Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Biochemistry ; 61(23): 2643-2647, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36326713

RESUMEN

The radical S-adenosyl-l-methionine (SAM) enzyme TYW1 catalyzes the condensation of C-2 and C-3 atoms of pyruvate with N-methylguanosine containing tRNAPhe to form 4-demethylwyosine (imG-14) modified tRNAPhe. The fate of C-1 is not known, and either formate or carbon dioxide (CO2) has been proposed. In this study, a coupled assay that transforms either CO2 or formate to oxaloacetate (OAA) was used to determine the fate of C-1. In the presence of [1-13C1]-pyruvate, 13C-enriched OAA was observed in a process that is concomitant with the formation of imG-14, under conditions that preferentially transform CO2 and not formate to OAA. These findings are discussed in the context of the cofactor content of TYW1 and a new role for the auxiliary cluster in catalyzing the oxidative cleavage of C-1-C-2 bond of pyruvate in the catalytic cycle of TYW1.


Asunto(s)
Proteínas Hierro-Azufre , S-Adenosilmetionina , Dióxido de Carbono , Catálisis , Proteínas Hierro-Azufre/química , Metionina , Estrés Oxidativo , Ácido Pirúvico/química , ARN de Transferencia/metabolismo , ARN de Transferencia de Fenilalanina/química , S-Adenosilmetionina/metabolismo , Oxidorreductasas/metabolismo
2.
PLoS Genet ; 18(4): e1010185, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35486661

RESUMEN

The alpha subunit of the cytoplasmic Phenylalanyl tRNA synthetase (α-PheRS, FARSA in humans) displays cell growth and proliferation activities and its elevated levels can induce cell fate changes and tumor-like phenotypes that are neither dependent on the canonical function of charging tRNAPhe with phenylalanine nor on stimulating general translation. In intestinal stem cells of Drosophila midguts, α-PheRS levels are naturally slightly elevated and human FARSA mRNA levels are elevated in multiple cancers. In the Drosophila midgut model, elevated α-PheRS levels caused the accumulation of many additional proliferating cells resembling intestinal stem cells (ISCs) and enteroblasts (EBs). This phenotype partially resembles the tumor-like phenotype described as Notch RNAi phenotype for the same cells. Genetic interactions between α-PheRS and Notch suggest that their activities neutralize each other and that elevated α-PheRS levels attenuate Notch signaling when Notch induces differentiation into enterocytes, type II neuroblast stem cell proliferation, or transcription of a Notch reporter. These non-canonical functions all map to the N-terminal part of α-PheRS which accumulates naturally in the intestine. This truncated version of α-PheRS (α-S) also localizes to nuclei and displays weak sequence similarity to the Notch intracellular domain (NICD), suggesting that α-S might compete with the NICD for binding to a common target. Supporting this hypothesis, the tryptophan (W) residue reported to be key for the interaction between the NICD and the Su(H) BTD domain is not only conserved in α-PheRS and α-S, but also essential for attenuating Notch signaling.


Asunto(s)
Fenilalanina-ARNt Ligasa , Animales , Drosophila/genética , Fenilalanina , Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/metabolismo , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/metabolismo
3.
Nucleic Acids Res ; 49(9): 5351-5368, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33885823

RESUMEN

Tuberculosis, caused by Mycobacterium tuberculosis, responsible for ∼1.5 million fatalities in 2018, is the deadliest infectious disease. Global spread of multidrug resistant strains is a public health threat, requiring new treatments. Aminoacyl-tRNA synthetases are plausible candidates as potential drug targets, because they play an essential role in translating the DNA code into protein sequence by attaching a specific amino acid to their cognate tRNAs. We report structures of M. tuberculosis Phe-tRNA synthetase complexed with an unmodified tRNAPhe transcript and either L-Phe or a nonhydrolyzable phenylalanine adenylate analog. High-resolution models reveal details of two modes of tRNA interaction with the enzyme: an initial recognition via indirect readout of anticodon stem-loop and aminoacylation ready state involving interactions of the 3' end of tRNAPhe with the adenylate site. For the first time, we observe the protein gate controlling access to the active site and detailed geometry of the acyl donor and tRNA acceptor consistent with accepted mechanism. We biochemically validated the inhibitory potency of the adenylate analog and provide the most complete view of the Phe-tRNA synthetase/tRNAPhe system to date. The presented topography of amino adenylate-binding and editing sites at different stages of tRNA binding to the enzyme provide insights for the rational design of anti-tuberculosis drugs.


Asunto(s)
Mycobacterium tuberculosis/enzimología , Fenilalanina-ARNt Ligasa/química , ARN de Transferencia de Fenilalanina/química , Aminoacilación de ARN de Transferencia , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Humanos , Ligandos , Modelos Moleculares , Mycobacterium tuberculosis/genética , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/metabolismo , Fenilalanina-ARNt Ligasa/metabolismo , Unión Proteica , ARN de Transferencia de Fenilalanina/metabolismo , Thermus thermophilus/enzimología
4.
J Mol Biol ; 433(10): 166942, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33744313

RESUMEN

Macrolide antibiotics, such as erythromycin, bind to the nascent peptide exit tunnel (NPET) of the bacterial ribosome and modulate protein synthesis depending on the nascent peptide sequence. Whereas in vitro biochemical and structural methods have been instrumental in dissecting and explaining the molecular details of macrolide-induced peptidyl-tRNA drop-off and ribosome stalling, the dynamic effects of the drugs on ongoing protein synthesis inside live bacterial cells are far less explored. In the present study, we used single-particle tracking of dye-labeled tRNAs to study the kinetics of mRNA translation in the presence of erythromycin, directly inside live Escherichia coli cells. In erythromycin-treated cells, we find that the dwells of elongator tRNAPhe on ribosomes extend significantly, but they occur much more seldom. In contrast, the drug barely affects the ribosome binding events of the initiator tRNAfMet. By overexpressing specific short peptides, we further find context-specific ribosome binding dynamics of tRNAPhe, underscoring the complexity of erythromycin's effect on protein synthesis in bacterial cells.


Asunto(s)
Antibacterianos/farmacología , Eritromicina/farmacología , Escherichia coli/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Ribosomas/efectos de los fármacos , Secuencia de Aminoácidos , Antibacterianos/metabolismo , Carbocianinas/química , Codón , Eritromicina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Inhibidores de la Síntesis de la Proteína/metabolismo , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Ribosomas/ultraestructura , Imagen Individual de Molécula
5.
Nucleic Acids Res ; 49(1): 38-52, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33290562

RESUMEN

Acquired drug resistance is a major obstacle in cancer therapy. Recent studies revealed that reprogramming of tRNA modifications modulates cancer survival in response to chemotherapy. However, dynamic changes in tRNA modification were not elucidated. In this study, comparative analysis of the human cancer cell lines and their taxol resistant strains based on tRNA mapping was performed by using UHPLC-MS/MS. It was observed for the first time in all three cell lines that 4-demethylwyosine (imG-14) substitutes for hydroxywybutosine (OHyW) due to tRNA-wybutosine synthesizing enzyme-2 (TYW2) downregulation and becomes the predominant modification at the 37th position of tRNAphe in the taxol-resistant strains. Further analysis indicated that the increase in imG-14 levels is caused by downregulation of TYW2. The time courses of the increase in imG-14 and downregulation of TYW2 are consistent with each other as well as consistent with the time course of the development of taxol-resistance. Knockdown of TYW2 in HeLa cells caused both an accumulation of imG-14 and reduction in taxol potency. Taken together, low expression of TYW2 enzyme promotes the cancer survival and resistance to taxol therapy, implying a novel mechanism for taxol resistance. Reduction of imG-14 deposition offers an underlying rationale to overcome taxol resistance in cancer chemotherapy.


Asunto(s)
Resistencia a Antineoplásicos/genética , Paclitaxel/farmacología , Procesamiento Postranscripcional del ARN/genética , ARN Neoplásico/química , ARN de Transferencia de Fenilalanina/química , Células A549 , Secuencia de Bases , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Regulación hacia Abajo , Resistencia a Antineoplásicos/fisiología , Femenino , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Guanosina/análogos & derivados , Guanosina/química , Guanosina/metabolismo , Células HeLa , Humanos , Estructura Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Conformación de Ácido Nucleico , Neoplasias Ováricas/patología , ARN Neoplásico/fisiología , ARN de Transferencia de Fenilalanina/fisiología , Espectrometría de Masas en Tándem , Ensayo de Tumor de Célula Madre
6.
RNA ; 27(2): 202-220, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33214333

RESUMEN

Transfer RNA (tRNA) is the most diversely modified RNA. Although the strictly conserved purine position 37 in the anticodon stem-loop undergoes modifications that are phylogenetically distributed, we do not yet fully understand the roles of these modifications. Therefore, molecular dynamics simulations are used to provide molecular-level details for how such modifications impact the structure and function of tRNA. A focus is placed on three hypermodified base families that include the parent i6A, t6A, and yW modifications, as well as derivatives. Our data reveal that the hypermodifications exhibit significant conformational flexibility in tRNA, which can be modulated by additional chemical functionalization. Although the overall structure of the tRNA anticodon stem remains intact regardless of the modification considered, the anticodon loop must rearrange to accommodate the bulky, dynamic hypermodifications, which includes changes in the nucleotide glycosidic and backbone conformations, and enhanced or completely new nucleobase-nucleobase interactions compared to unmodified tRNA or tRNA containing smaller (m1G) modifications at the 37th position. Importantly, the extent of the changes in the anticodon loop is influenced by the addition of small functional groups to parent modifications, implying each substituent can further fine-tune tRNA structure. Although the dominant conformation of the ASL is achieved in different ways for each modification, the molecular features of all modified tRNA drive the ASL domain to adopt the functional open-loop conformation. Importantly, the impact of the hypermodifications is preserved in different sequence contexts. These findings highlight the likely role of regulating mRNA structure and translation.


Asunto(s)
Adenosina/análogos & derivados , Anticodón/química , Escherichia coli/genética , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Lisina/química , ARN de Transferencia de Fenilalanina/química , Adenosina/metabolismo , Anticodón/genética , Anticodón/metabolismo , Emparejamiento Base , Secuencia de Bases , Escherichia coli/metabolismo , Isopenteniladenosina/química , Isopenteniladenosina/metabolismo , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Nucleósidos/química , Nucleósidos/metabolismo , ARN de Transferencia de Lisina/genética , ARN de Transferencia de Lisina/metabolismo , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo
7.
Clin Biochem ; 85: 20-26, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32745483

RESUMEN

OBJECTIVES: Chronic lymphocytic leukemia (CLL) is the most common leukemia among adults. The prognosis of CLL patients varies considerably. Transfer RNA-derived RNA fragments (tRFs) constitute a class of small non-coding RNA fragments excised from mature tRNAs and pre-tRNAs located in nuclei as well as in mitochondria. In this study, the clinical utility of i-tRF-PheGAA, a novel mitochondrial tRF, was investigated in CLL. DESIGN AND METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from 91 CLL patients and 43 non-leukemic controls. Total RNA was isolated from each sample, polyadenylated at the 3' end and reversely transcribed. An in-house developed real-time quantitative PCR assay was developed and applied, and the results were biostatistically analyzed. For the normalization of the i-tRF-PheGAA expression levels, the expression of a small nucleolar RNA (RNU48) was used as reference. RESULTS: Mann-Whitney U test showed that i-tRF-PheGAA can distinguish between CLL samples and normal controls (p < 0.001). As determined by Kaplan-Meier survival analysis, overexpression of i-tRF-PheGAA was related to poor overall survival of the CLL patients (p < 0.001). Univariate bootstrap Cox regression analysis exhibited a higher hazard ratio of 7.95 (95% CI = 2.37-26.72, p < 0.001) for patients with positive i-tRF-PheGAA expression status. Multivariate bootstrap Cox regression analysis showed that the prognostic value of this tRF is independent of clinical stage, mutational status of the immunoglobulin heavy chain variable (IGHV) genetic locus, and CD38 expression status (p = 0.010). CONCLUSIONS: Our results show that i-tRF-PheGAA can serve as a molecular biomarker of poor prognosis in CLL, alongside with the existing factors for CLL prognosis.


Asunto(s)
Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia de Fenilalanina/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Femenino , Regulación Leucémica de la Expresión Génica , Humanos , Células K562 , Leucemia Linfocítica Crónica de Células B/mortalidad , Leucocitos Mononucleares/química , Masculino , Persona de Mediana Edad , Pronóstico , ARN Mitocondrial/sangre , ARN Mitocondrial/química , ARN de Transferencia de Fenilalanina/sangre , ARN de Transferencia de Fenilalanina/química , Análisis de Supervivencia
8.
J Inorg Biochem ; 182: 177-183, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29501978

RESUMEN

The ruthenium-based anticancer agent NAMI-A (ImH[trans-RuCl4(dmso)(Im)], where Im = imidazole) has been shown to interact with RNA in vivo and in vitro. We hypothesized that the similarly structured drug KP1019 (IndH[trans-RuCl4(Ind)2], where Ind = indazole) binds to RNA as well. Fluorescence spectroscopy was employed to assay the interactions between either NAMI-A or KP1019 and tRNAPhe through an intrinsic fluorophore wybutosine (Y) base and by extrinsic displacement of the intercalating agent ethidium bromide. In both the intrinsic Y-base and extrinsic ethidium bromide studies, KP1019 exhibited tighter binding to phenylalanine-specific tRNA (tRNAPhe) than NAMI-A. In the ethidium bromide study, reducing both drugs from RuIII to RuII resulted in a significant decrease in binding. Our findings suggest that the relatively large heteroaromatic indazole ligands of KP1019 intercalate in the π-stacks of tRNAPhe within structurally complex binding pockets. In addition, NAMI-A appears to be sensitive to destabilizing electrostatic interactions with the negative phosphate backbone of tRNAPhe. Interactions with additional tRNA molecules and other types of RNA require further evaluation to determine the role of RNA in the mechanisms of action for KP1019 and to better understand how Ru drugs fundamentally interact with biomolecules that are more structurally sophisticated than short DNA oligonucleotides. To the best of our knowledge, this is the first study to report KP1019 binding interactions with RNA.


Asunto(s)
Antineoplásicos/química , Dimetilsulfóxido/análogos & derivados , Indazoles/química , Compuestos Organometálicos/química , ARN de Transferencia de Fenilalanina/química , Rutenio/química , Dimetilsulfóxido/química , ARN/química , Compuestos de Rutenio
9.
Nucleic Acids Res ; 45(14): 8392-8402, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28637321

RESUMEN

Whereas ribosomes efficiently catalyze peptide bond synthesis by most amino acids, the imino acid proline is a poor substrate for protein synthesis. Previous studies have shown that the translation factor eIF5A and its bacterial ortholog EF-P bind in the E site of the ribosome where they contact the peptidyl-tRNA in the P site and play a critical role in promoting the synthesis of polyproline peptides. Using misacylated Pro-tRNAPhe and Phe-tRNAPro, we show that the imino acid proline and not tRNAPro imposes the primary eIF5A requirement for polyproline synthesis. Though most proline analogs require eIF5A for efficient peptide synthesis, azetidine-2-caboxylic acid, a more flexible four-membered ring derivative of proline, shows relaxed eIF5A dependency, indicating that the structural rigidity of proline might contribute to the requirement for eIF5A. Finally, we examine the interplay between eIF5A and polyamines in promoting translation elongation. We show that eIF5A can obviate the polyamine requirement for general translation elongation, and that this activity is independent of the conserved hypusine modification on eIF5A. Thus, we propose that the body of eIF5A functionally substitutes for polyamines to promote general protein synthesis and that the hypusine modification on eIF5A is critically important for poor substrates like proline.


Asunto(s)
Aminoácidos/metabolismo , Lisina/análogos & derivados , Biosíntesis de Péptidos , Factores de Iniciación de Péptidos/metabolismo , Poliaminas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Lisina/metabolismo , Conformación de Ácido Nucleico , Factores de Iniciación de Péptidos/química , Péptidos/metabolismo , Prolina/análogos & derivados , Prolina/química , Prolina/metabolismo , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/metabolismo , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/metabolismo , Proteínas de Unión al ARN/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Factor 5A Eucariótico de Iniciación de Traducción
10.
J Photochem Photobiol B ; 161: 335-44, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27289446

RESUMEN

The interaction of the putative anticancer alkaloid chelerythrine with tRNA(phe) was characterized by spectroscopy, calorimetry and molecular docking studies. The charged iminium form of chelerythrine binds with tRNA(phe) in a cooperative mode with a binding affinity value of (4.06±0.01)×10(5)M(-1). The neutral alkanolamine form does not bind to tRNA(phe) but in the presence of high concentration of tRNA(phe) this form gets converted to the iminium form and then binds with tRNA(phe). The partial intercalative mode of binding of chelerythrine to the tRNA(phe) was characterized from the steady state anisotropy, iodide ion-induced fluorescence quenching and viscosity measurements. Chelerythrine binding induced conformational perturbations in tRNA(phe) as observed from the circular dichroism spectroscopy. The strong binding was also supported by the ethidium bromide displacement assay. The binding was favoured by both enthalpy and entropy contributions. Although the binding was dependent on the [Na(+)], non-electrostatic forces contributed predominantly to the Gibbs energy change. The negative value of the heat capacity change proposed the involvement of hydrophobic forces in the binding. Molecular docking study was carried out to decipher the details of the recognition of tRNA(phe) by chelerythrine. The study provided insights about the chelerythrine binding pockets on tRNA(phe) and marked the necessary interactions for binding of chelerythrine molecule. Partially intercalative mode of the alkaloid binding was supported by docking studies. In total, docking studies corroborated well with our experiential observations. The structural and thermodynamic results of chelerythrine binding to tRNA(phe) may be helpful to develop new RNA therapeutic agents.


Asunto(s)
Benzofenantridinas/metabolismo , ARN de Transferencia de Fenilalanina/metabolismo , Alcaloides/química , Alcaloides/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Benzofenantridinas/química , Sitios de Unión , Calorimetría , Dicroismo Circular , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Concentración Osmolar , ARN de Transferencia de Fenilalanina/química , Espectrometría de Fluorescencia , Termodinámica , Viscosidad
11.
Biochemistry ; 54(23): 3569-72, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26052987

RESUMEN

TYW1 catalyzes the formation of 4-demethylwyosine via the condensation of N-methylguanosine (m¹G) with carbons 2 and 3 of pyruvate. In this study, labeled transfer ribonucleic acid (tRNA) and pyruvate were utilized to determine the site of hydrogen atom abstraction and regiochemistry of the pyruvate addition. tRNA containing a ²H-labeled m¹G methyl group was used to identify the methyl group of m¹G as the site of hydrogen atom abstraction by 5'-deoxyadenosyl radical. [2-¹³C1-3,3,3-²H3]Pyruvate was used to demonstrate retention of all the pyruvate protons, indicating that C2 of pyruvate forms the bridging carbon of the imidazoline ring and C3 the methyl.


Asunto(s)
Proteínas Arqueales/metabolismo , Biocatálisis , Carboxiliasas/metabolismo , Guanosina/análogos & derivados , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , S-Adenosilmetionina/metabolismo , Proteínas Arqueales/química , Radioisótopos de Carbono , Carboxiliasas/química , Dominio Catalítico , Deuterio , Radicales Libres/química , Radicales Libres/metabolismo , Guanosina/química , Guanosina/metabolismo , Proteínas Hierro-Azufre/química , Methanococcus/enzimología , Metilación , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , ARN de Archaea/química , ARN de Archaea/metabolismo , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/metabolismo , S-Adenosilmetionina/química , Estereoisomerismo
12.
Protein Pept Lett ; 21(7): 603-14, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24521222

RESUMEN

Aminoacyl-tRNA protein transferases post-translationally conjugate an amino acid from an aminoacyl-tRNA onto the N-terminus of a target polypeptide. The eubacterial aminoacyl-tRNA protein transferase, L/F transferase, utilizes both leucyl-tRNA(Leu) and phenylalanyl-tRNA(Phe) as substrates. X-ray crystal structures with substrate analogues, the minimal substrate phenylalanyl adenosine (rA-Phe) and inhibitor puromycin, have been used to characterize tRNA recognition by L/F transferase. However analyses of these two X-ray crystal structures reveal significant differences in binding. Through structural analyses, mutagenesis, and enzymatic activity assays, we rationalize and demonstrate that the substrate analogues bind to L/F transferase with similar binding affinities using a series of different interactions by the various chemical groups of the analogues. Our data also demonstrates that enlarging the hydrophobic pocket of L/F transferase selectively enhances puromycin inhibition and may aid in the development of improved inhibitors for this class of enzymes.


Asunto(s)
Aminoaciltransferasas , ARN de Transferencia de Leucina/química , ARN de Transferencia de Leucina/metabolismo , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/metabolismo , Aminoaciltransferasas/antagonistas & inhibidores , Aminoaciltransferasas/química , Aminoaciltransferasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Escherichia coli , Espectrometría de Masas , Modelos Moleculares , Mutación , Unión Proteica , Puromicina/farmacología , Proteínas Recombinantes de Fusión
13.
Biochem Cell Biol ; 90(6): 691-700, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23016605

RESUMEN

Finding a proper transition structure for the peptide bond formation process can lead one to a better understanding of the role of ribosome in catalyzing this reaction. Using computer simulations, we performed the potential energy surface scan on the ester bond dissociation of P-site aminoacyl-tRNA and the peptide bond formation of P-site and A-site amino acids. The full fragments of initiator tRNA(i)(met) and elongator tRNA(phe) are attached to both cognate and non-cognate amino acids as the P-site substrate. The A-site amino acid for all four calculations is methionine. We used ONIOM calculations to reduce the computational cost. Our study illustrates the reduced rate of peptide bond formation for misacylated tRNA(i)(met) in the absence of ribosomal bases. The misacylated elongator tRNA(phe), however, did not show any difference in its PES compared with that for the phe-tRNA(phe). This demonstrates the structural specification of initiator tRNA(i)(met) for the amino acids side chain.


Asunto(s)
Simulación por Computador , Péptidos/química , ARN de Transferencia de Metionina/química , ARN de Transferencia de Fenilalanina/química , Catálisis , Cinética , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Fenilalanina/metabolismo , Especificidad por Sustrato , Termodinámica
14.
J Biomol Struct Dyn ; 30(2): 223-34, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22702734

RESUMEN

The interaction of the natural plant alkaloid and anticancer agent sanguinarine with tRNA(phe) has been investigated by spectroscopic and calorimetric techniques. Sanguinarine iminium binds to tRNA(phe) cooperatively; alkanolamine does not bind but in presence of large tRNA(phe) concentration, a conversion from alkanolamine to iminium occurs resulting in concomitant binding of the latter. The binding affinity of the iminium to tRNA(phe) obtained from isothermal titration calorimetry was of the order of 10(5) M(-1), which is close to that evaluated from spectroscopy. The binding was driven largely by negative enthalpy and a smaller but favourable positive entropy change. The binding was dependent on the [Na(+)] concentration, but had a larger non-electrostatic contribution to the Gibbs energy. A small heat capacity value and the enthalpy-entropy compensation in the energetics of the interaction characterized the binding of the iminium form to tRNA(phe). This study confirms that the tRNA(phe) binding moiety is the iminium form of sanguinarine.


Asunto(s)
Alcaloides/química , Antineoplásicos/química , Benzofenantridinas/química , Isoquinolinas/química , ARN de Transferencia de Fenilalanina/química , Alcaloides/metabolismo , Antineoplásicos/metabolismo , Benzofenantridinas/metabolismo , Sitios de Unión , Calorimetría , Dicroismo Circular , Entropía , Isoquinolinas/metabolismo , Cinética , ARN de Transferencia de Fenilalanina/metabolismo , Termodinámica
15.
PLoS One ; 6(8): e23186, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21858023

RESUMEN

BACKGROUND: Interaction of aristololactam-ß-D-glucoside and daunomycin with tRNA(phe) was investigated using various biophysical techniques. METHODOLOGY/PRINCIPAL FINDINGS: Absorption and fluorescence studies revealed that both the compounds bind tRNA(phe) non-cooperatively. The binding of daunomycin was about one order of magnitude higher than that of aristololactam-ß-D-glucoside. Stronger binding of the former was also inferred from fluorescence quenching data, quantum efficiency values and circular dichroic results. Results from isothermal titration calorimetry experiments suggested that the binding of both compounds was predominantly entropy driven with a smaller but favorable enthalpy term that increased with temperature. A large favorable electrostatic contribution to the binding of daunomycin to tRNA(phe) was revealed from salt dependence data and the dissection of the free energy values. The electrostatic component to the free energy change for aristololactam-ß-D-glucoside-tRNA(phe) interaction was smaller than that of daunomycin. This was also inferred from the slope of log K versus [Na(+)] plots. Both compounds enhanced the thermal stability of tRNA(phe). The small heat capacity changes of -47 and -99 cal/mol K, respectively, observed for aristololactam-ß-D-glucoside and daunomycin, and the observed enthalpy-entropy compensation phenomenon confirmed the involvement of multiple weak noncovalent interactions. Molecular aspects of the interaction have been revealed. CONCLUSIONS/SIGNIFICANCE: This study presents the structural and energetic aspects of the binding of aristololactam-ß-D-glucoside and daunomycin to tRNA(phe).


Asunto(s)
Ácidos Aristolóquicos/metabolismo , Daunorrubicina/metabolismo , Glucósidos/metabolismo , ARN de Transferencia de Fenilalanina/metabolismo , ARN/metabolismo , Algoritmos , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/farmacología , Ácidos Aristolóquicos/química , Ácidos Aristolóquicos/farmacología , Sitios de Unión , Unión Competitiva , Calorimetría , Dicroismo Circular , Daunorrubicina/química , Daunorrubicina/farmacología , Entropía , Glucósidos/química , Glucósidos/farmacología , Cinética , Estructura Molecular , Conformación de Ácido Nucleico/efectos de los fármacos , ARN/química , ARN/genética , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/genética , Espectrometría de Fluorescencia , Termodinámica
16.
Nucleic Acids Res ; 39(5): 1943-52, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21037259

RESUMEN

This work identifies the combination of enzymatic transfer and click labeling as an efficient method for the site-specific tagging of RNA molecules for biophysical studies. A double-activated analog of the ubiquitous co-substrate S-adenosyl-l-methionine was employed to enzymatically transfer a five carbon chain containing a terminal alkynyl moiety onto RNA. The tRNA:methyltransferase Trm1 transferred the extended alkynyl moiety to its natural target, the N2 of guanosine 26 in tRNA(Phe). LC/MS and LC/MS/MS techniques were used to detect and characterize the modified nucleoside as well as its cycloaddition product with a fluorescent azide. The latter resulted from a labeling reaction via Cu(I)-catalyzed azide-alkyne 1,3-cycloaddition click chemistry, producing site-specifically labeled RNA whose suitability for single molecule fluorescence experiments was verified in fluorescence correlation spectroscopy experiments.


Asunto(s)
Química Clic , ARN de Transferencia de Fenilalanina/química , ARNt Metiltransferasas/metabolismo , Alquinos/metabolismo , Secuencia de Bases , Colorantes Fluorescentes , Datos de Secuencia Molecular , Compuestos Orgánicos , ARN de Transferencia de Fenilalanina/metabolismo , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/química , Espectrometría de Fluorescencia
17.
Science ; 326(5953): 688-694, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19833920

RESUMEN

The ribosome selects a correct transfer RNA (tRNA) for each amino acid added to the polypeptide chain, as directed by messenger RNA. Aminoacyl-tRNA is delivered to the ribosome by elongation factor Tu (EF-Tu), which hydrolyzes guanosine triphosphate (GTP) and releases tRNA in response to codon recognition. The signaling pathway that leads to GTP hydrolysis upon codon recognition is critical to accurate decoding. Here we present the crystal structure of the ribosome complexed with EF-Tu and aminoacyl-tRNA, refined to 3.6 angstrom resolution. The structure reveals details of the tRNA distortion that allows aminoacyl-tRNA to interact simultaneously with the decoding center of the 30S subunit and EF-Tu at the factor binding site. A series of conformational changes in EF-Tu and aminoacyl-tRNA suggests a communication pathway between the decoding center and the guanosine triphosphatase center of EF-Tu.


Asunto(s)
Factor Tu de Elongación Peptídica/química , ARN Bacteriano/química , Aminoacil-ARN de Transferencia/química , Ribosomas/química , Cristalografía por Rayos X , Activación Enzimática , GTP Fosfohidrolasas/metabolismo , Código Genético , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Treonina/química , Thermus thermophilus
18.
Proc Natl Acad Sci U S A ; 106(37): 15616-21, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19717466

RESUMEN

S-adenosylmethionine (AdoMet) is a methyl donor used by a wide variety of methyltransferases, and it is also used as the source of an alpha-amino-alpha-carboxypropyl ("acp") group by several enzymes. tRNA-yW synthesizing enzyme-2 (TYW2) is involved in the biogenesis of a hypermodified nucleotide, wybutosine (yW), and it catalyzes the transfer of the "acp" group from AdoMet to the C7 position of the imG-14 base, a yW precursor. This modified nucleoside yW is exclusively located at position 37 of eukaryotic tRNA(Phe), and it ensures the anticodon-codon pairing on the ribosomal decoding site. Although this "acp" group has a significant role in preventing decoding frame shifts, the mechanism of the "acp" group transfer by TYW2 remains unresolved. Here we report the crystal structures and functional analyses of two archaeal homologs of TYW2 from Pyrococcus horikoshii and Methanococcus jannaschii. The in vitro mass spectrometric and radioisotope-labeling analyses confirmed that these archaeal TYW2 homologues have the same activity as yeast TYW2. The crystal structures verified that the archaeal TYW2 contains a canonical class-I methyltransferase (MTase) fold. However, their AdoMet-bound structures revealed distinctive AdoMet-binding modes, in which the "acp" group, instead of the methyl group, of AdoMet is directed to the substrate binding pocket. Our findings, which were confirmed by extensive mutagenesis studies, explain why TYW2 transfers the "acp" group, and not the methyl group, from AdoMet to the nucleobase.


Asunto(s)
Nucleósidos/biosíntesis , S-Adenosilmetionina/metabolismo , ARNt Metiltransferasas/química , ARNt Metiltransferasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Methanococcus/enzimología , Methanococcus/genética , Modelos Moleculares , Pyrococcus horikoshii/enzimología , Pyrococcus horikoshii/genética , Procesamiento Postranscripcional del ARN , ARN de Archaea/química , ARN de Archaea/metabolismo , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Electricidad Estática , ARNt Metiltransferasas/genética
19.
Nucleic Acids Res ; 37(11): 3747-55, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19376831

RESUMEN

Aminoacyl-transfer RNAs contain four standardized units: amino acids, an invariant 3'-terminal CCA, trinucleotide anticodons and tRNA bodies. The degree of interchangeability of the three variable modules is poorly understood, despite its role in evolution and the engineering of translation to incorporate unnatural amino acids. Here, a purified translation system is used to investigate effects of various module swaps on the efficiency of multiple ribosomal incorporations of unnatural aminoacyl-tRNA substrates per peptide product. The yields of products containing three to five adjacent l-amino acids with unnatural side chains are low and cannot be improved by optimization or explained simply by any single factor tested. Though combinations of modules that allow quantitative single unnatural incorporations are found readily, finding combinations that enable efficient synthesis of products containing multiple unnatural amino acids is challenging. This implies that assaying multiple, as opposed to single, incorporations per product is a more stringent assay of substrate activity. The unpredictability of most results illustrates the multifactorial nature of substrate recognition and the value of synthetic biology for testing our understanding of translation. Data indicate that the degree of interchangeability of the modules of aminoacyl-tRNAs is low.


Asunto(s)
Biosíntesis de Proteínas , ARN de Transferencia Aminoácido-Específico/química , Ribosomas/metabolismo , Alilglicina/metabolismo , Aminoácidos/química , Secuencia de Bases , Datos de Secuencia Molecular , Biosíntesis de Péptidos , Péptidos , ARN de Transferencia de Asparagina/química , ARN de Transferencia de Fenilalanina/química
20.
Nucleic Acids Res ; 37(9): 2910-25, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19287006

RESUMEN

Wybutosine (yW), one of the most complicated modified nucleosides, is found in the anticodon loop of eukaryotic phenylalanine tRNA. This hypermodified nucleoside ensures correct codon recognition by stabilizing codon-anticodon pairings during the decoding process in the ribosome. TYW4 is an S-adenosylmethionine (SAM)-dependent enzyme that catalyzes the final step of yW biosynthesis, methylation and methoxycarbonylation. However, the structural basis for the catalytic mechanism by TYW4, and especially that for the methoxycarbonylation, have remained elusive. Here we report the apo and cofactor-bound crystal structures of yeast TYW4. The structures revealed that the C-terminal domain folds into a beta-propeller structure, forming part of the binding pocket for the target nucleoside. A comparison of the apo, SAM-bound, and S-adenosylhomocysteine-bound structures of TYW4 revealed a drastic structural change upon cofactor binding, which may sequester solvent from the catalytic site during the reaction and facilitate product release after the reaction. In conjunction with the functional analysis, our results suggest that TYW4 catalyzes both methylation and methoxycarbonylation at a single catalytic site, and in the latter reaction, the methoxycarbonyl group is formed through the fixation of carbon dioxide.


Asunto(s)
Dióxido de Carbono/química , Nucleósidos/química , ARN de Transferencia de Fenilalanina/química , Proteínas de Saccharomyces cerevisiae/química , ARNt Metiltransferasas/química , Dióxido de Carbono/metabolismo , Dominio Catalítico , Espectrometría de Masas , Metilación , Modelos Moleculares , Nucleósidos/biosíntesis , Fosfoproteínas Fosfatasas/química , Proteína Fosfatasa 2C , Estructura Terciaria de Proteína , ARN de Transferencia de Fenilalanina/metabolismo , S-Adenosilhomocisteína/química , S-Adenosilmetionina/química , Proteínas de Saccharomyces cerevisiae/metabolismo , ARNt Metiltransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA