were used to detect PreS1BP- hepatitis B virus X protein (HBx) interactions and HBx stability modulated by PreS1BP. RESULTS: Our study revealed a marked decrease in PreS1BP expression in the presence of active HBV replication. Functional assays showed that PreS1BP overexpression significantly inhibited HBV replication and transcription, evidenced by the reduction in HBV DNA, cccDNA, HBsAg, HBcAg, and HBV RNA levels. At the molecular level, PreS1BP facilitated the degradation of HBx in a dose-dependent fashion, whereas siRNA-mediated knockdown of PreS1BP led to an increase in HBx levels. Subsequent investigations uncovered that PreS1BP accelerated HBx protein degradation via K63-linked ubiquitination in a ubiquitin-proteasome system-dependent manner. Co-immunoprecipitation assays further established that PreS1BP enhances the recruitment of the proteasome 20S subunit alpha 3 (PSMA3) for interaction with HBx, thereby fostering its degradation. CONCLUSIONS: These findings unveil a previously unidentified mechanism wherein PreS1BP mediates HBx protein degradation through the ubiquitin-proteasome system, consequentially inhibiting HBV replication. This insight positions PreS1BP as a promising therapeutic target for future HBV interventions. Further studies are warranted to explore the clinical applicability of modulating PreS1BP in HBV therapy.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Animales , Humanos , Virus de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/metabolismo , Proteolisis , Antígenos del Núcleo de la Hepatitis B/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Células Hep G2 , Proteínas Reguladoras y Accesorias Virales/genética , ADN Circular/metabolismo , Replicación Viral/genética , ARN/metabolismo , Ubiquitinas/genética
11.
Virus Res ; 339: 199273, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38029800

RESUMEN

BACKGROUND & AIMS: Current antiviral drugs, including nucleoside analogs and interferon, fail to eliminate the HBV covalently closed circular DNA (cccDNA), which serves as a transcript template in infected hepatocytes. Silencing the HBV X protein, which plays a crucial role in cccDNA transcription, is a promising approach to inhibit HBV replication. Therefore, the identification of novel compounds that can inhibit HBx-mediated cccDNA transcription is critical. METHODS: Initially, a compound library consisting of 715 monomers derived from traditional Chinese medicines known for their liver-protecting properties was established. Then, MTT assays were used to determine the cytotoxicity of each compound. The effect of candidates on Flag-HBx expression was examined by real-time PCR and western blotting in Flag-HBx transfected HepG2-NTCP cells. Ultimately, the antiviral effect of gambogic acid (GA) on HBV was observed in HBV-infected HepG2-NTCP cells. Mechanistically, the functional role of DTX1 in GA-induced HBV inhibition was examined using RNA-seq. Finally, the antiviral effect of GA was estimated in vivo. RESULTS: Gambogic acid (GA), a natural bioactive compound with a myriad of biological activities, markedly reduced Flag-HBx expression. Potent and dose-dependent reductions in extracellular HBV RNAs, HBV DNA, HBsAg, HBeAg and HBc protein were discovered three days after GA treatment in HBV-infected cells, accompanied by the absence of significant cytotoxicity. Furthermore, our research revealed that GA exhibited a dose-dependent inhibition of HBx expression, which is a pleiotropic protein required for HBV infection in vivo. We explored the mechanisms underlying GA-mediated inhibition of HBV and confirmed that this inhibition is accomplished by upregulating the expression of the DTX1 gene and boosting the Notch signaling pathway. Finally, the inhibitory effect of GA on HBV replication was tested in vivo using a mouse model of hepatitis B virus recombinant cccDNA. CONCLUSIONS: Herein, we discovered GA, which is a natural bioactive compound that targets HBx to inhibit hepatitis B virus replication by activating the DTX1-Notch signaling pathway.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Humanos , Replicación Viral , Células Hep G2 , ADN Circular/metabolismo , Hepatitis B/genética , Transducción de Señal , Antivirales/farmacología , Antivirales/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Ubiquitina-Proteína Ligasas/genética
12.
Viruses ; 15(12)2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-38140543

RESUMEN

Hepatitis B virus (HBV) genotype C is a prevalent HBV genotype in the Chinese population. Although genotype C shows higher sequence heterogeneity and more severe liver disease than other genotypes, its pathogenesis and immunological traits are not yet fully elucidated. In this study, we first established and chemically synthesized the consensus sequence based on representative 138 full-length HBV genotype C genomes from the Chinese population. The pHBV1.3C plasmid system, containing a 1.3-fold full-length HBV genotype C consensus sequence, was constructed for subsequent validation. Next, we performed functional assays to investigate the replicative competence of pHBV1.3C in vitro through the transient transfection of HepG2 and Huh7 cells and validated the in vivo function via a hydrodynamic injection to BALB/c recipient mice. The in vitro investigation revealed that the extracellular HBV DNA and intracellular replicative intermediate (i.e., pregenomic RNA, pgRNA) were apparently measurable at 48 h, and the HBsAg and HBcAg were still positive in hepatoma cells at 96 h. We also found that HBsAg and HBeAg accumulated at the extracellular and intracellular levels in a time-dependent manner. The in vivo validation demonstrated that pHBV1.3C plasmids induced HBV viremia, triggered morphological changes and HBsAg- or HBcAg- positivity of hepatocytes, and ultimately caused inflammatory infiltration and focal or piecemeal necrosis in the livers of the murine recipients. HBV protein (HBsAg) colocalized with CD8+ T cells or CD4+ T cells in the liver. F4/80+ Kupffer cells were abundantly recruited around the altered murine hepatocytes. Taken together, our results indicate that the synthetic consensus sequence of HBV genotype C is replication-competent in vitro and in vivo. This genotype C consensus genome supports the full HBV life cycle, which is conducive to studying its pathogenesis and immune response, screening novel antiviral agents, and further optimizing testing and therapeutics.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Ratones , Animales , Virus de la Hepatitis B/fisiología , Antígenos de Superficie de la Hepatitis B/genética , Antígenos del Núcleo de la Hepatitis B/genética , Linfocitos T CD8-positivos/metabolismo , Replicación Viral , Genotipo , Ratones Endogámicos BALB C , China/epidemiología , ADN Viral/metabolismo
13.
Viruses ; 15(12)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38140607

RESUMEN

Hepatitis B virus (HBV) is the primary contributor to severe liver ailments, encompassing conditions such as cirrhosis and hepatocellular carcinoma. Globally, 257 million people are affected by HBV annually and 887,000 deaths are attributed to it, representing a substantial health burden. Regrettably, none of the existing therapies for chronic hepatitis B (CHB) have achieved satisfactory clinical cure rates. This issue stems from the existence of covalently closed circular DNA (cccDNA), which is difficult to eliminate from the nucleus of infected hepatocytes. HBV genetic material is composed of partially double-stranded DNA that forms complexes with viral polymerase inside an icosahedral capsid composed of a dimeric core protein. The HBV core protein, consisting of 183 to 185 amino acids, plays integral roles in multiple essential functions within the HBV replication process. In this review, we describe the effects of sulfamoyl-based carboxamide capsid assembly modulators (CAMs) on capsid assembly, which can suppress HBV replication and disrupt the production of new cccDNA. We present research on classical, first-generation sulfamoyl benzocarboxamide CAMs, elucidating their structural composition and antiviral efficacy. Additionally, we explore newly identified sulfamoyl-based CAMs, including sulfamoyl bicyclic carboxamides, sulfamoyl aromatic heterocyclic carboxamides, sulfamoyl aliphatic heterocyclic carboxamides, cyclic sulfonamides, and non-carboxamide sulfomoyl-based CAMs. We believe that certain molecules derived from sulfamoyl groups have the potential to be developed into essential components of a well-suited combination therapy, ultimately yielding superior clinical efficacy outcomes in the future.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Humanos , Virus de la Hepatitis B/metabolismo , Antivirales/uso terapéutico , Nucleocápside/metabolismo , Hepatitis B Crónica/tratamiento farmacológico , Cápside/metabolismo , Proteínas de la Cápside/genética , ADN Circular/genética , ADN Circular/metabolismo , Replicación Viral , ADN Viral/genética , ADN Viral/metabolismo , Hepatitis B/tratamiento farmacológico , Hepatitis B/metabolismo
14.
Proc Natl Acad Sci U S A ; 120(49): e2306390120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38015841

RESUMEN

Hepatitis B virus (HBV) remains a major public health threat with nearly 300 million people chronically infected worldwide who are at a high risk of developing hepatocellular carcinoma. Current therapies are effective in suppressing HBV replication but rarely lead to cure. Current therapies do not affect the HBV covalently closed circular DNA (cccDNA), which serves as the template for viral transcription and replication and is highly stable in infected cells to ensure viral persistence. In this study, we aim to identify and elucidate the functional role of cccDNA-associated host factors using affinity purification and protein mass spectrometry in HBV-infected cells. Nucleolin was identified as a key cccDNA-binding protein and shown to play an important role in HBV cccDNA transcription, likely via epigenetic regulation. Targeting nucleolin to silence cccDNA transcription in infected hepatocytes may be a promising therapeutic strategy for a functional cure of HBV.


Asunto(s)
Hepatitis B , Neoplasias Hepáticas , Humanos , Virus de la Hepatitis B/fisiología , Epigénesis Genética , Replicación Viral/genética , ADN Viral/metabolismo , ADN Circular/genética , ADN Circular/metabolismo , Neoplasias Hepáticas/genética , Hepatitis B/genética , Hepatitis B/metabolismo , Nucleolina
15.
Nat Commun ; 14(1): 7072, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923737

RESUMEN

Retrovirus integration into a host genome is essential for productive infections. The integration strand transfer reaction is catalyzed by a nucleoprotein complex (Intasome) containing the viral integrase (IN) and the reverse transcribed (RT) copy DNA (cDNA). Previous studies suggested that DNA target-site recognition limits intasome integration. Using single molecule Förster resonance energy transfer (smFRET), we show prototype foamy virus (PFV) intasomes specifically bind to DNA strand breaks and gaps. These break and gap DNA discontinuities mimic oxidative base excision repair (BER) lesion-processing intermediates that have been shown to affect retrovirus integration in vivo. The increased DNA binding events targeted strand transfer to the break/gap site without inducing substantial intasome conformational changes. The major oxidative BER substrate 8-oxo-guanine as well as a G/T mismatch or +T nucleotide insertion that typically introduce a bend or localized flexibility into the DNA, did not increase intasome binding or targeted integration. These results identify DNA breaks or gaps as modulators of dynamic intasome-target DNA interactions that encourage site-directed integration.


Asunto(s)
ADN Viral , Spumavirus , ADN Viral/metabolismo , Integrasas/metabolismo , Retroviridae/genética , Retroviridae/metabolismo , Spumavirus/genética , Spumavirus/metabolismo , ADN Complementario , Integración Viral
16.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834041

RESUMEN

Persistent high-risk human papillomavirus (HPV) infection is a pivotal factor in the progression of cervical cancer. In recent years, an increasing interest has emerged in comprehending the influence of HPV on head and neck squamous cell carcinoma (HNSCC). Notably, it is well established that HPV-associated HNSCC show cases with distinct molecular and clinical attributes compared to HPV-negative cases. The present study delves into the epigenetic landscape of HPV16, specifically its L1 gene and untranslated region (UTR), through pyrosequencing, while the HPV16 DNA physical status was evaluated using E2/E6 ratio analysis in HPV16-positive HNSCC FFPE biopsies. Our findings reveal substantial methylation across six sites within the HPV16 L1 gene and seven sites in the UTR. Specifically, methylation percentages of two L1 CpG sites (7136, 7145) exhibit significant associations with tumor histological grade (p < 0.01), while proving concurrent methylation across multiple sites. The HPV16 DNA physical status was not correlated with the methylation of viral genome or tumor characteristics. This is the first study that examines epigenetic modifications and the HPV16 DNA physical status in Greek HNSCC patients. Our findings suggest an orchestrated epigenetic modulation among specific sites, impacting viral gene expression and intricate virus-host interactions.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Femenino , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/complicaciones , Virus del Papiloma Humano , Carcinoma de Células Escamosas/patología , Metilación de ADN , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/genética , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/complicaciones , ADN/metabolismo , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , ADN Viral/genética , ADN Viral/metabolismo
17.
J Virol ; 97(10): e0063723, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37750723

RESUMEN

IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) is a human herpesvirus associated with several human cancers, typically in patients with compromised immune systems. Herpesviruses establish lifelong infections in hosts in part due to the two phases of infection: the dormant and active phases. Effective antiviral treatments to prevent the production of new viruses are needed to treat KSHV. A detailed microscopy-based investigation of the molecular interactions between viral protein and viral DNA revealed how protein-protein interactions play a role in DNA-binding specificity. This analysis will lead to a more in-depth understanding of KSHV DNA replication and serve as the basis for anti-viral therapies that disrupt and prevent the protein-DNA interactions, thereby decreasing spread to new hosts.


Asunto(s)
ADN Viral , Herpesvirus Humano 8 , Microscopía Electrónica , Multimerización de Proteína , Transactivadores , Humanos , Sitios de Unión , ADN Viral/química , ADN Viral/metabolismo , ADN Viral/ultraestructura , Herpesvirus Humano 8/química , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/ultraestructura , Unión Proteica , Mapas de Interacción de Proteínas , Especificidad por Sustrato , Transactivadores/química , Transactivadores/metabolismo , Transactivadores/ultraestructura , Replicación Viral/genética , Sarcoma de Kaposi/virología
18.
Viruses ; 15(9)2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37766260

RESUMEN

Feline leukemia virus (FeLV) is a cosmopolitan gammaretrovirus that causes lifelong infections and fatal diseases, including leukemias, lymphomas, immunodeficiencies, and anemias, in domestic and wild felids. There is currently no definitive treatment for FeLV, and while existing vaccines reduce the prevalence of progressive infections, they neither provide sterilizing immunity nor prevent regressive infections that result in viral reservoirs with the potential for reactivation, transmission, and the development of associated clinical diseases. Previous studies of murine leukemia virus (MuLV) established that host cell epigenetic reader bromodomain and extra-terminal domain (BET) proteins facilitate MuLV replication by promoting proviral integration. Here, we provide evidence that this facilitatory effect of BET proteins extends to FeLV. Treatment with the archetypal BET protein bromodomain inhibitor (+)-JQ1 and FeLV challenge of two phenotypically disparate feline cell lines, 81C fibroblasts and 3201 lymphoma cells, significantly reduced FeLV proviral load, total FeLV DNA load, and p27 capsid protein expression at nonlethal concentrations. Moreover, significant decreases in FeLV proviral integration were documented in 81C and 3201 cells. These findings elucidate the importance of BET proteins for efficient FeLV replication, including proviral integration, and provide a potential target for treating FeLV infections.


Asunto(s)
Enfermedades de los Gatos , Leucemia Felina , Ratones , Gatos , Animales , Provirus/genética , Virus de la Leucemia Felina/genética , Línea Celular , ADN Viral/metabolismo
19.
J Virol ; 97(8): e0078123, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37565748

RESUMEN

The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the alpha-herpesviruses herpes simplex virus (HSV)-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR). Here, we ask whether this APOBEC3B relocalization mechanism is conserved with the beta-herpesvirus human cytomegalovirus (HCMV). Although HCMV infection causes APOBEC3B relocalization from the nucleus to the cytoplasm in multiple cell types, the viral RNR (UL45) is not required. APOBEC3B relocalization occurs rapidly following infection suggesting the involvement of an immediate early or early (IE/E) viral protein. In support of this possibility, genetic (IE1 mutant) and pharmacologic (cycloheximide) strategies that prevent the expression of IE/E viral proteins also block APOBEC3B relocalization. In comparison, the treatment of infected cells with phosphonoacetic acid, which interferes with viral late protein expression, still permits A3B relocalization. These results combine to indicate that the beta-herpesvirus HCMV uses an RNR-independent, yet phenotypically similar, molecular mechanism to antagonize APOBEC3B. IMPORTANCE Human cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Infecciones por Herpesviridae , Herpesvirus Humano 1 , Ribonucleótido Reductasas , Humanos , Recién Nacido , Citidina Desaminasa/metabolismo , Citomegalovirus/genética , Replicación del ADN , ADN Viral/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 4/genética , Proteínas Inmediatas-Precoces/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Proteínas Virales/metabolismo , Replicación Viral
20.
Virus Genes ; 59(6): 801-816, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37644346

RESUMEN

Chronic hepatitis B virus (HBV) infection remains a significant public health concern worldwide. Several metabolic processes regulate HBV DNA replication, including autophagy and lipid metabolism. In this study, we clarified the effect of lipids on HBV replication and elucidated possible mechanisms. We discovered that lipid metabolic gene expression levels were negatively correlated with the HBV DNA in plasma. Our data showed that fatty acid stimulation significantly reduced HBV DNA, hepatitis B surface antigen (HBsAg), and hepatitis B e antigen (HBeAg) levels in HepG2.2.15 cells, which are human hepatoma cell cultures transfected with HBV DNA. The Stearoyl coenzyme A desaturase 1 (SCD1)-autophagy pathway has also been implicated in inhibiting HBV replication by fatty acids stimulation. SCD1 knockdown deregulates the inhibitory effect of fatty acids on HBV by enhancing autophagy. When 3 methyladenine (3MA) was added, the inhibitory effects of specific autophagy inhibitors eliminated the positive effects of SCD1 knockdown on HBV replication. Our results indicate that SCD1 participates in the regulation of inhibition of HBV replication by fatty acids stimulation through regulating autophagy.


Asunto(s)
Hepatitis B Crónica , Neoplasias Hepáticas , Humanos , Virus de la Hepatitis B , ADN Viral/genética , ADN Viral/metabolismo , Antígenos de Superficie de la Hepatitis B , Antígenos e de la Hepatitis B , Células Hep G2 , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Autofagia/genética , Replicación Viral , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA