Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cancer Biomark ; 34(4): 545-553, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35275519

RESUMEN

In this paper, we have studied the role of chromosomal abnormalities in the expression of small nucleolar RNAs (snoRNAs) of radioresistant (K562) and radiosensitive (HL-60) leukemia cell line. Cells were exposed to an X-ray dose of 4 Gy. SnoRNA expression was investigated using NGS sequencing. The distribution of expressed snoRNAs on chromosomes has been found to be different for two cell lines. The most significant differences in the expression of snoRNAs were found in the K562 cell line based on the analysis of the dynamics of log2fc values. The type of clustering, the number and type of snoRNAs slightly differed in the chromosomes with trisomy and monosomy and had a pronounced difference in pairs with marker chromosomes in both cell lines. In this study, we have demonstrated that chromosomal abnormalities alter the expression of snoRNA after irradiation. Trisomies and monosomies do not have such a noticeable effect on the expression of snoRNAs as the presence of marker chromosomes.


Asunto(s)
ARN Nucleolar Pequeño , Tolerancia a Radiación , Línea Celular , Aberraciones Cromosómicas , Análisis por Conglomerados , Humanos , ARN Nucleolar Pequeño/análisis , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Tolerancia a Radiación/genética
2.
Biosci Rep ; 40(7)2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32697317

RESUMEN

BACKGROUND: For lack of accurate early diagnosis and prognostic assessment, hepatocellular carcinoma (HCC) becomes severe challenge with the fourth cancer-related mortality. Recently, non-coding RNA (ncRNA) was identified to make functions in progression of various tumors. Among that, a novel ncRNA, small nucleolar RNA C/D box 31 (SNORD31) was suggested in previous study to function as potential tumor suppressing role. In the present study, we aimed to investigate the expression patterns and clinical significance of SNORD31 in HCC. METHODS: SNORD31 expression was calculated in HCC cell lines as well as clinical specimens by RT-PCR. HCC patients were subdivided into high and low SNORD31 expression groups and their clinical characteristics were compared. Besides, the association between SNORD31 expression and postoperative prognosis was evaluated using Kaplan-Meier and Cox regression analysis. RESULTS: Compared with corresponding normal reference, expression levels of SNORD31 were significantly down-regulated in both HCC cell lines and clinical specimens (P<0.01). Moreover, low SNORD31 expression was remarkably correlated with large tumor diameter, high incidence of vessel carcinoma embolus and capsular invasion, severe tumor differentiation and tumor-node-metastasis (TNM) stage (P<0.05). In the following analysis, HCC patients with low SNORD31 expression were independently inclined with poor tumor-free (median time: 9.17 vs 48.8 months, low vs high, P<0.001) as well as long-term survival (LTS; median time: 40.26 vs 55.41 months, low vs high, P=0.002). CONCLUSIONS: The ncRNA SNORD31 was proved to be commonly down-regulated in HCC and was independently associated with multiple malignant characteristics and long-term prognosis of HCC patients, which implied that SNORD31 possessed potential as a novel HCC biomarker.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/diagnóstico , Recurrencia Local de Neoplasia/epidemiología , ARN Nucleolar Pequeño/metabolismo , Biomarcadores de Tumor/análisis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/cirugía , Línea Celular Tumoral , Supervivencia sin Enfermedad , Regulación hacia Abajo , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Hepatectomía , Humanos , Estimación de Kaplan-Meier , Hígado/patología , Hígado/cirugía , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/cirugía , Masculino , Persona de Mediana Edad , Invasividad Neoplásica/genética , Recurrencia Local de Neoplasia/genética , Estadificación de Neoplasias , Pronóstico , ARN Nucleolar Pequeño/análisis
3.
Biopreserv Biobank ; 16(6): 467-476, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30234371

RESUMEN

Although there are millions of formalin-fixed paraffin-embedded (FFPE) tissue blocks potentially available for scientific research, many are of questionable quality, partly due to unknown fixation conditions. We analyzed FFPE tissue biospecimens as part of the NCI Biospecimen Preanalytical Variables (BPV) program to identify microRNA (miRNA) markers for fixation time. miRNA was extracted from kidney and ovary tumor FFPE blocks (19 patients, cold ischemia ≤2 hours) with 6, 12, 24, and 72 hours fixation times, then analyzed using the WaferGen SmartChip platform (miRNA chip with 1036 miRNA targets). For fixation time, principal component analysis of miRNA chip expression data separated 72 hours fixed samples from 6 to 24 hours fixed samples. A set of small nuclear RNA (snRNA) targets was identified that best determines fixation time and was validated using a second independent cohort of seven different tissue types. A customized assay was then developed, based on a set of 24 miRNA and snRNA targets, and a simple "snoRNA score" defined. This score detects FFPE tissue samples with fixation for 72 hours or more, with 79% sensitivity and 80% specificity. It can therefore be used to assess the fitness-for-purpose of FFPE samples for DNA or RNA-based research or clinical assays, which are known to be of limited robustness to formalin overfixation.


Asunto(s)
ARN Nucleolar Pequeño/análisis , Bancos de Tejidos/normas , Fijación del Tejido/métodos , Femenino , Fijadores , Formaldehído , Humanos , Riñón/química , MicroARNs/análisis , MicroARNs/genética , MicroARNs/normas , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Neoplasias Ováricas/química , Neoplasias Ováricas/genética , Adhesión en Parafina , Control de Calidad , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/normas , Fijación del Tejido/normas
4.
Blood Adv ; 2(2): 151-163, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29365324

RESUMEN

Small nucleolar RNAs (snoRNAs) are noncoding RNAs that contribute to ribosome biogenesis and RNA splicing by modifying ribosomal RNA and spliceosome RNAs, respectively. We optimized a next-generation sequencing approach and a custom analysis pipeline to identify and quantify expression of snoRNAs in acute myeloid leukemia (AML) and normal hematopoietic cell populations. We show that snoRNAs are expressed in a lineage- and development-specific fashion during hematopoiesis. The most striking examples involve snoRNAs located in 2 imprinted loci, which are highly expressed in hematopoietic progenitors and downregulated during myeloid differentiation. Although most snoRNAs are expressed at similar levels in AML cells compared with CD34+, a subset of snoRNAs showed consistent differential expression, with the great majority of these being decreased in the AML samples. Analysis of host gene expression, splicing patterns, and whole-genome sequence data for mutational events did not identify transcriptional patterns or genetic alterations that account for these expression differences. These data provide a comprehensive analysis of the snoRNA transcriptome in normal and leukemic cells and should be helpful in the design of studies to define the contribution of snoRNAs to normal and malignant hematopoiesis.


Asunto(s)
Perfilación de la Expresión Génica , Hematopoyesis/genética , Leucemia Mieloide Aguda/genética , ARN Nucleolar Pequeño/genética , Adulto , Anciano , Empalme Alternativo , Femenino , Humanos , Masculino , Persona de Mediana Edad , ARN Nucleolar Pequeño/análisis
5.
Gastroenterology ; 153(1): 292-306.e2, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28390868

RESUMEN

BACKGROUND & AIMS: Small nucleolar noncoding RNAs (snoRNAs) regulate function of ribosomes, and specific snoRNAs are dysregulated in some cancer cells. We investigated dysregulation of snoRNAs in pancreatic ductal adenocarcinoma (PDAC) cells. METHODS: We investigated snoRNA expression in PDAC cell lines by complementary DNA microarray and quantitative reverse transcription polymerase chain reaction. In PDAC (n = 133), intraductal papillary mucinous neoplasm (n = 16), mucinous cystic neoplasm-associated PDAC (n = 1), and non-tumor pancreas (n = 8) and liver (n = 3) tissues from subjects who underwent surgical resection, levels of snoRNA were measured by quantitative reverse transcription polymerase chain reaction and compared with clinicopathologic parameters and survival times determined by Kaplan-Meier analysis. To examine snoRNA function, PDAC cells were transfected with snoRNA-antisense oligonucleotides flanked with amido-bridged nucleic acids, or snoRNA-expression plasmids, and analyzed in proliferation, colony formation, spheroid formation, and invasion assays. To identify snoRNA-related factors, cells were analyzed by gene expression and proteomic profiling and immunoblot assays. Mice were given intrasplenic injections of MIA PaCa2- or Suit2-HLMC cells; tumor-bearing nude mice were then given 3 weekly injections of an antisense oligonucleotides against SNORA23, a H/ACA-box type snoRNA, and tumor growth and metastasis to liver, blood, and pancreas were analyzed. RESULTS: Levels of SNORA23 increased and accumulated at the nucleolus in highly metastatic MIA PaCa2- or Suit2-HLMC cells compared with their parental cells. We detected SNORA23 in human PDAC specimens but not in non-tumor pancreatic tissue. PDAC level of SNORA23 correlated with invasion grade and correlated inversely with disease-free survival time of patients. Expression of SNORA23 in PDAC cells increased their invasive activity and colony formation, and spheroid formation was inhibited by SNORA23 knockdown. In gene expression and proteomic profile analyses, we found SNORA23 to increase expression of spectrin repeat-containing nuclear envelope 2 (SYNE2) messenger RNA and protein. Knockdown of SYNE2 in PDAC cells reduced their invasive activities and anchor-independent survival. Administration of SNORA23 antisense oligonucleotides to mice slowed growth of xenograft tumors, tumor expression of SYNE2, tumor cell dissemination, and metastasis to liver. CONCLUSIONS: We found expression of the snoRNA SNORA23, which mediates sequence-specific pseudouridylation of ribosomal RNAs, to be increased in human PDAC tissues compared with non-tumor tissues, and levels to correlate with tumor invasion grade and patient survival time. SNORA23 increases expression of SYNE2, possibly through modulation of ribosome biogenesis, to promote PDAC cell survival and invasion, and growth and metastasis of xenograft tumors in mice.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/secundario , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/secundario , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , ARN Nucleolar Pequeño/genética , Animales , Carcinoma Ductal Pancreático/química , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Proliferación Celular/genética , ADN Complementario/análisis , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Carioferinas/genética , Masculino , Ratones , Proteínas de Microfilamentos/metabolismo , Persona de Mediana Edad , Invasividad Neoplásica/genética , Trasplante de Neoplasias , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Oligonucleótidos Antisentido/uso terapéutico , Páncreas/química , Neoplasias Pancreáticas/química , Proteoma , ARN Mensajero/metabolismo , ARN Nucleolar Pequeño/análisis , ARN Nucleolar Pequeño/antagonistas & inhibidores , ARN Nucleolar Pequeño/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Esferoides Celulares , Tasa de Supervivencia , Transfección , Regulación hacia Arriba
6.
J Gastroenterol ; 51(10): 1022-30, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26874844

RESUMEN

BACKGROUND: The spectrum of nonalcoholic fatty liver disease (NAFLD) describes disease conditions deteriorating from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) to cirrhosis (CIR) to hepatocellular carcinoma (HCC). From a molecular and biochemical perspective, our understanding of the etiology of this disease is limited by the broad spectrum of disease presentations, the lack of a thorough understanding of the factors contributing to disease susceptibility, and ethical concerns related to repeat sampling of the liver. To better understand the factors associated with disease progression, we investigated by next-generation RNA sequencing the altered expression of microRNAs (miRNAs) in liver biopsies of class III obese subjects (body mass index ≥40 kg/m(2)) biopsied at the time of elective bariatric surgery. METHODS: Clinical characteristics and unbiased RNA expression profiles for 233 miRs, 313 transfer RNAs (tRNAs), and 392 miscellaneous small RNAs (snoRNAs, snRNAs, rRNAs) were compared among 36 liver biopsy specimens stratified by disease severity. RESULTS: The abundances of 3 miRNAs that were found to be differentially regulated (miR-301a-3p and miR-34a-5p increased and miR-375 decreased) with disease progression were validated by RT-PCR. No tRNAs or miscellaneous RNAs were found to be associated with disease severity. Similar patterns of increased miR-301a and decreased miR-375 expression were observed in 134 hepatocellular carcinoma (HCC) samples deposited in The Cancer Genome Atlas (TCGA). CONCLUSIONS: Our analytical results suggest that NAFLD severity is associated with a specific pattern of altered hepatic microRNA expression that may drive the hallmark of this disorder: altered lipid and carbohydrate metabolism. The three identified miRNAs can potentially be used as biomarkers to access the severity of NAFLD. The persistence of this miRNA expression pattern in an external validation cohort of HCC samples suggests that specific microRNA expression patterns may permit and/or sustain NAFLD development to HCC.


Asunto(s)
Carcinoma Hepatocelular/química , Neoplasias Hepáticas/química , MicroARNs/análisis , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Índice de Severidad de la Enfermedad , Adulto , Biomarcadores/análisis , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Obesidad/complicaciones , ARN Ribosómico/análisis , ARN Nucleolar Pequeño/análisis , ARN de Transferencia/análisis
7.
Nucleic Acids Res ; 43(19): e126, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26101260

RESUMEN

Elucidating the dynamic organization of nuclear RNA foci is important for understanding and manipulating these functional sites of gene expression in both physiological and pathological states. However, such studies have been difficult to establish in vivo as a result of the absence of suitable RNA imaging methods. Here, we describe a high-resolution fluorescence RNA imaging method, ECHO-liveFISH, to label endogenous nuclear RNA in living mice and chicks. Upon in vivo electroporation, exciton-controlled sequence-specific oligonucleotide probes revealed focally concentrated endogenous 28S rRNA and U3 snoRNA at nucleoli and poly(A) RNA at nuclear speckles. Time-lapse imaging reveals steady-state stability of these RNA foci and dynamic dissipation of 28S rRNA concentrations upon polymerase I inhibition in native brain tissue. Confirming the validity of this technique in a physiological context, the in vivo RNA labeling did not interfere with the function of target RNA nor cause noticeable cytotoxicity or perturbation of cellular behavior.


Asunto(s)
Hibridación Fluorescente in Situ/métodos , ARN/análisis , Animales , Movimiento Celular , Núcleo Celular/genética , Cerebelo/química , Cerebelo/citología , Embrión de Pollo , Células HeLa , Humanos , Células MCF-7 , Ratones Endogámicos ICR , Sondas de Oligonucleótidos/síntesis química , Sondas de Oligonucleótidos/química , Imagen Óptica , ARN/metabolismo , ARN Ribosómico 28S/análisis , ARN Nucleolar Pequeño/análisis , Imagen de Lapso de Tiempo
8.
Int J Cancer ; 136(6): E623-9, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25159866

RESUMEN

Emerging evidence indicates that small nucleolar RNAs (snoRNAs), a class of small noncoding RNAs, may play important function in tumorigenesis. Nonsmall-cell lung cancer (NSCLC) is the number one cancer killer for men and women. Systematically characterizing snoRNAs in NSCLC will develop biomarkers for its early detection and prognostication. We used next-generation deep sequencing to comprehensively characterize snoRNA profiles in 12 NSCLC tissues. We used quantitative reverse transcription polymerase chain reaction (qRT-PCR) to verify the findings in 40 surgical Stage I NSCLC specimens and 126 frozen NSCLC tissues of different stages. The 126 NSCLC tissues were divided into a training set and a testing set. Deep sequencing identified 458 snoRNAs, of which, 29 had a ≥3.0-fold expression level change in Stage I NSCLC tissues versus normal tissues. qRT-PCR analysis showed that 16 of 29 snoRNAs exhibited consistent changes with deep sequencing data. The 16 snoRNAs exhibited 0.75-0.94 area under receiver-operator characteristic curve values in distinguishing lung tumor from normal lung tissues (all ≤0.0001) with 70.0-95.0% sensitivity and 70.0-95.0% specificity. Six genes (snoRA47, snoRA68, snoRA78, snoRA21, snoRD28 and snoRD66) were identified whose expressions were associated with overall survival of the NSCLC patients. A prediction model consisting of three genes (snoRA47, snoRA68 and snoRA78) was developed in the training set of 77 cases, which could significantly predict overall survival of the NSCLC patients (p < 0.0001). The prognostic performance of the prediction model was confirmed in the testing set of 49 NSCLC patients. The identified snoRNA signatures may provide potential biomarkers for the early detection and prognostication of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias Pulmonares/genética , ARN Nucleolar Pequeño/análisis , Anciano , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Modelos de Riesgos Proporcionales , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Cancer Biother Radiopharm ; 29(3): 135-41, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24502193

RESUMEN

The irradiated cells communicate with unirradiated cells and induce changes in them through a phenomenon known as the bystander effect. The nature of the bystander signal and how it impacts unirradiated cells remains to be discovered. Examination of molecular changes could lead to the identification of pathways underlying the bystander effect. Apart from microRNAs, little is known about the regulation of other non-coding RNAs (ncRNA) in irradiated or bystander cells. In this study we monitored the transcriptional changes of several small nucleolar RNAs (snoRNAs) host genes and long non-coding RNAs (lncRNAs) that are known to participate in a variety of cellular functions, in irradiated and bystander cells to gain insight into the molecular pathways affected in these cells. We used human lymphoblasts TK6 cells in a medium exchanged bystander effect model system to examine ncRNA expression alterations. The snoRNA host genes SNHG1 and SNHG4 were upregulated in irradiated TK6 cells but were repressed in bystander cells. The SNHG5 and SNHG11 were downregulated in irradiated and bystander cells and the expression levels of these ncRNA were significantly lower in bystander cells. The lncRNA MALAT1, MATR3, SRA1, and SOX2OT were induced in irradiated TK6 cells and their expression levels were repressed in bystander cells. The lncRNA RMST was induced in both irradiated and bystander cells. Taken together, these results indicate that expression levels of ncRNA are modulated in irradiated and bystander cells and these transcriptional changes could be associated with the bystander effect.


Asunto(s)
Efecto Espectador , ARN Largo no Codificante/análisis , ARN Nucleolar Pequeño/análisis , Células Cultivadas , Humanos , Linfocitos/metabolismo , Linfocitos/efectos de la radiación
11.
Br J Cancer ; 104(7): 1168-77, 2011 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-21407217

RESUMEN

BACKGROUND: To investigate small-nucleolar RNAs (snoRNAs) as reference genes when measuring miRNA expression in tumour samples, given emerging evidence for their role in cancer. METHODS: Four snoRNAs, commonly used for normalisation, RNU44, RNU48, RNU43 and RNU6B, and miRNA known to be associated with pathological factors, were measured by real-time polymerase chain reaction in two patient series: 219 breast cancer and 46 head and neck squamous cell carcinoma (HNSCC). SnoRNA and miRNA were then correlated with clinicopathological features and prognosis. RESULTS: Small-nucleolar RNA expression was as variable as miRNA expression (miR-21, miR-210, miR-10b). Normalising miRNA PCR expression data to these recommended snoRNAs introduced bias in associations between miRNA and pathology or outcome. Low snoRNA expression correlated with markers of aggressive pathology. Low levels of RNU44 were associated with a poor prognosis. RNU44 is an intronic gene in a cluster of highly conserved snoRNAs in the growth arrest specific 5 (GAS5) transcript, which is normally upregulated to arrest cell growth under stress. Low-tumour GAS5 expression was associated with a poor prognosis. RNU48 and RNU43 were also identified as intronic snoRNAs within genes that are dysregulated in cancer. CONCLUSION: Small-nucleolar RNAs are important in cancer prognosis, and their use as reference genes can introduce bias when determining miRNA expression.


Asunto(s)
Neoplasias de la Mama/genética , MicroARNs/análisis , ARN Nucleolar Pequeño/fisiología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Carcinoma/genética , Carcinoma de Células Escamosas , Femenino , Neoplasias de Cabeza y Cuello/genética , Humanos , Neoplasias de Células Escamosas/genética , Pronóstico , ARN Nucleolar Pequeño/análisis , Carcinoma de Células Escamosas de Cabeza y Cuello
12.
J Mol Biol ; 354(5): 1118-28, 2005 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-16289115

RESUMEN

The encapsidation signal (Psi) of retroviruses is located in the 5' UTR of the viral genomic unspliced transcript and is highly structured. In the Psi of murine leukaemia virus (MuLV), four stem-loops, called A, B, C and D, promote dimerization and encapsidation of the MuLV unspliced RNA into virions. Through analysis of Psi-deleted transcripts, we found that the AB and CD motifs independently enhanced the cytoplasmic accumulation of RNAs. Furthermore, we showed that over-expression of the Psi sequence in the infected cells led to a competition with the nuclear export of unspliced MuLV transcripts, revealing a new function for these stem-loops in the transport of viral intron-containing RNAs from the nucleus to the cytoplasm.


Asunto(s)
Cápside/metabolismo , Núcleo Celular/metabolismo , Virus de la Leucemia Murina de Moloney/genética , ARN Viral/análisis , ARN Viral/metabolismo , Regiones no Traducidas 5' , Transporte Activo de Núcleo Celular , Animales , Fraccionamiento Celular , Citoplasma/metabolismo , Dimerización , Colorantes Fluorescentes , Hibridación Fluorescente in Situ , Indoles , Intrones , Ratones , Microscopía Fluorescente , Virus de la Leucemia Murina de Moloney/química , Mutación , Células 3T3 NIH , Conformación de Ácido Nucleico , Empalme del ARN , ARN Ribosómico/análisis , ARN Ribosómico/química , ARN Nucleolar Pequeño/análisis , ARN Nucleolar Pequeño/metabolismo , ARN de Transferencia/análisis , ARN de Transferencia/química , ARN Viral/química , ARN Viral/aislamiento & purificación , Transfección , Virión/química , Virión/genética , Replicación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA