Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34681674

RESUMEN

The role of the essential trace element selenium in hypothalamic physiology has begun to come to light over recent years. Selenium is used to synthesize a family of proteins participating in redox reactions called selenoproteins, which contain a selenocysteine residue in place of a cysteine. Past studies have shown that disrupted selenoprotein expression in the hypothalamus can adversely impact energy homeostasis. There is also evidence that selenium supports leptin signaling in the hypothalamus by maintaining proper redox balance. In this study, we generated mice with conditional knockout of the selenocysteine tRNA[Ser]Sec gene (Trsp) in an orexigenic cell population called agouti-related peptide (Agrp)-positive neurons. We found that female TrspAgrpKO mice gain less weight while on a high-fat diet, which occurs due to changes in adipose tissue activity. Female TrspAgrpKO mice also retained hypothalamic sensitivity to leptin administration. Male mice were unaffected, however, highlighting the sexually dimorphic influence of selenium on neurobiology and energy homeostasis. These findings provide novel insight into the role of selenoproteins within a small yet heavily influential population of hypothalamic neurons.


Asunto(s)
Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa , Leptina/farmacología , Neuronas/metabolismo , ARN de Transferencia Aminoácido-Específico/genética , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Animales , Dióxido de Carbono/metabolismo , Metabolismo Energético , Femenino , Prueba de Tolerancia a la Glucosa , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Obesidad/patología , Obesidad/veterinaria , ARN de Transferencia Aminoácido-Específico/metabolismo , Transducción de Señal
2.
Arch Biochem Biophys ; 690: 108467, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32592804

RESUMEN

Increasing evidence demonstrates that tRNA-derived fragments (tRFs) exert important effects and are dysregulated in various human cancer types. However, their roles in gastric cancer (GC) remain unknown. Here we identified the functional effects of tRF-3019a (derived from tRNA-Ala-AGC-1-1) in GC. We demonstrated that tRF-3019a was upregulated in GC tissues and cell lines. Phenotypic studies revealed that tRF-3019a overexpression enhances GC cell proliferation, migration and invasion. Conversely, tRF-3019a knockdown inhibits GC cell malignant activities. Mechanistic investigation implies that tRF-3019a directly regulates tumor suppressor gene FBXO47. Furthermore, tRF-3019a levels may discriminate GC tissues from nontumorous tissues. Taken together, our results reveal that tRF-3019a modulates GC cell proliferation, migration and invasion by targeting FBXO47, and it may serve as a potential diagnostic biomarker for GC.


Asunto(s)
ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia/metabolismo , Neoplasias Gástricas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuencia de Bases , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Conformación de Ácido Nucleico , Transfección
3.
Biochim Biophys Acta Proteins Proteom ; 1868(8): 140438, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32330624

RESUMEN

tRNA synthetases are responsible for decoding the molecular information, from codons to amino acids. Seryl-tRNA synthetase (SerRS), besides the five isoacceptors of tRNASer, recognizes tRNA[Ser]Sec for the incorporation of selenocysteine (Sec, U) into selenoproteins. The selenocysteine synthesis pathway is known and is dependent on several protein-protein and protein-RNA interactions. Those interactions are not fully described, in particular, involving tRNA[Ser]Sec and SerRS. Here we describe the molecular interactions between the Escherichia coli Seryl-tRNA synthetase (EcSerRS) and tRNA[Ser]Sec in order to determine their specificity, selectivity and binding order, leading to tRNA aminoacylation. The dissociation constant of EcSerRS and tRNA[Ser]Sec was determined as (126 ± 20) nM. We also demonstrate that EcSerRS binds initially to tRNA[Ser]Sec in the presence of ATP for further recognition by E. coli selenocysteine synthetase (EcSelA) for Ser to Sec conversion. The proposed studies clarify the mechanism of tRNA[Ser]Sec incorporation in Bacteria as well as of other domains of life.


Asunto(s)
Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN de Transferencia Aminoácido-Específico/metabolismo , ARN de Transferencia de Cisteína/metabolismo , Serina-ARNt Ligasa/metabolismo , Transferasas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Escherichia coli/genética , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia de Cisteína/genética , Serina-ARNt Ligasa/genética , Termodinámica , Aminoacilación de ARN de Transferencia/genética , Transferasas/genética
4.
Cells ; 8(6)2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31212706

RESUMEN

The translation of selenoprotein mRNAs involves a non-canonical ribosomal event in which an in-frame UGA is recoded as a selenocysteine (Sec) codon instead of being read as a stop codon. The recoding machinery is centered around two dedicated RNA components: The selenocysteine insertion sequence (SECIS) located in the 3' UTR of the mRNA and the selenocysteine-tRNA (Sec-tRNA[Ser]Sec). This translational UGA-selenocysteine recoding event by the ribosome is a limiting stage of selenoprotein expression. Its efficiency is controlled by the SECIS, the Sec-tRNA[Ser]Sec and their interacting protein partners. In the present work, we used a recently developed CRISPR strategy based on murine leukemia virus-like particles (VLPs) loaded with Cas9-sgRNA ribonucleoproteins to inactivate the Sec-tRNA[Ser]Sec gene in human cell lines. We showed that these CRISPR-Cas9-VLPs were able to induce efficient genome-editing in Hek293, HepG2, HaCaT, HAP1, HeLa, and LNCaP cell lines and this caused a robust reduction of selenoprotein expression. The alteration of selenoprotein expression was the direct consequence of lower levels of Sec-tRNA[Ser]Sec and thus a decrease in translational recoding efficiency of the ribosome. This novel strategy opens many possibilities to study the impact of selenoprotein deficiency in hard-to-transfect cells, since these CRISPR-Cas9-VLPs have a wide tropism.


Asunto(s)
Sistemas CRISPR-Cas/genética , Codón de Terminación/genética , ARN de Transferencia Aminoácido-Específico/genética , Ribosomas/metabolismo , Selenocisteína/metabolismo , Virión/metabolismo , Secuencia de Bases , Edición Génica , Células HEK293 , Células HeLa , Humanos , Mutación INDEL/genética , Conformación de Ácido Nucleico , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia Aminoácido-Específico/química , Selenio/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo
5.
PLoS Comput Biol ; 13(2): e1005383, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28192430

RESUMEN

Selenocysteine (Sec) is known as the 21st amino acid, a cysteine analogue with selenium replacing sulphur. Sec is inserted co-translationally in a small fraction of proteins called selenoproteins. In selenoprotein genes, the Sec specific tRNA (tRNASec) drives the recoding of highly specific UGA codons from stop signals to Sec. Although found in organisms from the three domains of life, Sec is not universal. Many species are completely devoid of selenoprotein genes and lack the ability to synthesize Sec. Since tRNASec is a key component in selenoprotein biosynthesis, its efficient identification in genomes is instrumental to characterize the utilization of Sec across lineages. Available tRNA prediction methods fail to accurately predict tRNASec, due to its unusual structural fold. Here, we present Secmarker, a method based on manually curated covariance models capturing the specific tRNASec structure in archaea, bacteria and eukaryotes. We exploited the non-universality of Sec to build a proper benchmark set for tRNASec predictions, which is not possible for the predictions of other tRNAs. We show that Secmarker greatly improves the accuracy of previously existing methods constituting a valuable tool to identify tRNASec genes, and to efficiently determine whether a genome contains selenoproteins. We used Secmarker to analyze a large set of fully sequenced genomes, and the results revealed new insights in the biology of tRNASec, led to the discovery of a novel bacterial selenoprotein family, and shed additional light on the phylogenetic distribution of selenoprotein containing genomes. Secmarker is freely accessible for download, or online analysis through a web server at http://secmarker.crg.cat.


Asunto(s)
Mapeo Cromosómico/métodos , Marcadores Genéticos/genética , Genoma/genética , Ensayos Analíticos de Alto Rendimiento/métodos , ARN de Transferencia Aminoácido-Específico/genética , Aminoacil-ARN de Transferencia/genética , Algoritmos , Componentes Genómicos/genética , Selenocisteína
6.
Methods ; 113: 13-26, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27713080

RESUMEN

The covalent coupling of cognate amino acid-tRNA pairs by corresponding aminoacyl-tRNA synthetases (aaRS) defines the genetic code and provides aminoacylated tRNAs for ribosomal protein synthesis. Besides the cognate substrate, some non-cognate amino acids may also compete for tRNA aminoacylation. However, their participation in protein synthesis is generally prevented by an aaRS proofreading activity located in the synthetic site and in a separate editing domain. These mechanisms, coupled with the ability of certain aaRSs to discriminate well against non-cognate amino acids in the synthetic reaction alone, define the accuracy of the aminoacylation reaction. aaRS quality control may also act as a gatekeeper for the standard genetic code and prevents infiltration by natural amino acids that are not normally coded for protein biosynthesis. This latter finding has reinforced interest in understanding the principles that govern discrimination against a range of potential non-cognate amino acids. This paper presents an overview of the kinetic assays that have been established for monitoring synthetic and editing reactions with cognate and non-cognate amino acid substrates. Taking into account the peculiarities of non-cognate reactions, the specific controls needed and the dedicated experimental designs are discussed in detail. Kinetic partitioning within the synthetic and editing sites controls the balance between editing and aminoacylation. We describe in detail steady-state and single-turnover approaches for the analysis of synthetic and editing reactions, which ultimately enable mechanisms of amino acid discrimination to be determined.


Asunto(s)
Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Pruebas de Enzimas , Edición de ARN , ARN de Transferencia Aminoácido-Específico/genética , Aminoacilación de ARN de Transferencia , Adenosina Trifosfato/metabolismo , Aminoacil-ARNt Sintetasas/genética , Código Genético , Hidrólisis , Cinética , ARN de Transferencia Aminoácido-Específico/metabolismo , Especificidad por Sustrato
7.
Yi Chuan ; 36(2): 127-34, 2014 Feb.
Artículo en Chino | MEDLINE | ID: mdl-24846941

RESUMEN

Mitochondrial tRNA genes are the hot spots for mutations associated with essential hypertension. We report here the clinical and molecular genetic characterization of two Han Chinese pedigrees with materially inherited essential hypertension. Clinical evaluation revealed the variable severity and age-at-onset of hypertension among matrilineal relatives. In particular, the age-at-onset of hypertension in the maternal kindred ranged from 36 years to 79 years. The sequence analysis of entire mitochondrial genome in two probands showed that two probands carried the identical homoplasmic tRNAMet/tRNAGlnA4401G and tRNACysG5821A mutations and distinct sets of polymorphisms belonging to East Asian haplogroup C. The A4401G mutation may affect the processing of the precursors of tRNAMet and tRNAGln , thereby altering the tRNA metabolism. The tRNACys G5821A mutation is located in the acceptor stem of tRNACys. This mutation may abol-ish the predicted G6-C67 pairing and consequently affect the structure and stability of mitochondrial tRNACys, thereby leading to mitochondrial dysfunction. Therefore, these data suggested that the tRNAMet/tRNAGlnA4401G and tRNACys G5821A mutations are likely associated with essential hypertension in these two Chinese pedigrees.


Asunto(s)
Pueblo Asiatico/etnología , Etnicidad/genética , Hipertensión/genética , Mitocondrias/genética , Mutación , Linaje , ARN de Transferencia Aminoácido-Específico/genética , Adulto , Anciano , Anciano de 80 o más Años , Pueblo Asiatico/genética , Secuencia de Bases , Niño , Femenino , Genotipo , Humanos , Hipertensión/etnología , Masculino , Persona de Mediana Edad , ARN de Transferencia de Cisteína/genética , ARN de Transferencia de Glutamina/genética , ARN de Transferencia de Metionina/genética
8.
Cancer Prev Res (Phila) ; 7(8): 835-44, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24866179

RESUMEN

Oxidative stress accelerates the pathogenesis of a number of chronic diseases including cancer growth and its metastasis. Transcription factor NF-E2-related factor-2 (Nrf2), which regulates the cellular defense system against oxidative stress, elicits essential protection against chemical-induced carcinogenic insults. We recently demonstrate that the systemic deletion of Nrf2 leads to an increased susceptibility to cancer metastasis, which is associated with aberrant reactive oxygen species (ROS) accumulation in myeloid-derived suppressor cells (MDSC). However, it remains elusive whether cellular antioxidant defense system in the myeloid lineage cells plays indispensable roles for metastatic cancer progression. We herein found that myeloid lineage-specific Nrf2-deficient mice exhibited an increased susceptibility to pulmonary metastasis of the mouse Lewis lung carcinoma cells, and ROS level was more highly elevated in MDSCs of cancer-bearing Nrf2-deficient mice. Similarly, myeloid lineage-specific deletion of selenocysteine-tRNA gene (Trsp), which is essential for synthesis of antioxidant selenoenzymes, resulted in increased number of metastatic nodules along with ROS accumulation in MDSCs of cancer-bearing mice. These results thus indicate that the antioxidant systems directed by Nrf2 and selenoenzymes contribute to the clearance of ROS in MDSCs, efficiently preventing cancer cell metastasis. Consistent with this notion, a synthetic triterpenoid 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole (CDDO-Im), a potent Nrf2 inducer, attenuated the ROS production in MDSCs, and thereafter reduced metastatic nodules. Taken together, this study provides compelling lines of evidence that Nrf2 inducer retains therapeutic efficacy against cancer cell metastasis.


Asunto(s)
Antioxidantes/metabolismo , Células Mieloides/citología , Metástasis de la Neoplasia , Neoplasias/metabolismo , Estrés Oxidativo , Animales , Línea Celular Tumoral , Linaje de la Célula , Eliminación de Gen , Imidazoles/química , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Trasplante de Neoplasias , Neoplasias/patología , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , Especies Reactivas de Oxígeno/metabolismo
9.
Am J Pathol ; 184(3): 871-7, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24447801

RESUMEN

Although various lines of evidence suggest that oxidative stress plays a role in human prostate cancer initiation and progression, there is a paucity of direct evidence for its role in tumor initiation. To begin to address this issue, we developed a novel tumorigenesis model by reducing the expression of multiple selenoproteins (SPs) in mouse prostatic epithelium. This was accomplished via the prostate-specific deletion of Trsp, a gene that encodes a transfer RNA (Sec tRNA) required for the insertion of selenocysteine residues into SPs during their translation. By 6 weeks of age, Trsp-deficient mice exhibited widespread prostatic intraepithelial neoplasia lesions in all prostatic lobes, which then progressed to high-grade dysplasia and microinvasive carcinoma by 24 weeks. In contrast to other murine prostate cancer models, Trsp-deficient mice required neither the deletion of a tumor suppressor nor the transgenic introduction of an oncogene for prostatic intraepithelial neoplasia lesion development. In keeping with the antioxidant functions of several SPs, we found increases in lipid peroxidation markers in Trsp-deficient epithelial cells. This novel model of prostate neoplasia provides evidence for the existence of a selenoprotein or selenoproteins capable of acting as a tumor suppressor in the murine prostate.


Asunto(s)
Neoplasia Intraepitelial Prostática/patología , Neoplasias de la Próstata/genética , ARN de Transferencia Aminoácido-Específico/genética , Animales , Progresión de la Enfermedad , Epitelio/patología , Eliminación de Gen , Genes Supresores de Tumor , Humanos , Masculino , Ratones , Estrés Oxidativo , Próstata/patología , Neoplasia Intraepitelial Prostática/genética , Neoplasias de la Próstata/patología , Selenoproteínas/genética
10.
RNA Biol ; 11(12): 1483-94, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25590339

RESUMEN

Box H/ACA ribonucleoproteins (RNPs), each consisting of one unique guide RNA and 4 common core proteins, constitute a family of complex enzymes that catalyze, in an RNA-guided manner, the isomerization of uridines to pseudouridines (Ψs) in RNAs, a reaction known as pseudouridylation. Over the years, box H/ACA RNPs have been extensively studied revealing many important aspects of these RNA modifying machines. In this review, we focus on the composition, structure, and biogenesis of H/ACA RNPs. We explain the mechanism of how this enzyme family recognizes and specifies its target uridine in a substrate RNA. We discuss the substrates of box H/ACA RNPs, focusing on rRNA (rRNA) and spliceosomal small nuclear RNA (snRNA). We describe the modification product Ψ and its contribution to RNA function. Finally, we consider possible mechanisms of the bone marrow failure syndrome dyskeratosis congenita and of prostate and other cancers linked to mutations in H/ACA RNPs.


Asunto(s)
Disqueratosis Congénita/metabolismo , Neoplasias de la Próstata/metabolismo , Seudouridina/metabolismo , Procesamiento Postranscripcional del ARN , ARN Guía de Kinetoplastida/metabolismo , Uridina/metabolismo , Disqueratosis Congénita/genética , Disqueratosis Congénita/patología , Humanos , Isomerismo , Masculino , Mutación , Conformación de Ácido Nucleico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , ARN Guía de Kinetoplastida/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo
11.
J Biol Chem ; 288(21): 14709-15, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23589299

RESUMEN

Antibiotics target bacteria by interfering with essential processes such as translation, but their effects on translation in mammalian cells are less well characterized. We found that doxycycline, chloramphenicol, and Geneticin (G418) interfered with insertion of selenocysteine (Sec), which is encoded by the stop codon, UGA, into selenoproteins in murine EMT6 cells. Treatment of EMT6 cells with these antibiotics reduced enzymatic activities and Sec insertion into thioredoxin reductase 1 (TR1) and glutathione peroxidase 1 (GPx1). However, these proteins were differentially affected due to varying errors in Sec insertion at UGA. In the presence of doxycycline, chloramphenicol, or G418, the Sec-containing form of TR1 decreased, whereas the arginine-containing and truncated forms of this protein increased. We also detected antibiotic-specific misinsertion of cysteine and tryptophan. Furthermore, misinsertion of arginine in place of Sec was commonly observed in GPx1 and glutathione peroxidase 4. TR1 was the most affected and GPx1 was the least affected by these translation errors. These observations were consistent with the differential use of two Sec tRNA isoforms and their distinct roles in supporting accuracy of Sec insertion into selenoproteins. The data reveal widespread errors in inserting Sec into proteins and in dysregulation of selenoprotein expression and function upon antibiotic treatment.


Asunto(s)
Amebicidas/efectos adversos , Sustitución de Aminoácidos/efectos de los fármacos , Antibacterianos/efectos adversos , Cloranfenicol/efectos adversos , Doxiciclina/efectos adversos , Gentamicinas/efectos adversos , Selenocisteína/metabolismo , Amebicidas/farmacología , Animales , Antibacterianos/farmacología , Arginina/genética , Arginina/metabolismo , Línea Celular Tumoral , Cloranfenicol/farmacología , Doxiciclina/farmacología , Gentamicinas/farmacología , Glutatión Peroxidasa/biosíntesis , Glutatión Peroxidasa/genética , Humanos , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , Selenocisteína/genética , Selenoproteínas/biosíntesis , Selenoproteínas/genética , Tiorredoxinas/biosíntesis , Tiorredoxinas/genética , Glutatión Peroxidasa GPX1
12.
J Mol Biol ; 425(14): 2415-22, 2013 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-23624110

RESUMEN

Selenoproteins are present in all three domains of life and are responsible for a major part of a cell's antioxidant defense against reactive oxygen species. Synthesis of selenoproteins requires the decoding of a UGA codon as selenocysteine (Sec) instead of translation termination. Sec is incorporated into the growing polypeptide chain during translation elongation and is known to require a set of highly specific factors: the Sec insertion sequence (SECIS) element in the 3' untranslated region, Sec-tRNA(Sec), the Sec-specific elongation factor eEFSec, and SECIS binding protein 2. Since reconstitution has not been reported, whether these factors are sufficient is unknown. Here, we report a novel in vitro translation system in which Sec incorporation has been reconstituted from purified components introduced into a Sec naive system. In addition, we developed a novel method to purify Sec-tRNA(Sec) and active eEFSec/GTP/tRNA ternary complex. We found that the known basal factors are sufficient for Sec incorporation in vitro. Using this highly manipulable system, we have also found that ribosomes from non-Sec-utilizing organisms cannot support Sec incorporation and that some SECIS elements are intrinsically less efficient than others. Having identified the essential set of factors, this work removes a significant barrier to our understanding of the mechanism of Sec incorporation.


Asunto(s)
Codón de Terminación , Biosíntesis de Proteínas , ARN Mensajero/genética , Selenocisteína/genética , Selenocisteína/metabolismo , Regiones no Traducidas 3' , Animales , Extractos Celulares , Sistema Libre de Células , Masculino , Factores de Elongación de Péptidos/metabolismo , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , Proteínas de Unión al ARN/metabolismo , Ratas , Ribosomas/metabolismo , Testículo
13.
Carcinogenesis ; 34(5): 1089-95, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23389288

RESUMEN

Selenium (Se) has long been known for its cancer prevention properties, but the molecular basis remains unclear. The principal questions in assessing the effect of dietary Se in cancer are whether selenoproteins, small molecule selenocompounds, or both, are involved, and under which conditions and genotypes Se may be protective. In this study, we examined diethylnitrosamine-induced hepatocarcinogenesis in mice lacking a subset of selenoproteins due to expression of a mutant selenocysteine tRNA gene (Trsp (A37G) mice). To uncouple the effects of selenocompounds and selenoproteins, these animals were examined at several levels of dietary Se. Our analysis revealed that tumorigenesis in Trsp (A37G) mice maintained on the adequate Se diet was increased. However, in the control, wild-type mice, both Se deficiency and high Se levels protected against tumorigenesis. We further found that the Se-deficient diet induced severe neurological phenotypes in Trsp A37G mice. Surprisingly, a similar phenotype could be induced in these mice at high dietary Se intake. Overall, our results show a complex role of Se in chemically induced hepatocarcinogenesis, which involves interaction among selenoproteins, selenocompounds and toxins, and depends on genotype and background of the animals.


Asunto(s)
Transformación Celular Neoplásica/inducido químicamente , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/prevención & control , Selenio/administración & dosificación , Selenoproteínas/genética , Selenoproteínas/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Dieta , Femenino , Genotipo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Fenotipo , ARN de Transferencia Aminoácido-Específico/genética
14.
Carcinogenesis ; 33(6): 1225-30, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22436612

RESUMEN

Selenium is an essential micronutrient in the diet of humans and other mammals. Based largely on animal studies and epidemiological evidence, selenium is purported to be a promising cancer chemopreventive agent. However, the biological mechanisms by which chemopreventive activity takes place are poorly understood. It remains unclear whether selenium acts in its elemental form, through incorporation into organic compounds, through selenoproteins or any combination of these. The purpose of this study was to determine whether selenoproteins mitigate the risk of developing chemically induced mammary cancer. Selenoprotein expression was ablated in mouse mammary epithelial cells through genetic deletion of the selenocysteine (Sec) tRNA gene (Trsp), whose product, designated selenocysteine tRNA, is required for selenoprotein translation. Trsp floxed and mouse mammary tumor virus (MMTV)-cre mice were crossed to achieve tissue-specific excision of Trsp in targeted mammary glands. Eight- to twelve-week-old second generation Trsp(fl/+);wt, Trsp(fl/+);MMTV-cre, Trsp(fl/fl);wt and Trsp(fl/fl);MMTV-cre female mice were administered standard doses of the carcinogen, 7,12-dimethylbenzylbenz[a]antracene. Our results revealed that heterozygous, Trsp(fl/+);MMTV-cre mice showed no difference in tumor incidence, tumor rate and survival compared with the Trsp(fl/+);wt mice. However, 54.8% of homozygous Trsp(fl/f)(l);MMTV-cre mice developed mammary tumors and exhibited significantly shorter survival than the corresponding Trsp(fl/fl);wt mice, where only 36.4% developed tumors. Loss of the homozygous Trsp alleles was associated with the reduction of selenoprotein expression. The results suggest that mice with reduced selenoprotein expression have increased susceptibility to developing carcinogen-induced mammary tumors and that a major protective mechanism against carcinogen-induced mammary cancer requires the expression of these selenoproteins.


Asunto(s)
9,10-Dimetil-1,2-benzantraceno/toxicidad , Neoplasias Mamarias Animales/prevención & control , ARN de Transferencia Aminoácido-Específico/genética , Selenoproteínas/metabolismo , Animales , Progresión de la Enfermedad , Femenino , Genotipo , Neoplasias Mamarias Animales/inducido químicamente , Neoplasias Mamarias Animales/genética , Virus del Tumor Mamario del Ratón/genética , Virus del Tumor Mamario del Ratón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Selenocisteína/metabolismo
15.
Science ; 333(6046): 1151-4, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21868676

RESUMEN

O-Phosphoserine (Sep), the most abundant phosphoamino acid in the eukaryotic phosphoproteome, is not encoded in the genetic code, but synthesized posttranslationally. Here, we present an engineered system for specific cotranslational Sep incorporation (directed by UAG) into any desired position in a protein by an Escherichia coli strain that harbors a Sep-accepting transfer RNA (tRNA(Sep)), its cognate Sep-tRNA synthetase (SepRS), and an engineered EF-Tu (EF-Sep). Expanding the genetic code rested on reengineering EF-Tu to relax its quality-control function and permit Sep-tRNA(Sep) binding. To test our system, we synthesized the activated form of human mitogen-activated ERK activating kinase 1 (MEK1) with either one or two Sep residues cotranslationally inserted in their canonical positions (Sep(218), Sep(222)). This system has general utility in protein engineering, molecular biology, and disease research.


Asunto(s)
Escherichia coli/genética , Código Genético , Ingeniería Genética , Fosfoserina/metabolismo , Modificación Traduccional de las Proteínas , ARN de Transferencia Aminoácido-Específico/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Anticodón , Cloranfenicol/farmacología , Cloranfenicol O-Acetiltransferasa/genética , Codón de Terminación , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Humanos , MAP Quinasa Quinasa 1/biosíntesis , MAP Quinasa Quinasa 1/química , MAP Quinasa Quinasa 1/genética , Factor Tu de Elongación Peptídica , Ingeniería de Proteínas , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia de Cisteína/genética , Proteínas Recombinantes de Fusión/biosíntesis , Aminoacilación de ARN de Transferencia
16.
Nature ; 471(7340): 647-50, 2011 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-21455182

RESUMEN

Pyrrolysine, the twenty-second amino acid found to be encoded in the natural genetic code, is necessary for all of the known pathways by which methane is formed from methylamines. Pyrrolysine comprises a methylated pyrroline carboxylate in amide linkage to the ε-amino group of L-lysine. In certain Archaea, three methyltransferases initiate methanogenesis from the various methylamines, and these enzymes are encoded by genes with an in-frame amber codon that is translated as pyrrolysine. Escherichia coli that has been transformed with the pylTSBCD genes from methanogenic Archaea can incorporate endogenously biosynthesized pyrrolysine into proteins. The decoding of UAG as pyrrolysine requires pylT, which produces tRNA(Pyl) (also called tRNA(CUA)), and pylS, which encodes a pyrrolysyl-tRNA synthetase. The pylB, pylC and pylD genes are each required for tRNA-independent pyrrolysine synthesis. Pyrrolysine is the last remaining genetically encoded amino acid with an unknown biosynthetic pathway. Here we provide genetic and mass spectrometric evidence for a pylBCD-dependent pathway in which pyrrolysine arises from two lysines. We show that a newly uncovered UAG-encoded amino acid, desmethylpyrrolysine, is made from lysine and exogenous D-ornithine in a pylC-dependent process followed by a pylD-dependent process, but it is not further converted to pyrrolysine. These results indicate that the radical S-adenosyl-L-methionine (SAM) protein PylB mediates a lysine mutase reaction that produces 3-methylornithine, which is then ligated to a second molecule of lysine by PylC before oxidation by PylD results in pyrrolysine. The discovery of lysine as the sole precursor to pyrrolysine will further inform discussions of the evolution of the genetic code and amino acid biosynthetic pathways. Furthermore, intermediates of the pathway may provide new avenues by which the pyl system can be exploited to produce recombinant proteins with useful modified residues.


Asunto(s)
Lisina/análogos & derivados , Lisina/metabolismo , Methanosarcina/genética , Methanosarcina/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Biocatálisis , Escherichia coli/metabolismo , Código Genético/genética , Lisina/biosíntesis , Lisina/química , Lisina/genética , Espectrometría de Masas , Methanosarcina/química , Methanosarcina/enzimología , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , Estructura Molecular , Ornitina/análogos & derivados , Ornitina/química , Ornitina/metabolismo , Péptidos/análisis , Péptidos/química , Biosíntesis de Proteínas , ARN de Transferencia Aminoácido-Específico/genética , Transformación Bacteriana
17.
Blood ; 117(3): 986-96, 2011 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-20978266

RESUMEN

Reactive oxygen species (ROS) are highly destructive toward cellular macromolecules. However, moderate levels of ROS can contribute to normal cellular processes including signaling. Herein we evaluate the consequence of a pro-oxidant environment on hematopoietic homeostasis. The NF-E2 related factor 2 (Nrf2) transcription factor regulates genes related to ROS scavenging and detoxification. Nrf2 responds to altered cellular redox status, such as occurs with loss of antioxidant selenoproteins after deletion of the selenocysteine-tRNA gene (Trsp). Conditional knockout of the Trsp gene using Mx1-inducible Cre-recombinase leads to selenoprotein deficiency and anemia on a wild-type background, whereas Trsp:Nrf2 double deficiency dramatically exacerbates the anemia and increases intracellular hydrogen peroxide levels in erythroblasts. Results indicate that Nrf2 compensates for defective ROS scavenging when selenoproteins are lost from erythroid cells. We also observed thymus atrophy in single Trsp-conditional knockout mice, suggesting a requirement for selenoprotein function in T-cell differentiation within the thymus. Surprisingly, no changes were observed in the myelomonocytic or megakaryocytic populations. Therefore, our results show that selenoprotein activity and the Nrf2 gene battery are particularly important for oxidative homeostasis in erythrocytes and for the prevention of hemolytic anemia.


Asunto(s)
Anemia Hemolítica/metabolismo , Eritrocitos/metabolismo , Homeostasis , Factor 2 Relacionado con NF-E2/metabolismo , Selenoproteínas/metabolismo , Anemia Hemolítica/genética , Animales , Atrofia , Linfocitos B/metabolismo , Médula Ósea/metabolismo , Eritroblastos/metabolismo , Femenino , Citometría de Flujo , Peróxido de Hidrógeno/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Selenoproteínas/genética , Timo/metabolismo , Timo/patología
18.
PLoS One ; 5(8): e12249, 2010 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-20805887

RESUMEN

Dietary selenium is known to protect skin against UV-induced damage and cancer and its topical application improves skin surface parameters in humans, while selenium deficiency compromises protective antioxidant enzymes in skin. Furthermore, skin and hair abnormalities in humans and rodents may be caused by selenium deficiency, which are overcome by dietary selenium supplementation. Most important biological functions of selenium are attributed to selenoproteins, proteins containing selenium in the form of the amino acid, selenocysteine (Sec). Sec insertion into proteins depends on Sec tRNA; thus, knocking out the Sec tRNA gene (Trsp) ablates selenoprotein expression. We generated mice with targeted removal of selenoproteins in keratin 14 (K14) expressing cells and their differentiated descendents. The knockout progeny had a runt phenotype, developed skin abnormalities and experienced premature death. Lack of selenoproteins in epidermal cells led to the development of hyperplastic epidermis and aberrant hair follicle morphogenesis, accompanied by progressive alopecia after birth. Further analyses revealed that selenoproteins are essential antioxidants in skin and unveiled their role in keratinocyte growth and viability. This study links severe selenoprotein deficiency to abnormalities in skin and hair and provides genetic evidence for the role of these proteins in keratinocyte function and cutaneous development.


Asunto(s)
Queratinocitos/citología , Queratinocitos/metabolismo , Selenoproteínas/metabolismo , Piel/crecimiento & desarrollo , Piel/metabolismo , Animales , Animales Recién Nacidos , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Células Epidérmicas , Epidermis/metabolismo , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Folículo Piloso/citología , Folículo Piloso/metabolismo , Queratina-14/genética , Queratina-14/metabolismo , Peroxidación de Lípido , Macrófagos/citología , Macrófagos/inmunología , Masculino , Ratones , Especificidad de Órganos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Recombinación Genética , Selenio/deficiencia , Selenoproteínas/deficiencia , Selenoproteínas/genética , Piel/citología
19.
PLoS Genet ; 5(8): e1000616, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19696890

RESUMEN

Kashin-Beck disease, a syndrome characterized by short stature, skeletal deformities, and arthropathy of multiple joints, is highly prevalent in specific regions of Asia. The disease has been postulated to result from a combination of different environmental factors, including contamination of barley by mold mycotoxins, iodine deficiency, presence of humic substances in drinking water, and, importantly, deficiency of selenium. This multifunctional trace element, in the form of selenocysteine, is essential for normal selenoprotein function, including attenuation of excessive oxidative stress, and for the control of redox-sensitive molecules involved in cell growth and differentiation. To investigate the effects of skeletal selenoprotein deficiency, a Cre recombinase transgenic mouse line was used to trigger Trsp gene deletions in osteo-chondroprogenitors. Trsp encodes selenocysteine tRNA([Ser]Sec), required for the incorporation of selenocysteine residues into selenoproteins. The mutant mice exhibited growth retardation, epiphyseal growth plate abnormalities, and delayed skeletal ossification, as well as marked chondronecrosis of articular, auricular, and tracheal cartilages. Phenotypically, the mice thus replicated a number of the pathological features of Kashin-Beck disease, supporting the notion that selenium deficiency is important to the development of this syndrome.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Huesos/anomalías , Eliminación de Gen , Células Madre Mesenquimatosas/metabolismo , ARN de Transferencia Aminoácido-Específico/genética , Animales , Enfermedades del Desarrollo Óseo/metabolismo , Huesos/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN de Transferencia Aminoácido-Específico/metabolismo , Selenio/deficiencia , Selenoproteínas/metabolismo
20.
Science ; 323(5911): 259-61, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19131629

RESUMEN

Strict one-to-one correspondence between codons and amino acids is thought to be an essential feature of the genetic code. However, we report that one codon can code for two different amino acids with the choice of the inserted amino acid determined by a specific 3' untranslated region structure and location of the dual-function codon within the messenger RNA (mRNA). We found that the codon UGA specifies insertion of selenocysteine and cysteine in the ciliate Euplotes crassus, that the dual use of this codon can occur even within the same gene, and that the structural arrangements of Euplotes mRNA preserve location-dependent dual function of UGA when expressed in mammalian cells. Thus, the genetic code supports the use of one codon to code for multiple amino acids.


Asunto(s)
Codón de Terminación/genética , Codón/genética , Cisteína/genética , Euplotes/genética , Código Genético , Selenocisteína/genética , Selenoproteínas/genética , Regiones no Traducidas 3' , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Cisteína/metabolismo , Euplotes/química , Humanos , Datos de Secuencia Molecular , Mutación , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , ARN Protozoario/genética , ARN Protozoario/metabolismo , ARN de Transferencia Aminoácido-Específico/química , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia de Cisteína/química , ARN de Transferencia de Cisteína/genética , Proteínas Recombinantes de Fusión/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/biosíntesis , Selenoproteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA