Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Int J Biol Macromol ; 269(Pt 1): 132000, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697445

RESUMEN

The sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) transports two Ca2+ ions per ATP hydrolyzed from the cytoplasm to the lumen. However, how the ATP hydrolysis remotely drives the Ca2+ transport is unclear. In the SERCA1a crystal structures, the ATP hydrolysis is accompanied by the notably increasing tilting angle of the central core (CC) and the Ca2+ transport, and the CC tilting angle dramatically decreases in the E2 to E1 transition. We demonstrated that the significantly increasing tilting motion of the CC drove the Ca2+ release in the molecular dynamics simulation of the R836A variant, and the dramatic spontaneous decrease in the CC tilting angle of the E2 state triggers the restart of the SERCA1a's transport cycle. The repulsion between the phosphorylated D351 and the phosphate groups in ADP triggers the release of ADP from the SERCA1a headpiece. We proposed a novel SERCA transport mechanism in which ATP hydrolysis drives a significant tilting motion of the CC, which drives Ca2+ transport and the A domain rotational motion in the E1P-ADP-2Ca2+ to E2P transition. The dramatic spontaneous decrease in the CC tilting angle of the E2 state drives the restart of the transport cycle.


Asunto(s)
Adenosina Trifosfato , Calcio , Simulación de Dinámica Molecular , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Calcio/metabolismo , Adenosina Trifosfato/metabolismo , Hidrólisis , Adenosina Difosfato/metabolismo , Humanos , Transporte Biológico
2.
J Biol Chem ; 300(5): 107267, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583863

RESUMEN

Phospholamban (PLB) is a transmembrane micropeptide that regulates the sarcoplasmic reticulum Ca2+-ATPase (SERCA) in cardiac muscle, but the physical mechanism of this regulation remains poorly understood. PLB reduces the Ca2+ sensitivity of active SERCA, increasing the Ca2+ concentration required for pump cycling. However, PLB does not decrease Ca2+ binding to SERCA when ATP is absent, suggesting PLB does not inhibit SERCA Ca2+ affinity. The prevailing explanation for these seemingly conflicting results is that PLB slows transitions in the SERCA enzymatic cycle associated with Ca2+ binding, altering transport Ca2+ dependence without actually affecting the equilibrium binding affinity of the Ca2+-coordinating sites. Here, we consider another hypothesis, that measurements of Ca2+ binding in the absence of ATP overlook important allosteric effects of nucleotide binding that increase SERCA Ca2+ binding affinity. We speculated that PLB inhibits SERCA by reversing this allostery. To test this, we used a fluorescent SERCA biosensor to quantify the Ca2+ affinity of non-cycling SERCA in the presence and absence of a non-hydrolyzable ATP-analog, AMPPCP. Nucleotide activation increased SERCA Ca2+ affinity, and this effect was reversed by co-expression of PLB. Interestingly, PLB had no effect on Ca2+ affinity in the absence of nucleotide. These results reconcile the previous conflicting observations from ATPase assays versus Ca2+ binding assays. Moreover, structural analysis of SERCA revealed a novel allosteric pathway connecting the ATP- and Ca2+-binding sites. We propose this pathway is disrupted by PLB binding. Thus, PLB reduces the equilibrium Ca2+ affinity of SERCA by interrupting allosteric activation of the pump by ATP.


Asunto(s)
Proteínas de Unión al Calcio , Calcio , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Animales , Humanos , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/química , Miocardio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Perros , Células HEK293 , Modelos Moleculares , Estructura Terciaria de Proteína
3.
Mar Drugs ; 21(7)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37504909

RESUMEN

Marine cyanobacteria are a rich source of bioactive natural products. Here, we report the isolation and structure elucidation of the previously reported iezoside (1) and its C-31 O-demethyl analogue, iezoside B (2), from a cyanobacterial assemblage collected at Loggerhead Key in the Dry Tortugas, Florida. The two compounds have a unique skeleton comprised of a peptide, a polyketide and a modified sugar unit. The compounds were tested for cytotoxicity and effects on intracellular calcium. Both compounds exhibited cytotoxic activity with an IC50 of 1.5 and 3.0 µΜ, respectively, against A549 lung carcinoma epithelial cells and 1.0 and 2.4 µΜ against HeLa cervical cancer cells, respectively. In the same cell lines, compounds 1 and 2 show an increase in cytosolic calcium with approximate EC50 values of 0.3 and 0.6 µΜ in A549 cells and 0.1 and 0.5 µΜ, respectively, in HeLa cells, near the IC50 for cell viability, suggesting that the increase in cytosolic calcium is functionally related to the cytotoxicity of the compounds and consistent with their activity as SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase) inhibitors. The structure-activity relationship provides evidence that structural changes in the sugar unit may be tolerated, and the activity is tunable. This finding has implications for future analogue synthesis and target interaction studies.


Asunto(s)
Antineoplásicos , Cianobacterias , Humanos , Células HeLa , Calcio/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Cianobacterias/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Azúcares
4.
Biochemistry ; 61(14): 1419-1430, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35771007

RESUMEN

Intracellular calcium signaling is essential for all kingdoms of life. An important part of this process is the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), which maintains the low cytosolic calcium levels required for intracellular calcium homeostasis. In higher organisms, SERCA is regulated by a series of tissue-specific transmembrane subunits such as phospholamban in cardiac muscles and sarcolipin in skeletal muscles. These regulatory axes are so important for muscle contractility that SERCA, phospholamban, and sarcolipin are practically invariant across mammalian species. With the recent discovery of the arthropod sarcolambans, the family of calcium pump regulatory subunits appears to span more than 550 million years of evolutionary divergence from arthropods to humans. This evolutionary divergence is reflected in the peptide sequences, which vary enormously from one another and only vaguely resemble phospholamban and sarcolipin. The discovery of the sarcolambans allowed us to address two questions. How much sequence variation is tolerated in the regulation of mammalian SERCA activity by the transmembrane peptides? Do divergent peptide sequences mimic phospholamban or sarcolipin in their regulatory activities despite limited sequence similarity? We expressed and purified recombinant sarcolamban peptides from three different arthropods. The peptides were coreconstituted into proteoliposomes with mammalian SERCA1a and the effect of each peptide on the apparent calcium affinity and maximal activity of SERCA was measured. All three peptides were superinhibitors of SERCA, exhibiting either phospholamban-like or sarcolipin-like characteristics. Molecular modeling, protein-protein docking, and molecular dynamics simulations revealed novel features of the divergent peptides and their SERCA regulatory properties.


Asunto(s)
Calcio , Retículo Sarcoplasmático , Animales , Calcio/metabolismo , Señalización del Calcio , Proteínas de Unión al Calcio/química , Humanos , Mamíferos/metabolismo , Simulación de Dinámica Molecular , Proteínas Musculares , Péptidos/metabolismo , Péptidos/farmacología , Proteolípidos/química , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química
5.
Bioessays ; 44(7): e2200052, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35560336

RESUMEN

Sarco/endoplasmic reticulum Ca2+ ATPase 2b (SERCA2b), a member of the SERCA family, is expressed ubiquitously and transports Ca2+ into the sarco/endoplasmic reticulum using the energy provided by ATP binding and hydrolysis. The crystal structure of SERCA2b in its Ca2+ - and ATP-bound (E1∙2Ca2+ -ATP) state and cryo-electron microscopy (cryo-EM) structures of the protein in its E1∙2Ca2+ -ATP and Ca2+ -unbound phosphorylated (E2P) states have provided essential insights into how the overall conformation and ATPase activity of SERCA2b is regulated by the transmembrane helix 11 and the subsequent luminal extension loop, both of which are specific to this isoform. More recently, our cryo-EM analysis has revealed that SERCA2b likely adopts open and closed conformations of the cytosolic domains in the Ca2+ -bound but ATP-free (E1∙2Ca2+ ) state, and that the closed conformation represents a state immediately prior to ATP binding. This review article summarizes the unique mechanisms underlying the conformational and functional regulation of SERCA2b.


Asunto(s)
Calcio , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Microscopía por Crioelectrón , Retículo Endoplásmico/metabolismo , Humanos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
6.
EMBO J ; 40(19): e108482, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34459010

RESUMEN

Sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA) 2b is a ubiquitous SERCA family member that conducts Ca2+ uptake from the cytosol to the ER. Herein, we present a 3.3 Å resolution cryo-electron microscopy (cryo-EM) structure of human SERCA2b in the E1·2Ca2+ state, revealing a new conformation for Ca2+ -bound SERCA2b with a much closer arrangement of cytosolic domains than in the previously reported crystal structure of Ca2+ -bound SERCA1a. Multiple conformations generated by 3D classification of cryo-EM maps reflect the intrinsically dynamic nature of the cytosolic domains in this state. Notably, ATP binding residues of SERCA2b in the E1·2Ca2+ state are located at similar positions to those in the E1·2Ca2+ -ATP state; hence, the cryo-EM structure likely represents a preformed state immediately prior to ATP binding. Consistently, a SERCA2b mutant with an interdomain disulfide bridge that locks the closed cytosolic domain arrangement displayed significant autophosphorylation activity in the presence of Ca2+ . We propose a novel mechanism of ATP binding to SERCA2b.


Asunto(s)
Adenosina Trifosfato/química , Microscopía por Crioelectrón , Modelos Moleculares , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Adenosina Trifosfato/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Hidrólisis , Conformación Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Relación Estructura-Actividad
7.
Sci Rep ; 11(1): 13672, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34211016

RESUMEN

The sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) transports Ca2+ ions across the membrane coupled with ATP hydrolysis. Crystal structures of ligand-stabilized molecules indicate that the movement of actuator (A) domain plays a crucial role in Ca2+ translocation. However, the actual structural movements during the transitions between intermediates remain uncertain, in particular, the structure of E2PCa2 has not been solved. Here, the angle of the A-domain was measured by defocused orientation imaging using isotropic total internal reflection fluorescence microscopy. A single SERCA1a molecule, labeled with fluorophore ReAsH on the A-domain in fixed orientation, was embedded in a nanodisc, and stabilized on Ni-NTA glass. Activation with ATP and Ca2+ caused angle changes of the fluorophore and therefore the A-domain, motions lost by inhibitor, thapsigargin. Our high-speed set-up captured the motion during EP isomerization, and suggests that the A-domain rapidly rotates back and forth from an E1PCa2 position to a position close to the E2P state. This is the first report of the detection in the movement of the A-domain as an angle change. Our method provides a powerful tool to investigate the conformational change of a membrane protein in real-time.


Asunto(s)
ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Adenosina Trifosfato/metabolismo , Animales , Células COS , Calcio/metabolismo , Chlorocebus aethiops , Modelos Moleculares , Dominios Proteicos , Conejos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
8.
Elife ; 102021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34075877

RESUMEN

The sarco-plasmic reticulum calcium pump (SERCA) plays a critical role in the contraction-relaxation cycle of muscle. In cardiac muscle, SERCA is regulated by the inhibitor phospholamban. A new regulator, dwarf open reading frame (DWORF), has been reported to displace phospholamban from SERCA. Here, we show that DWORF is a direct activator of SERCA, increasing its turnover rate in the absence of phospholamban. Measurement of in-cell calcium dynamics supports this observation and demonstrates that DWORF increases SERCA-dependent calcium reuptake. These functional observations reveal opposing effects of DWORF activation and phospholamban inhibition of SERCA. To gain mechanistic insight into SERCA activation, fluorescence resonance energy transfer experiments revealed that DWORF has a higher affinity for SERCA in the presence of calcium. Molecular modeling and molecular dynamics simulations provide a model for DWORF activation of SERCA, where DWORF modulates the membrane bilayer and stabilizes the conformations of SERCA that predominate during elevated cytosolic calcium.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Péptidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Retículo Sarcoplasmático/enzimología , Proteínas de Unión al Calcio/metabolismo , Activación Enzimática , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Péptidos/química , Péptidos/genética , Conformación Proteica , Retículo Sarcoplasmático/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Relación Estructura-Actividad , Factores de Tiempo
9.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33801794

RESUMEN

Calcium in mammalian neurons is essential for developmental processes, neurotransmitter release, apoptosis, and signal transduction. Incorrectly processed Ca2+ signal is well-known to trigger a cascade of events leading to altered response to variety of stimuli and persistent accumulation of pathological changes at the molecular level. To counterbalance potentially detrimental consequences of Ca2+, neurons are equipped with sophisticated mechanisms that function to keep its concentration in a tightly regulated range. Calcium pumps belonging to the P-type family of ATPases: plasma membrane Ca2+-ATPase (PMCA), sarco/endoplasmic Ca2+-ATPase (SERCA) and secretory pathway Ca2+-ATPase (SPCA) are considered efficient line of defense against abnormal Ca2+ rises. However, their role is not limited only to Ca2+ transport, as they present tissue-specific functionality and unique sensitive to the regulation by the main calcium signal decoding protein-calmodulin (CaM). Based on the available literature, in this review we analyze the contribution of these three types of Ca2+-ATPases to neuropathology, with a special emphasis on mental diseases.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Trastornos Mentales/enzimología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , ATPasas Transportadoras de Calcio/química , Humanos , Modelos Moleculares , Enfermedades del Sistema Nervioso/enzimología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/química , Conformación Proteica , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química
10.
Sci Rep ; 11(1): 1641, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452371

RESUMEN

Sarcolipin (SLN), a single-spanning membrane protein, is a regulator of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA1a). Chemically synthesized SLN, palmitoylated or not (pSLN or SLN), and recombinant wild-type rabbit SERCA1a expressed in S. cerevisiae design experimental conditions that provide a deeper understanding of the functional role of SLN on the regulation of SERCA1a. Our data show that chemically synthesized SLN interacts with recombinant SERCA1a, with calcium-deprived E2 state as well as with calcium-bound E1 state. This interaction hampers the binding of calcium in agreement with published data. Unexpectedly, SLN has also an allosteric effect on SERCA1a transport activity by impairing the binding of ATP. Our results reveal that SLN significantly slows down the E2 to Ca2.E1 transition of SERCA1a while it affects neither phosphorylation nor dephosphorylation. Comparison with chemically synthesized SLN deprived of acylation demonstrates that palmitoylation is not necessary for either inhibition or association with SERCA1a. However, it has a small but statistically significant effect on SERCA1a phosphorylation when various ratios of SLN-SERCA1a or pSLN-SERCA1a are tested.


Asunto(s)
Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Proteínas Musculares/metabolismo , Proteolípidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Regulación Alostérica , Animales , Cinética , Fosforilación , Unión Proteica , Conejos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Saccharomyces cerevisiae/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
11.
Proc Natl Acad Sci U S A ; 117(49): 31114-31122, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229570

RESUMEN

The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) is a P-type ATPase that transports Ca2+ from the cytosol into the sarco(endo)plasmic reticulum (SR/ER) lumen, driven by ATP. This primary transport activity depends on tight coupling between movements of the transmembrane helices forming the two Ca2+-binding sites and the cytosolic headpiece mediating ATP hydrolysis. We have addressed the molecular basis for this intramolecular communication by analyzing the structure and functional properties of the SERCA mutant E340A. The mutated Glu340 residue is strictly conserved among the P-type ATPase family of membrane transporters and is located at a seemingly strategic position at the interface between the phosphorylation domain and the cytosolic ends of 5 of SERCA's 10 transmembrane helices. The mutant displays a marked slowing of the Ca2+-binding kinetics, and its crystal structure in the presence of Ca2+ and ATP analog reveals a rotated headpiece, altered connectivity between the cytosolic domains, and an altered hydrogen bonding pattern around residue 340. Supported by molecular dynamics simulations, we conclude that the E340A mutation causes a stabilization of the Ca2+ sites in a more occluded state, hence displaying slowed dynamics. This finding underpins a crucial role of Glu340 in interdomain communication between the headpiece and the Ca2+-binding transmembrane region.


Asunto(s)
Proteínas de Unión al Calcio/ultraestructura , Calcio/metabolismo , Conformación Proteica en Hélice alfa , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/ultraestructura , Adenosina Trifosfato/química , Secuencia de Aminoácidos/genética , Asparagina/química , Sitios de Unión/genética , Calcio/química , Señalización del Calcio/genética , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Cristalografía por Rayos X , Citosol/metabolismo , Escherichia coli/enzimología , Humanos , Enlace de Hidrógeno , Cinética , Simulación de Dinámica Molecular , Mutación/genética , Fosforilación/genética , Dominios Proteicos/genética , Estructura Secundaria de Proteína , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Triptófano/química
12.
Proc Natl Acad Sci U S A ; 117(31): 18448-18458, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32675243

RESUMEN

Under physiological conditions, most Ca2+-ATPase (SERCA) molecules bind ATP before binding the Ca2+ transported. SERCA has a high affinity for ATP even in the absence of Ca2+, and ATP accelerates Ca2+ binding at pH values lower than 7, where SERCA is in the E2 state with low-affinity Ca2+-binding sites. Here we describe the crystal structure of SERCA2a, the isoform predominant in cardiac muscle, in the E2·ATP state at 3.0-Å resolution. In the crystal structure, the arrangement of the cytoplasmic domains is distinctly different from that in canonical E2. The A-domain now takes an E1 position, and the N-domain occupies exactly the same position as that in the E1·ATP·2Ca2+ state relative to the P-domain. As a result, ATP is properly delivered to the phosphorylation site. Yet phosphoryl transfer never takes place without the filling of the two transmembrane Ca2+-binding sites. The present crystal structure explains what ATP binding itself does to SERCA and how nonproductive phosphorylation is prevented in E2.


Asunto(s)
Adenosina Trifosfato/metabolismo , Calcio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Cristalografía por Rayos X , Humanos , Miocardio/metabolismo , Fosforilación , Conformación Proteica , Dominios Proteicos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
13.
Int J Mol Sci ; 21(11)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32532023

RESUMEN

Sarcoendoplasmic reticulum calcium ATPase (SERCA), a member of the P-type ATPase family of ion and lipid pumps, is responsible for the active transport of Ca2+ from the cytoplasm into the sarcoplasmic reticulum lumen of muscle cells, into the endoplasmic reticulum (ER) of non-muscle cells. X-ray crystallography has proven to be an invaluable tool in understanding the structural changes of SERCA, and more than 70 SERCA crystal structures representing major biochemical states (defined by bound ligand) have been deposited in the Protein Data Bank. Consequently, SERCA is one of the best characterized components of the calcium transport machinery in the cell. Emerging approaches in the field, including spectroscopy and molecular simulation, now help integrate and interpret this rich structural information to understand the conformational transitions of SERCA that occur during activation, inhibition, and regulation. In this review, we provide an overview of the crystal structures of SERCA, focusing on identifying metrics that facilitate structure-based categorization of major steps along the catalytic cycle. We examine the integration of crystallographic data with different biophysical approaches and computational methods to link biochemical and structural states of SERCA that are populated in the cell. Finally, we discuss the challenges and new opportunities in the field, including structural elucidation of functionally important and novel regulatory complexes of SERCA, understanding the structural basis of functional divergence among homologous SERCA regulators, and bridging the gap between basic and translational research directed toward therapeutic modulation of SERCA.


Asunto(s)
ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Fosforilación , Conformación Proteica , Dominios Proteicos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , Tapsigargina/química , Tapsigargina/metabolismo
14.
J Med Chem ; 63(5): 1937-1963, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32030976

RESUMEN

The sarco/endoplasmic reticulum calcium ATPase (SERCA), which plays a key role in the maintenance of Ca2+ ion homeostasis, is an extensively studied enzyme, the inhibition of which has a considerable impact on cell life and death decision. To date, several SERCA inhibitors have been thoroughly studied and the most notable one, a derivative of the sesquiterpene lactone thapsigargin, is gradually approaching a clinical application. Meanwhile, new compounds with SERCA-inhibiting properties of natural, synthetic, or semisynthetic origin are being discovered and/or developed; some of these might also be suitable for the development of new drugs with improved performance. This review brings an up-to-date comprehensive overview of recently discovered compounds with the potential of SERCA inhibition, discusses their mechanism of action, and highlights their potential clinical applications, such as cancer treatment.


Asunto(s)
Antineoplásicos/química , Inhibidores Enzimáticos/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/genética , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Estructura Secundaria de Proteína , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
15.
Biomolecules ; 10(2)2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024167

RESUMEN

Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) maintains the level of calcium concentration in cells by pumping calcium ions from the cytoplasm to the lumen while undergoing substantial conformational changes, which can be stabilized or prevented by various compounds. Here we attempted to clarify the molecular mechanism of action of new inhibitor rutin arachidonate, one of the series of the acylated rutin derivatives. We performed molecular dynamics simulations of SERCA1a protein bound to rutin arachidonate positioned in a pure dipalmitoylphosphatidylcholine bilayer membrane. Our study predicted the molecular basis for the binding of rutin arachidonate towards SERCA1a in the vicinity of the binding site of calcium ions and near the location of the well-known inhibitor thapsigargin. The stable hydrogen bond between Glu771 and rutin arachidonate plays a key role in the binding. SERCA1a is kept in the E2 conformation preventing the formation of important salt bridges between the side chains of several residues, primarily Glu90 and Lys297. All in all, the structural changes induced by the binding of rutin arachidonate to SERCA1a may shift proton balance near the titrable residues Glu771 and Glu309 into neutral species, hence preventing the binding of calcium ions to the transmembrane binding sites and thus affecting calcium homeostasis. Our results could lead towards the design of new types of inhibitors, potential drug candidates for cancer treatment, which could be anchored to the transmembrane region of SERCA1a by a lipophilic fatty acid group.


Asunto(s)
Ácido Araquidónico/química , Membrana Dobles de Lípidos/química , Rutina/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Sitios de Unión , Calcio/química , Simulación por Computador , Retículo Endoplásmico/enzimología , Humanos , Enlace de Hidrógeno , Iones , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Rayos X
16.
Biochim Biophys Acta Biomembr ; 1862(2): 183138, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31790695

RESUMEN

A fluorescence ratiometric method utilizing the probe eosin Y is presented for estimating the ATP binding site polarity of P-type ATPases in different conformational states. The method has been calibrated by measurements in a series of alcohols and tested using complexation of eosin Y with methyl-ß-cyclodextrin. The results obtained with the Na+,K+-, H+,K+- and sarcoplasmic reticulum Ca2+-ATPases indicate that the ATP binding site, to which eosin is known to bind, is significantly more polar in the case of the Na+,K+- and H+,K+-ATPases compared to the Ca2+-ATPase. This result was found to be consistent with docking calculations of eosin with the E2 conformational state of the Na+,K+-ATPase and the Ca2+-ATPase. Fluorescence experiments showed that eosin binds significantly more strongly to the E1 conformation of the Na+,K+-ATPase than the E2 conformation, but in the case of the Ca2+-ATPase both fluorescence experiments and docking calculations showed no significant difference in binding affinity between the two conformations. This result could be due to the fact that, in contrast to the Na+,K+- and H+,K+-ATPases, the E2-E1 transition of the Ca2+-ATPase does not involve the movement of a lysine-rich N-terminal tail which may affect the overall enzyme conformation. Consistent with this hypothesis, the eosin affinity of the E1 conformation of the Na+,K+-ATPase was significantly reduced after N-terminal truncation. It is suggested that changes in conformational entropy of the N-terminal tail of the Na+, K+- and the H+,K+-ATPases during the E2-E1 transition could affect the thermodynamic stability of the E1 conformation and hence its ATP binding affinity.


Asunto(s)
Adenosina Trifosfato/metabolismo , Simulación del Acoplamiento Molecular , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasa Intercambiadora de Sodio-Potasio/química , Adenosina Trifosfato/química , Animales , Sitios de Unión , Mucosa Gástrica/enzimología , Unión Proteica , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Porcinos
17.
Annu Rev Biochem ; 89: 583-603, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31874046

RESUMEN

P-type ATPases are found in all kingdoms of life and constitute a wide range of cation transporters, primarily for H+, Na+, K+, Ca2+, and transition metal ions such as Cu(I), Zn(II), and Cd(II). They have been studied through a wide range of techniques, and research has gained very significant insight on their transport mechanism and regulation. Here, we review the structure, function, and dynamics of P2-ATPases including Ca2+-ATPases and Na,K-ATPase. We highlight mechanisms of functional transitions that are associated with ion exchange on either side of the membrane and how the functional cycle is regulated by interaction partners, autoregulatory domains, and off-cycle states. Finally, we discuss future perspectives based on emerging techniques and insights.


Asunto(s)
Adenosina Trifosfato/química , ATPasas Transportadoras de Cobre/química , ATPasa Intercambiadora de Hidrógeno-Potásio/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasa Intercambiadora de Sodio-Potasio/química , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Cationes Bivalentes , Cationes Monovalentes , ATPasas Transportadoras de Cobre/genética , ATPasas Transportadoras de Cobre/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Humanos , Transporte Iónico , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Protones , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Imagen Individual de Molécula , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Especificidad por Sustrato
18.
Biochem Soc Trans ; 47(5): 1247-1257, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31671180

RESUMEN

P-type ATPases transport ions across biological membranes against concentration gradients and are essential for all cells. They use the energy from ATP hydrolysis to propel large intramolecular movements, which drive vectorial transport of ions. Tight coordination of the motions of the pump is required to couple the two spatially distant processes of ion binding and ATP hydrolysis. Here, we review our current understanding of the structural dynamics of P-type ATPases, focusing primarily on Ca2+ pumps. We integrate different types of information that report on structural dynamics, primarily time-resolved fluorescence experiments including single-molecule Förster resonance energy transfer and molecular dynamics simulations, and interpret them in the framework provided by the numerous crystal structures of sarco/endoplasmic reticulum Ca2+-ATPase. We discuss the challenges in characterizing the dynamics of membrane pumps, and the likely impact of new technologies on the field.


Asunto(s)
Bombas Iónicas/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Catálisis , Humanos , Hidrólisis , Bombas Iónicas/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
19.
J Mol Biol ; 431(22): 4429-4443, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31449798

RESUMEN

The recently-discovered single-span transmembrane proteins endoregulin (ELN), dwarf open reading frame (DWORF), myoregulin (MLN), and another-regulin (ALN) are reported to bind to the SERCA calcium pump in a manner similar to that of known regulators of SERCA activity, phospholamban (PLB) and sarcolipin (SLN). To determine how micropeptide assembly into oligomers affects the availability of the micropeptide to bind to SERCA in a regulatory complex, we used co-immunoprecipitation and fluorescence resonance energy transfer (FRET) to quantify micropeptide oligomerization and SERCA-binding. Micropeptides formed avid homo-oligomers with high-order stoichiometry (n > 2 protomers per homo-oligomer), but it was the monomeric form of all micropeptides that interacted with SERCA. In view of these two alternative binding interactions, we evaluated the possibility that oligomerization occurs at the expense of SERCA-binding. However, even the most avidly oligomeric micropeptide species still showed robust FRET with SERCA, and there was a surprising positive correlation between oligomerization affinity and SERCA-binding. This comparison of micropeptide family members suggests that the same structural determinants that support oligomerization are also important for binding to SERCA. Moreover, the unique oligomerization/SERCA-binding profile of DWORF is in harmony with its distinct role as a PLB-competing SERCA activator, in contrast to the inhibitory function of the other SERCA-binding micropeptides.


Asunto(s)
Péptidos/química , Péptidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Señalización del Calcio/genética , Señalización del Calcio/fisiología , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Transferencia Resonante de Energía de Fluorescencia , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Sistemas de Lectura Abierta/genética , Unión Proteica , Multimerización de Proteína/genética , Multimerización de Proteína/fisiología , Proteolípidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
20.
ACS Chem Biol ; 14(9): 1913-1920, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31329413

RESUMEN

Demonstration of target binding is a key requirement for understanding the mode of action of new therapeutics. The cellular thermal shift assay (CETSA) has been introduced as a powerful label-free method to assess target engagement in physiological environments. Here, we present the application of live-cell CETSA to different classes of integral multipass transmembrane proteins using three case studies, the first showing a large and robust stabilization of the outer mitochondrial five-pass transmembrane protein TSPO, the second being a modest stabilization of SERCA2, and the last describing an atypical compound-driven stabilization of the GPCR PAR2. Our data demonstrated that using modified protocols with detergent extraction after the heating step, CETSA can reliably be applied to several membrane proteins of different complexity. By showing examples with distinct CETSA behaviors, we aim to provide the scientific community with an overview of different scenarios to expect during CETSA experiments, especially for challenging, membrane bound targets.


Asunto(s)
Receptor PAR-2/metabolismo , Receptores de GABA/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Aminoquinolinas/farmacología , Benzamidas/farmacología , Bencimidazoles/farmacología , Benzodiazepinonas/farmacología , Benzodioxoles/farmacología , Alcoholes Bencílicos/farmacología , Bioensayo , Línea Celular Tumoral , Antagonistas del GABA/farmacología , Células HEK293 , Calor , Humanos , Imidazoles/farmacología , Transición de Fase/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Piridinas/farmacología , Receptor PAR-2/antagonistas & inhibidores , Receptor PAR-2/química , Receptores de GABA/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Tapsigargina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA