Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.630
Filtrar
Más filtros











Intervalo de año de publicación
1.
Neuromolecular Med ; 26(1): 19, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703217

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder associated with mitochondrial dysfunctions and oxidative stress. However, to date, therapeutics targeting these pathological events have not managed to translate from bench to bedside for clinical use. One of the major reasons for the lack of translational success has been the use of classical model systems that do not replicate the disease pathology and progression with the same degree of robustness. Therefore, we employed a more physiologically relevant model involving alpha-synuclein-preformed fibrils (PFF) exposure to SH-SY5Y cells and Sprague Dawley rats. We further explored the possible involvement of transient receptor potential canonical 5 (TRPC5) channels in PD-like pathology induced by these alpha-synuclein-preformed fibrils with emphasis on amelioration of oxidative stress and mitochondrial health. We observed that alpha-synuclein PFF exposure produced neurobehavioural deficits that were positively ameliorated after treatment with the TRPC5 inhibitor clemizole. Furthermore, Clemizole also reduced p-alpha-synuclein and diminished oxidative stress levels which resulted in overall improvements in mitochondrial biogenesis and functions. Finally, the results of the pharmacological modulation were further validated using siRNA-mediated knockdown of TRPC5 channels, which also decreased p-alpha-synuclein expression. Together, the results of this study could be superimposed in the future for exploring the beneficial effects of TRPC5 channel modulation for other neurodegenerative disorders and synucleopathies.


Asunto(s)
Mitocondrias , Estrés Oxidativo , Ratas Sprague-Dawley , Canales Catiónicos TRPC , alfa-Sinucleína , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animales , Ratas , Estrés Oxidativo/efectos de los fármacos , Humanos , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Línea Celular Tumoral , Masculino , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/inducido químicamente , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/uso terapéutico , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/tratamiento farmacológico
2.
ACS Appl Mater Interfaces ; 16(20): 25710-25726, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739808

RESUMEN

The present study investigated the concurrent delivery of antineoplastic drug, doxorubicin, and HER2 siRNA through a targeted theranostic metallic gold nanoparticle designed using polysaccharide, PSP001. The as-synthesized HsiRNA@PGD NPs were characterized in terms of structural, functional, physicochemical, and biological properties. HsiRNA@PGD NPs exposed adequate hydrodynamic size, considerable ζ potential, and excellent drug/siRNA loading and encapsulation efficiency. Meticulous exploration of the biocompatible dual-targeted nanoconjugate exhibited an appealing biocompatibility and pH-sensitive cargo release kinetics, indicating its safety for use in clinics. HsiRNA@PGD NPs deciphered competent cancer cell internalization, enhanced cytotoxicity mediated via the induction of apoptosis, and excellent downregulation of the overexpressing target HER2 gene. Further in vivo explorations in the SKBR3 xenograft breast tumor model revealed the appealing tumor reduction properties, selective accumulation in the tumor site followed by significant suppression of the HER2 gene which contributed to the exclusive abrogation of breast tumor mass by the HsiRNA@PGD NPs. Compared to free drugs or the monotherapy constructs, the dual delivery approach produced a synergistic suppression of breast tumors both in vitro and in vivo. Hence the drawings from these findings implicate that the as-synthesized HsiRNA@PGD NPs could offer a promising platform for chemo-RNAi combinational breast cancer therapy.


Asunto(s)
Neoplasias de la Mama , Doxorrubicina , Silenciador del Gen , ARN Interferente Pequeño , Receptor ErbB-2 , Doxorrubicina/química , Doxorrubicina/farmacología , Humanos , ARN Interferente Pequeño/química , ARN Interferente Pequeño/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Animales , Ratones , Silenciador del Gen/efectos de los fármacos , Nanopartículas del Metal/química , Oro/química , Línea Celular Tumoral , Ratones Desnudos , Ratones Endogámicos BALB C , Apoptosis/efectos de los fármacos
3.
Curr Gene Ther ; 24(4): 307-320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38783530

RESUMEN

BACKGROUND: Astrocyte elevated gene-1 (AEG-1) is overexpressed in various malignancies. Exostosin-1 (EXT-1), a tumor suppressor, is an intermediate for malignant tumors. Understanding the mechanism behind the interaction between AEG-1 and EXT-1 may provide insights into colon cancer metastasis. METHODS: AOM/DSS was used to induce tumor in BALB/c mice. Using an in vivo-jetPEI transfection reagent, transient transfection of AEG-1 and EXT-1 siRNAs were achieved. Histological scoring, immunohistochemical staining, and gene expression studies were performed from excised tissues. Data from the Cancer Genomic Atlas and GEO databases were obtained to identify the expression status of AEG-1 and itsassociation with the survival. RESULTS: In BALB/c mice, the AOM+DSS treated mice developed necrotic, inflammatory and dysplastic changes in the colon with definite clinical symptoms such as loss of goblet cells, colon shortening, and collagen deposition. Administration of AEG-1 siRNA resulted in a substantial decrease in the disease activity index. Mice treated with EXT-1 siRNA showed diffusely reduced goblet cells. In vivo investigations revealed that PTCH-1 activity was influenced by upstream gene AEG-1, which in turn may affect EXT-1 activity. Data from The Cancer Genomic Atlas and GEO databases confirmed the upregulation of AEG-1 and downregulation of EXT-1 in cancer patients. CONCLUSIONS: This study revealed that AEG-1 silencing might alter EXT-1 expression indirectly through PTCH-1, influencing cell-ECM interactions, and decreasing dysplastic changes, proliferation and invasion.


Asunto(s)
Neoplasias del Colon , Proteínas de la Membrana , Ratones Endogámicos BALB C , ARN Interferente Pequeño , Proteínas de Unión al ARN , Animales , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias del Colon/terapia , Ratones , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de la Membrana/genética , Humanos , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Silenciador del Gen , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
4.
Expert Opin Drug Metab Toxicol ; 20(5): 399-406, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38706380

RESUMEN

BACKGROUND: Methotrexate (MTX) is partially metabolized by aldehyde oxidase (AOX) in the liver and its clinical impact remains unclear. In this study, we aimed to demonstrate how AOX contributes to MTX-induced hepatotoxicity in vitro and clarify the relationship between concomitant AOX inhibitor use and MTX-associated liver injury development using the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS). METHODS: We assessed intracellular MTX accumulation and cytotoxicity using HepG2 cells. We used the FAERS database to detect reporting odds ratio (ROR)-based MTX-related hepatotoxicity event signals. RESULTS: AOX inhibition by AOX inhibitor raloxifene and siRNA increased the MTX accumulation in HepG2 cells and enhanced the MTX-induced cell viability reduction. In the FAERS analysis, the ROR for MTX-related hepatotoxicity increased with non-overlap of 95% confidence interval when co-administered with drugs with higher Imax, u (maximum unbound plasma concentration)/IC50 (half-maximal inhibitory concentration for inhibition of AOX) calculated based on reported pharmacokinetic data. CONCLUSION: AOX inhibition contributed to MTX accumulation in the liver, resulting in increased hepatotoxicity. Our study raises concerns regarding MTX-related hepatotoxicity when co-administered with drugs that possibly inhibit AOX activity at clinical concentrations.


Asunto(s)
Sistemas de Registro de Reacción Adversa a Medicamentos , Aldehído Oxidasa , Enfermedad Hepática Inducida por Sustancias y Drogas , Metotrexato , Metotrexato/efectos adversos , Metotrexato/administración & dosificación , Humanos , Aldehído Oxidasa/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Células Hep G2 , Supervivencia Celular/efectos de los fármacos , Antimetabolitos Antineoplásicos/efectos adversos , Antimetabolitos Antineoplásicos/administración & dosificación , Estados Unidos , United States Food and Drug Administration , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacología , Concentración 50 Inhibidora
5.
J Nanobiotechnology ; 22(1): 159, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589859

RESUMEN

Brain metastasis (BM) is one of the leading causes of cancer-related deaths in patients with advanced non-small cell lung cancer (NSCLC). However, limited treatments are available due to the presence of the blood-brain barrier (BBB). Upregulation of lysophosphatidylcholine acyltransferase 1 (LPCAT1) in NSCLC has been found to promote BM. Conversely, downregulating LPCAT1 significantly suppresses the proliferation and metastasis of lung cancer cells. In this study, we firstly confirmed significant upregulation of LPCAT1 in BM sites compared to primary lung cancer by analyzing scRNA dataset. We then designed a delivery system based on a single-chain variable fragment (scFv) targeting the epidermal growth factor receptor (EGFR) and exosomes derived from HEK293T cells to enhance cell-targeting capabilities and increase permeability. Next, we loaded LPCAT1 siRNA (siLPCAT1) into these engineered exosomes (exoscFv). This novel scFv-mounted exosome successfully crossed the BBB in an animal model and delivered siLPCAT1 to the BM site. Silencing LPCAT1 efficiently arrested tumor growth and inhibited malignant progression of BM in vivo without detectable toxicity. Overall, we provided a potential platform based on exosomes for RNA interference (RNAi) therapy in lung cancer BM.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Exosomas , Neoplasias Pulmonares , Animales , Humanos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , ARN Interferente Pequeño/farmacología , Exosomas/metabolismo , Células HEK293 , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo
6.
Cell Death Dis ; 15(4): 253, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594244

RESUMEN

Mitochondria are important for the activation of endothelial cells and the process of angiogenesis. NDUFS8 (NADH:ubiquinone oxidoreductase core subunit S8) is a protein that plays a critical role in the function of mitochondrial Complex I. We aimed to investigate the potential involvement of NDUFS8 in angiogenesis. In human umbilical vein endothelial cells (HUVECs) and other endothelial cell types, we employed viral shRNA to silence NDUFS8 or employed the CRISPR/Cas9 method to knockout (KO) it, resulting in impaired mitochondrial functions in the endothelial cells, causing reduction in mitochondrial oxygen consumption and Complex I activity, decreased ATP production, mitochondrial depolarization, increased oxidative stress and reactive oxygen species (ROS) production, and enhanced lipid oxidation. Significantly, NDUFS8 silencing or KO hindered cell proliferation, migration, and capillary tube formation in cultured endothelial cells. In addition, there was a moderate increase in apoptosis within NDUFS8-depleted endothelial cells. Conversely, ectopic overexpression of NDUFS8 demonstrated a pro-angiogenic impact, enhancing cell proliferation, migration, and capillary tube formation in HUVECs and other endothelial cells. NDUFS8 is pivotal for Akt-mTOR cascade activation in endothelial cells. Depleting NDUFS8 inhibited Akt-mTOR activation, reversible with exogenous ATP in HUVECs. Conversely, NDUFS8 overexpression boosted Akt-mTOR activation. Furthermore, the inhibitory effects of NDUFS8 knockdown on cell proliferation, migration, and capillary tube formation were rescued by Akt re-activation via a constitutively-active Akt1. In vivo experiments using an endothelial-specific NDUFS8 shRNA adeno-associated virus (AAV), administered via intravitreous injection, revealed that endothelial knockdown of NDUFS8 inhibited retinal angiogenesis. ATP reduction, oxidative stress, and enhanced lipid oxidation were detected in mouse retinal tissues with endothelial knockdown of NDUFS8. Lastly, we observed an increase in NDUFS8 expression in retinal proliferative membrane tissues obtained from human patients with proliferative diabetic retinopathy. Our findings underscore the essential role of the mitochondrial protein NDUFS8 in regulating endothelial cell activation and angiogenesis.


Asunto(s)
Angiogénesis , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Movimiento Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , ARN Interferente Pequeño/farmacología , Lípidos/farmacología , Adenosina Trifosfato/farmacología , Proliferación Celular/genética , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo
7.
Eur J Pharm Biopharm ; 199: 114296, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636882

RESUMEN

Small interfering RNA (siRNA) is emerging as a promising treatment for retinal neovascularization due to its specific inhibition of the expression of target genes. However, the clinical translation of siRNA drugs is hindered by the efficiency and safety of delivery vectors. Here, we describe the properties of a new bioreducible ionizable lipid nanoparticle (LNP) 2N12H, which is based on a rationally designed novel ionizable lipid called 2N12B. 2N12H exhibited degradation in response to the mimic cytoplasmic glutathione condition and ionization with a pKa value of 6.5, which remaining neutral at pH 7.4. At a nitrogen to phosphorus ratio of 5, 2N12H efficiently encapsulated and protected siRNA from degradation. Compared to the commercial vehicle Lipofectamine 2000, 2N12H demonstrated similar silencing efficiency and improved safety in the in vitro cell experiments. 2N12H/siVEGFA reduced the expression of VEGFA in retinal pigment epithelium cells and mouse retina, consequently suppressing cell migration and retinal neovascularization. In the mouse model, the therapeutic effect of 2N12H/siVEGFA was comparable to that of the clinical drug ranibizumab. Together, these results suggest the potential of this novel ionizable LNP to facilitate the development of nonviral ocular gene delivery systems.


Asunto(s)
Lípidos , Ratones Endogámicos C57BL , Nanopartículas , ARN Interferente Pequeño , Neovascularización Retiniana , Factor A de Crecimiento Endotelial Vascular , Animales , Nanopartículas/química , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacología , Neovascularización Retiniana/tratamiento farmacológico , Ratones , Lípidos/química , Humanos , Factor A de Crecimiento Endotelial Vascular/genética , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Movimiento Celular/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Ranibizumab/administración & dosificación , Técnicas de Transferencia de Gen , Retina/metabolismo , Retina/efectos de los fármacos
8.
Brain Res Bull ; 211: 110950, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631651

RESUMEN

The aim of this study was to investigate the expression and function of the transient receptor potential vanilloid 1 (TRPV1) in glioma. We found that the expression of TRPV1 mRNA and protein were upregulated in glioma compared with normal brain by qPCR and western blot analysis. In order to investigate the function of TRPV1 in glioma, short hairpin RNA (shRNA) and the inhibitor of TRPV1 were used. In vitro, the activation of TRPV1 induced cell apoptosis with decreased migration capability and inhibited proliferation, which was abolished upon TRPV1 pharmacological inhibition and silencing. Mechanistically, TRPV1 modulated glioma proliferation through the protein kinase B (Akt) signaling pathway. More importantly, in immunodeficient (NOD-SCID) mouse xenograft models, tumor size was significantly increased when TRPV1 expression was disrupted by a shRNA knockdown approach in vivo. Altogether, our findings indicate that TRPV1 negatively controls glioma cell proliferation in an Akt-dependent manner, which suggests that targeting TRPV1 may be a potential therapeutic strategy for glioma.


Asunto(s)
Neoplasias Encefálicas , Proliferación Celular , Glioma , Canales Catiónicos TRPV , Animales , Humanos , Ratones , Apoptosis/fisiología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Glioma/genética , Glioma/metabolismo , Glioma/patología , Ratones Endogámicos NOD , Ratones SCID , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/farmacología , Transducción de Señal/fisiología , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética
9.
Nanomedicine ; 57: 102740, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458368

RESUMEN

Choroidal Neovascularization (CNV) is capable of inciting recurrent hemorrhage in the macular region, severely impairing patients' visual acuity. During the onset of CNV, infiltrating M2 macrophages play a crucial role in promoting angiogenesis. To control this disease, our study utilizes the RNA interference (RNAi)-based gene therapy to reprogram M2 macrophages to the M1 phenotype in CNV lesions. We synthesize the mannose-modified siRNA-loaded liposome specifically targeting M2 macrophages to inhibit the inhibitory kappa B kinase ß (IKKß) gene involved in the polarization of macrophages, consequently modulating macrophage polarization state. In vitro and in vivo, the mannose-modified IKKß siRNA-loaded liposome (siIKKß-ML) has been proven to effectively target M2 macrophages to repolarize them to M1 phenotype, and inhibit the progression of CNV. Collectively, our findings elucidate that siIKKß-ML holds the potential to control CNV by reprogramming the macrophage phenotype, indicating a promising therapeutic avenue for CNV management.


Asunto(s)
Neovascularización Coroidal , Quinasa I-kappa B , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Quinasa I-kappa B/genética , Quinasa I-kappa B/farmacología , Liposomas/farmacología , Manosa , Neovascularización Coroidal/genética , Macrófagos , Terapia Genética
10.
Biomed Pharmacother ; 174: 116437, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522240

RESUMEN

Retinoblastoma (RB) is a type of pediatric solid tumor in the fundus. The lack of precision therapies combined with the difficulty of delivering small interfering RNA (siRNA) into the eyes means that there is currently no nucleic acid-based therapy for RB in clinical practice. Here, we reported on anti-GD2 and glutathione-responsive spherical nucleic acids (SNAs), loaded with siRNA and the inhibitor NVP-CGM097, which jointly blocked the oncogenic factor n in RB cells (Y79 and WERI-RB-1). The SNAs were formed through the self-assembly of bifunctional cholesterol amphiphiles containing aptamers that specifically targeted GD2-positive RB cells, allowing for the formation of an SNA with a dense DNA shell. The aptamer/siRNA component functioned both as a carrier and a payload, enhancing the specific recognition and delivery of both components and constituting an active agent for MDM2 regulation. Following SNA endocytosis by RB cells, siRNA and NVP-CGM097 were released from the SNA particles by glutathione, which synergistically blocked the MDM2-p53 pathway, increasing p53 protein content and inducing cell apoptosis. This study showed a potent antitumor effect following intravitreal injection of SNAs in Y79 tumor-bearing mice through clinical manifestation and tumor pathological analysis. In hematological analysis and hepatotoxicity assays, SNAs were safer for mice than melphalan, the favored drug for treating RB in clinical practice. Our results illustrated the potential of intravitreally injected SNAs as a precision medicine for treating RB.


Asunto(s)
Aptámeros de Nucleótidos , Proteínas Proto-Oncogénicas c-mdm2 , ARN Interferente Pequeño , Retinoblastoma , Animales , Humanos , Ratones , Apoptosis/efectos de los fármacos , Aptámeros de Nucleótidos/farmacología , Línea Celular Tumoral , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Neoplasias de la Retina/tratamiento farmacológico , Neoplasias de la Retina/patología , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/genética , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/patología , Retinoblastoma/metabolismo , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos ICR , Femenino
11.
Biomed Pharmacother ; 174: 116506, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554525

RESUMEN

Combination therapy has become the most important treatment for advanced non-small cell lung cancer (NSCLC), which can significantly improve the prognosis of patients. However, poor targeting and adverse reactions limited its clinical application. Here, we constructed an AS1411 aptamer-programmed cell death ligand-1 (PD-L1) siRNA chimera/polyethylenimine/glutamine/ß-cyclodextrin/doxorubicin (Chimera/ PEI/Gln/ß-CD/DOX) nanoparticle for the combination therapy (chemotherapy combined with immunotherapy). Scanning electron microscopy showed that PEI/Gln/ß-CD/DOX nanoparticle was conical, with a diameter of about 250-500 nm. AS1411 aptamer-PD-L1 siRNA chimera can effectively bind NSCLC cells and inhibit PD-L1 expression, further activating T cells and CD8+T cells. Glutamine modification effectively promoted the doxorubicin uptake by cancer cells and induced their apoptosis. Animal experiments showed that our nanoparticles effectively treated the transplanted tumor, and the adverse reactions were reduced. Compared with the Aptamer/ß-CD/DOX group, the volume and ki-67 index of transplanted tumors in the Chimera/ß-CD/DOX group were significantly decreased, while the apoptosis ratio was increased. Immunohistochemical results showed that Compared with the Aptamer/ß-CD/DOX group, the number of T cells and CD8+T cells in the Chimera/ß-CD/DOX group was increased by 1.34 and 1.41 times. Glutamine modification enhanced the chemotherapeutic efficacy and anti-tumor immune response in vivo. Our study provided a new method for the combination therapy of lung squamous cell carcinoma.


Asunto(s)
Aptámeros de Nucleótidos , Doxorrubicina , Glutamina , Neoplasias Pulmonares , Nanopartículas , ARN Interferente Pequeño , beta-Ciclodextrinas , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Aptámeros de Nucleótidos/farmacología , Animales , Humanos , beta-Ciclodextrinas/química , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacología , Nanopartículas/química , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Línea Celular Tumoral , Ratones Desnudos , Ratones Endogámicos BALB C , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Ratones , Terapia Combinada , Apoptosis/efectos de los fármacos , Antígeno B7-H1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética
12.
Asian Pac J Cancer Prev ; 25(3): 1035-1043, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38546086

RESUMEN

OBJECTIVE: The aim of the present study was to examine whether GLUT1 was involved in the antiproliferative activity of curcumin and doxorubicin by understanding mechanistically how curcumin regulated GLUT1. METHODS: Expression level of GLUT1 in MCF-7 and MDA-MB-231 cells were quantitated using quantitative real-time PCR and western blot. GLUT1 activity was inhibited in MDA-MB-231 cells with the pharmacological inhibitor WZB117 to assess the anti-proliferative effects of doxorubicin using MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide).  To examine cell proliferation, trypan blue assay was used in cells transfected with GLUT1 siRNA or plasmid overexpressing GLUT1 with doxorubicin and/or commercially available curcumin. The role of PPARδ and Akt on the regulation of GLUT1 by curcumin was examined by overexpressing these proteins and western blot was employed to examine their protein expression. RESULTS: The data revealed that there was a 1.5 fold increase in GLUT1 mRNA and protein levels in MDA-MB-231 compared to MCF-7.  By inhibiting GLUT1 in triple negative breast cancer cell line, MDA-MB-231 with either the pharmacological inhibitor WZB117 or with GLUT1 siRNA, we observed the enhanced antiproliferative effects of doxorubicin. Additional observations indicated these effects can be reversed by the overexpression of GLUT1. Treatment of MDA-MB-231 with curcumin also revealed downregulation of GLUT1, with further growth suppressive effects when combined with doxorubicin.  Overexpression of GLUT1 blocked the growth suppressive role of curcumin and doxorubicin (p< 0.05). Mechanistically, we also observed that the regulation of GLUT1 by curcumin was mediated by the Peroxisome proliferator-activated receptor (PPAR) δ/Akt pathway. CONCLUSION: Our study demonstrates that regulation of GLUT1 by curcumin via the PPARδ/Akt signaling improves the efficacy of doxorubicin by promoting its growth inhibitory effects in MDA-MB-231 cells.


Asunto(s)
Neoplasias de la Mama , Curcumina , Hidroxibenzoatos , PPAR delta , Humanos , Femenino , Curcumina/farmacología , Células MDA-MB-231 , PPAR delta/metabolismo , PPAR delta/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transportador de Glucosa de Tipo 1/genética , Doxorrubicina/farmacología , Proliferación Celular , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Línea Celular Tumoral
13.
Phytomedicine ; 127: 155473, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38422972

RESUMEN

BACKGROUND: Doxorubicin (DOX) is widely used for the treatment of a variety of cancers. However, its clinical application is limited by dose-dependent cardiotoxicity. Recent findings demonstrated that autophagy inhibition and apoptosis of cardiomyocytes induced by oxidative stress dominate the pathophysiology of DOX-induced cardiotoxicity (DIC), however, there are no potential molecules targeting on these. PURPOSE: This study aimed to explore whether aucubin (AU) acting on inimitable crosstalk between NRF2 and HIPK2 mediated the autophagy, oxidative stress, and apoptosis in DIC, and provide a new and alternative strategy for the treatment of DIC. METHODS AND RESULTS: We first demonstrated the protection of AU on cardiac structure and function in DIC mice manifested by increased EF and FS values, decreased serum CK-MB and LDH contents and well-aligned cardiac tissue in HE staining. Furthermore, AU alleviated DOX-induced myocardial oxidative stress, mitochondrial damage, apoptosis, and autophagy flux dysregulation in mice, as measured by decreased ROS, 8-OHdG, and TUNEL-positive cells in myocardial tissue, increased SOD and decreased MDA in serum, aligned mitochondria with reduced vacuoles, and increased autophagosomes. In vitro, AU alleviated DOX-induced oxidative stress, autophagy inhibition, and apoptosis by promoting NRF2 and HIPK2 expression. We also identified crosstalk between NRF2 and HIPK2 in DIC as documented by overexpression of NRF2 or HIPK2 reversed cellular oxidative stress, autophagy blocking, and apoptosis aggravated by HIPK2 or NRF2 siRNA, respectively. Simultaneously, AU promoted the expression and nuclear localization of NRF2 protein, which was reversed by HIPK2 siRNA, and AU raised the expression of HIPK2 protein as well, which was reversed by NRF2 siRNA. Crucially, AU did not affect the antitumor activity of DOX against MCF-7 and HepG2 cells, which made up for the shortcomings of previous anti-DIC drugs. CONCLUSION: These collective results innovatively documented that AU regulated the unique crosstalk between NRF2 and HIPK2 to coordinate oxidative stress, autophagy, and apoptosis against DIC without compromising the anti-tumor effect of DOX in vitro.


Asunto(s)
Cardiotoxicidad , Glucósidos Iridoides , Factor 2 Relacionado con NF-E2 , Ratones , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Doxorrubicina/farmacología , Miocitos Cardíacos , Apoptosis , Estrés Oxidativo , ARN Interferente Pequeño/farmacología , Autofagia
14.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397056

RESUMEN

The development of acquired resistance to small molecule tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) signaling has hindered their efficacy in treating non-small cell lung cancer (NSCLC) patients. Our previous study showed that constitutive activation of the 70 kDa ribosomal protein S6 kinase 1 (S6K1) contributes to the acquired resistance to EGFR-TKIs in NSCLC cell lines and xenograft tumors in nude mice. However, the regulatory mechanisms underlying S6K1 constitutive activation in TKI-resistant cancer cells have not yet been explored. In this study, we recapitulated this finding by taking advantage of a gefitinib-resistant patient-derived xenograft (PDX) model established through a number of passages in mice treated with increasing doses of gefitinib. The dissociated primary cells from the resistant PDX tumors (PDX-R) displayed higher levels of phosphor-S6K1 expression and were resistant to gefitinib compared to cells from passage-matched parental PDX tumors (PDX-P). Both genetic and pharmacological inhibition of S6K1 increased sensitivity to gefitinib in PDX-R cells. In addition, both total and phosphorylated mechanistic target of rapamycin kinase (MTOR) levels were upregulated in PDX-R and gefitinib-resistant PC9G cells. Knockdown of MTOR by siRNA decreased the expression levels of total and phosphor-S6K1 and increased sensitivity to gefitinib in PDX-R and PC9G cells. Moreover, a transcription factor ELK1, which has multiple predicted binding sites on the MTOR promoter, was also upregulated in PDX-R and PC9G cells, while the knockdown of ELK1 led to decreased expression of MTOR and S6K1. The chromatin immunoprecipitation (ChIP)-PCR assay showed the direct binding between ELK1 and the MTOR promoter, and the luciferase reporter assay further indicated that ELK1 could upregulate MTOR expression through tuning up its transcription. Silencing ELK1 via siRNA transfection improved the efficacy of gefitinib in PDX-R and PC9G cells. These results support the notion that activation of ELK1/MTOR/S6K1 signaling contributes to acquired resistance to gefitinib in NSCLC. The findings in this study shed new light on the mechanism for acquired EGFR-TKI resistance and provide potential novel strategies by targeting the ELK1/MTOR/S6K1 pathway.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Gefitinib , Neoplasias Pulmonares , Proteína Elk-1 con Dominio ets , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Receptores ErbB/metabolismo , Gefitinib/farmacología , Gefitinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones Desnudos , Proteínas Quinasas S6 Ribosómicas , ARN Interferente Pequeño/farmacología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , /uso terapéutico
15.
Exp Cell Res ; 435(2): 113950, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309674

RESUMEN

The existing knowledge of the involvement of vinculin (VCL) in the control of ovarian cell functions is insufficient. To understand the role of VCL in the control of basic porcine ovarian granulosa cell functions, we decreased VCL activity by small interfering RNA (VCL siRNA). The expression of VCL, accumulation of VCL protein, cell viability, proliferation (accumulation of PCNA and cyclin B1), proportion of proliferative active cells, apoptosis (accumulation of bax, caspase 3, p53, antiapoptotic marker bcl2, and bax/bcl-2 ratio), DNA fragmentation, and release of steroid hormones and IGF-I were analyzed by RT‒qPCR, Trypan blue exclusion test, quantitative immunocytochemistry, XTT assay, TUNEL assay, and ELISA. The suppression of VCL activity inhibited cell viability, the accumulation of the proliferation-related proteins PCNA and cyclin B1, the antiapoptotic protein bcl2, and the proportion of proliferative active cells. Moreover, VCL siRNA inhibited the release of progesterone, estradiol, and IGF-1. VCL siRNA increased the proportion of the proapoptotic proteins bax, caspase 3, p53, the proportion of DNA fragmented cells, and stimulated testosterone release. Taken together, the present study is the first evidence that inhibition of VCL suppresses porcine granulosa cell functions. Moreover, the results suggest that VCL can be a potent physiological stimulator of ovarian functions.


Asunto(s)
Progesterona , Proteína p53 Supresora de Tumor , Femenino , Porcinos , Animales , Ciclina B1/metabolismo , Ciclina B1/farmacología , Caspasa 3/genética , Caspasa 3/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Vinculina/genética , Vinculina/metabolismo , Progesterona/farmacología , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proliferación Celular , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Células Cultivadas , Factor I del Crecimiento Similar a la Insulina/metabolismo
16.
Radiat Oncol ; 19(1): 24, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365710

RESUMEN

Radioresistance is one of the barriers to developing more effective therapies against the most aggressive, triple-negative, breast cancer (TNBC) subtype. In our previous studies, we showed that inhibition of Polo-like Kinase 4 (PLK4) by a novel drug, CFI-400945 significantly enhances the anticancer effects of radiotherapy (RT) compared to single treatment alone. Here we further investigate the role of PLK4 in enhancing radiation effects in TNBC and explore mechanisms of PLK4 inhibition and radiation combinatorial antiproliferative effects. To assess cellular proliferation in response to treatments, we used colony formation assays in TNBC cell lines and patient-derived organoids (PDOs). Downregulation of PLK4 expression was achieved using siRNA silencing in TNBC cell lines. Immunofluorescence against centrin was used to assess the alteration of centriole amplification in response to treatments. We observed that inhibition of PLK4 by CFI-400945 or Centrinone B or its downregulation by siRNA, when combined with RT, resulted in a significant increase in antiproliferative effect in TNBC cells lines and PDOs compared to untreated or single-treated cells. Anticancer synergy was observed using a response matrix in PDOs treated with CFI-400945 and RT. We show that the overamplification of centrioles might be involved in the combined antiproliferative action of RT and PLK4 inhibition. Our data suggest that PLK4 is a promising target for enhancing the anticancer effects of RT in TNBC that, at least in part, is modulated by the overamplification of centrioles. These results support further mechanistic and translational studies of anti-PLK4 agents and RT as an anticancer combination treatment strategy.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/radioterapia , Línea Celular Tumoral , Proliferación Celular , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacología , Tolerancia a Radiación , Proteínas Serina-Treonina Quinasas
17.
J Exp Clin Cancer Res ; 43(1): 65, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38424547

RESUMEN

BACKGROUND: Cingulin (CGN) is a pivotal cytoskeletal adaptor protein located at tight junctions. This study investigates the link between CGN mutation and increased cancer susceptibility through genetic and mechanistic analyses and proposes a potential targeted therapeutic approach. METHODS: In a high-cancer-density family without known pathogenic variants, we performed tumor-targeted and germline whole-genome sequencing to identify novel cancer-associated variants. Subsequently, these variants were validated in a 222 cancer patient cohort, and CGN c.3560C > T was identified as a potential cancer-risk allele. Both wild-type (WT) (c.3560C > C) and variant (c.3560C > T) were transfected into cancer cell lines and incorporated into orthotopic xenograft mice model for evaluating their effects on cancer progression. Western blot, immunofluorescence analysis, migration and invasion assays, two-dimensional gel electrophoresis with mass spectrometry, immunoprecipitation assays, and siRNA applications were used to explore the biological consequence of CGN c.3560C > T. RESULTS: In cancer cell lines and orthotopic animal models, CGN c.3560C > T enhanced tumor progression with reduced sensitivity to oxaliplatin compared to the CGN WT. The variant induced downregulation of epithelial marker, upregulation of mesenchymal marker and transcription factor, which converged to initiate epithelial-mesenchymal transition (EMT). Proteomic analysis was conducted to investigate the elements driving EMT in CGN c.3560C > T. This exploration unveiled overexpression of IQGAP1 induced by the variant, contrasting the levels observed in CGN WT. Immunoprecipitation assay confirmed a direct interaction between CGN and IQGAP1. IQGAP1 functions as a regulator of multiple GTPases, particularly the Rho family. This overexpressed IQGAP1 was consistently associated with the activation of Rac1, as evidenced by the analysis of the cancer cell line and clinical sample harboring CGN c.3560C > T. Notably, activated Rac1 was suppressed following the downregulation of IQGAP1 by siRNA. Treatment with NSC23766, a selective inhibitor for Rac1-GEF interaction, resulted in the inactivation of Rac1. This intervention mitigated the EMT program in cancer cells carrying CGN c.3560C > T. Consistently, xenograft tumors with WT CGN showed no sensitivity to NSC23766 treatment, but NSC23766 demonstrated the capacity to attenuate tumor growth harboring c.3560C > T. CONCLUSIONS: CGN c.3560C > T leads to IQGAP1 overexpression, subsequently triggering Rac1-dependent EMT. Targeting activated Rac1 is a strategy to impede the advancement of cancers carrying this specific variant.


Asunto(s)
Neoplasias , Proteínas de Uniones Estrechas , Animales , Humanos , Ratones , Movimiento Celular , Proteínas del Citoesqueleto/metabolismo , Transición Epitelial-Mesenquimal/genética , Neoplasias/genética , Proteómica , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , ARN Interferente Pequeño/farmacología , Proteínas de Uniones Estrechas/metabolismo
18.
Nucleic Acid Ther ; 34(2): 90-99, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38215303

RESUMEN

RNA interference (RNAi)-based therapeutics hold the potential for dominant genetic disorders, enabling sequence-specific inhibition of pathogenic gene products. We aimed to direct RNAi for the selective suppression of the heterozygous GNAO1 c.607 G > A variant causing GNAO1 encephalopathy. By screening short interfering RNA (siRNA), we showed that GNAO1 c.607G>A is a druggable target for RNAi. The si1488 candidate achieved at least twofold allelic discrimination and downregulated mutant protein to 35%. We created vectorized RNAi by incorporating the si1488 sequence into the short hairpin RNA (shRNA) in the adeno-associated virus (AAV) vector. The shRNA stem and loop were modified to improve the transcription, processing, and guide strand selection. All tested shRNA constructs demonstrated selectivity toward mutant GNAO1, while tweaking hairpin structure only marginally affected the silencing efficiency. The selectivity of shRNA-mediated silencing was confirmed in the context of AAV vector transduction. To conclude, RNAi effectors ranging from siRNA to AAV-RNAi achieve suppression of the pathogenic GNAO1 c.607G>A and discriminate alleles by the single-nucleotide substitution. For gene therapy development, it is crucial to demonstrate the benefit of these RNAi effectors in patient-specific neurons and animal models of the GNAO1 encephalopathy.


Asunto(s)
Encefalopatías , Terapia Genética , Animales , Humanos , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Alelos , Encefalopatías/genética , Vectores Genéticos/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética
19.
Acta Biomater ; 177: 332-346, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38290689

RESUMEN

Trans-mucosal delivery of anti-inflammatory siRNA into alveolar macrophages represents a promising modality for the treatment of acute lung injury (ALI). However, its therapeutic efficacy is often hurdled by the lack of effective carriers that can simultaneously overcome the mucosal barrier and cell membrane barrier. Herein, we developed mucus/cell membrane dual-penetrating, macrophage-targeting polyplexes which enabled efficient intratracheal delivery of TNF-α siRNA (siTNF-α) to attenuate pulmonary inflammation against lipopolysaccharide (LPS)-induced ALI. P-G@Zn, a cationic helical polypeptide bearing both guanidine and zinc dipicolylamine (Zn-DPA) side charged groups, was designed to condense siTNF-α and promote macrophage internalization due to its helicity-dependent membrane activity. Coating of the polyplexes with charge-neutralizing carboxylated mannan (Man-COOH) greatly enhanced the mucus penetration potency due to shielding of the electrostatic adhesive interactions with the mucus, and it cooperatively enabled active targeting to alveolar macrophages to potentiate the intracellular delivery efficiency of siTNF-α. As such, intratracheally administered Man-COOH/P-G@Zn/siTNF-α polyplexes provoked notable TNF-α silencing by ∼75 % in inflamed lung tissues at 500 µg siRNA/kg, and demonstrated potent anti-inflammatory performance to treat ALI. This study provides an effective tool for the synchronized trans-mucosal delivery of siRNA into macrophages, and the unique properties of the polyplexes render remarkable potentials for anti-inflammatory therapy against ALI. STATEMENT OF SIGNIFICANCE: siRNA-mediated anti-inflammatory management of acute lung injury (ALI) is greatly challenged by the insufficient delivery across the mucus layer and cell membrane. To address such critical issue, mucus/cell membrane dual-penetrating, macrophage-targeting polyplexes are herein developed, which are comprised of an outer shell of carboxylated mannan (Man-COOH) and an inner nanocore formed by TNF-α siRNA (siTNF-α) and a cationic helical polypeptide P-G@Zn. Man-COOH coating endowed the polyplexes with high mucus-penetrating capability and macrophage-targeting ability, while P-G@Zn bearing both guanidine and zinc dipicolylamine afforded potent siTNF-α condensation capacity and high intracellular delivery efficiency with reduced cytotoxicity. Intratracheally administered polyplexes solicit pronounced TNF-α silencing and anti-inflammatory efficiencies in ALI mice. This study renders an effective example for overcoming the multiple barriers against trans-mucosal delivery of siRNA into macrophages, and holds profound potentials for gene therapy against ALI.


Asunto(s)
Lesión Pulmonar Aguda , Compuestos Organometálicos , Ácidos Picolínicos , Factor de Necrosis Tumoral alfa , Humanos , Masculino , Ratones , Animales , Interferencia de ARN , Factor de Necrosis Tumoral alfa/metabolismo , Mananos , Pulmón , ARN Interferente Pequeño/farmacología , Lesión Pulmonar Aguda/terapia , Antiinflamatorios/farmacología , Guanidinas
20.
Arthritis Rheumatol ; 76(6): 857-868, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38268500

RESUMEN

OBJECTIVE: The study objective was to assess the role of CCL19+ lymph node stromal cells of the joint-draining popliteal lymph node (pLN) for the development of arthritis. METHODS: CCL19+ lymph node stromal cells were spatiotemporally depleted for five days in the pLN before the onset of collagen-induced arthritis (CIA) using Ccl19-Cre × iDTR mice. In addition, therapeutic treatment with recombinant CCL19-immunoglobulin G (IgG), locally injected in the footpad, was used to confirm the results. RNA sequencing of lymph node stromal cells combined with T cell coculture assays using tropomyosin receptor kinase (Trk) family inhibitors together with in vivo local pLN small interfering RNA (siRNA) treatments were used to elucidate the pathway by which CCL19+ lymph node stromal cells initiate the onset of arthritis. RESULTS: Spatiotemporal depletion of CCL19+ lymph node stromal cells prevented disease onset in CIA mice. These inhibitory effects could be mimicked by local CCL19-IgG treatment. The messenger RNA sequencing analyses showed that CCL19+ lymph node stromal cells down-regulated the expression of the tropomyosin receptor kinase A (TrkA) just before disease onset. Blocking TrkA in lymph node stromal cells led to increased T cell proliferation in in vitro coculture assays. Similar effects were observed with the pan-Trk inhibitor larotrectinib in cocultures of lymph node stromal cells of patients with rheumatoid arthritis and T cells. Finally, local pLN treatment with TrkA inhibitor and TrkA siRNA led to exacerbated arthritis scores. CONCLUSION: CCL19+ lymph node stromal cells are crucially involved in the development of inflammatory arthritis. Therefore, targeting of CCL19+ lymph node stromal cells via TRK could provide a tool to prevent arthritis.


Asunto(s)
Artritis Experimental , Quimiocina CCL19 , Ganglios Linfáticos , Células del Estroma , Animales , Artritis Experimental/patología , Ganglios Linfáticos/patología , Ratones , Quimiocina CCL19/genética , Receptor trkA/genética , Receptor trkA/metabolismo , ARN Interferente Pequeño/farmacología , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA