Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.715
Filtrar
1.
Sci Rep ; 14(1): 23431, 2024 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379425

RESUMEN

Fusicoccin-A (FC-A) is a diterpene glucoside produced by a pathogenic fungus. Since its discovery, FC-A has been widely recognized as a phytotoxin that induces stomatal opening and leaf wilting, eventually leading to plant death. In this study, we present the first evidence that FC-A enhances plant growth by stabilizing the protein-protein interaction between plasma membrane (PM) H+-ATPase and 14-3-3 in guard cells. Long-term treatment of Arabidopsis plants with FC-A resulted in ~ 30% growth enhancement. Structurally similar fusicoccin-J (FC-J) showed a similar degree of growth-promotion activity as FC-A, whereas the more hydrophilic fusicoccin-H (FC-H) exhibited no effect on plant growth, indicating that the enhancement of plant growth observed with FC-A and FC-J involves upregulation of the protein-protein interaction between PM H+-ATPase and 14-3-3 in guard cells, which promotes stomatal opening and photosynthesis.


Asunto(s)
Proteínas 14-3-3 , Arabidopsis , Membrana Celular , Glicósidos , ATPasas de Translocación de Protón , Proteínas 14-3-3/metabolismo , ATPasas de Translocación de Protón/metabolismo , Glicósidos/metabolismo , Glicósidos/farmacología , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Micotoxinas , Regulación hacia Arriba/efectos de los fármacos , Unión Proteica , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/metabolismo
2.
Commun Biol ; 7(1): 1253, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39362977

RESUMEN

Bioactive metabolites play a crucial role in shaping interactions among diverse organisms. In this study, we identified cyclo(Pro-Tyr), a metabolite produced by Bacillus velezensis, as a potent inhibitor of Botrytis cinerea and Caenorhabditis elegans, two potential cohabitant eukaryotic organisms. Based on our investigation, cyclo(Pro-Tyr) disrupts plasma membrane polarization, induces oxidative stress and increases membrane fluidity, which compromises fungal membrane integrity. These cytological and physiological changes induced by cyclo(Pro-Tyr) may be triggered by the destabilization of membrane microdomains containing the [H+]ATPase Pma1. In response to cyclo(Pro-Tyr) stress, fungal cells activate a transcriptomic and metabolomic response, which primarily involves lipid metabolism and Reactive Oxygen Species (ROS) detoxification, to mitigate membrane damage. This similar response occurs in the nematode C. elegans, indicating that cyclo(Pro-Tyr) targets eukaryotic cellular membranes.


Asunto(s)
Botrytis , Caenorhabditis elegans , Membrana Celular , ATPasas de Translocación de Protón , Caenorhabditis elegans/metabolismo , Animales , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/genética , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Antifúngicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Microdominios de Membrana/metabolismo , Microdominios de Membrana/efectos de los fármacos
3.
Planta ; 260(5): 105, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325207

RESUMEN

MAIN CONCLUSION: PATOL1 contributes to increasing biomass not only by effective stomatal movement but also by root meristematic activity. PATROL1 (PROTON ATPase TRANSLOCATION CONTROL 1), a protein with a MUN domain, is involved in the intercellular trafficking of AHA1 H+-ATPase to the plasma membrane in guard cells. This allows for larger stomatal opening and more efficient photosynthesis, leading to increased biomass. Although PATROL1 is expressed not only in stomata but also in other tissues of the shoot and root, the role in other tissues than stomata has not been determined yet. Here, we investigated PATROL1 functions in roots using a loss-of-function mutant and an overexpressor. Cytological observations revealed that root meristematic size was significantly smaller in the mutant resulting in the short primary root. Grafting experiments showed that the shoot biomass of the mutant scion was increased when it grafted onto wild-type or overexpressor rootstocks. Conversely, grafting of the overexpressor scion shoot enhanced the growth of the mutant rootstock. The leaf temperatures of the grafted plants were consistent with those of their respective genotypes, indicating cell-autonomous behavior of stomatal movement and independent roles of PATROL1 in plant growth. Moreover, plasma membrane localization of AHA1 was not altered in root epidermal cells in the patrol1 mutant implying existence of a different mode of PATROL1 action in roots. Thus PATROL1 plays a role in root meristem and contributes to increase shoot biomass.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Biomasa , Raíces de Plantas , Brotes de la Planta , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Arabidopsis/metabolismo , Estomas de Plantas/fisiología , Estomas de Plantas/genética , Estomas de Plantas/crecimiento & desarrollo , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/genética , Meristema/crecimiento & desarrollo , Meristema/genética , Meristema/fisiología , Membrana Celular/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Regulación de la Expresión Génica de las Plantas , Mutación
4.
Biochem Biophys Res Commun ; 733: 150705, 2024 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-39293334

RESUMEN

The F-type ATP synthase/ATPase (FOF1) is important for cellular bioenergetics in eukaryotes and bacteria. We recently showed that venturicidins, a class of macrolides that inhibit the proton transporting complex (FO), can also induce time-dependent functional decoupling of F1-ATPase from FO on membranes from Escherichia coli and Pseudomonas aeruginosa. This dysregulated ATPase activity could deplete bacterial ATP levels and contribute to venturicidin's capacity to enhance the bactericidal action of aminoglycosides antibiotics. We now show that a distinct type of FO inhibitor, tributyltin, also can decouple FOF1-ATPase activity of E. coli membranes. In contrast to the action of venturicidins, decoupling by tributyltin is not dependent on ATP, indicating mechanistic differences. Tributyltin disrupts the coupling role of the ε subunit of F1 but does not induce dissociation of the F1-ATPase complex from membrane-embedded FO. Understanding such decoupling mechanisms could support development of novel antibacterial compounds that target dysregulation of FOF1 functions.


Asunto(s)
Escherichia coli , ATPasas de Translocación de Protón , Compuestos de Trialquiltina , Compuestos de Trialquiltina/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Escherichia coli/genética , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , ATPasas de Translocación de Protón Bacterianas/metabolismo , ATPasas de Translocación de Protón Bacterianas/química
5.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273619

RESUMEN

Human lactoferrin (hLf) is an innate host defense protein that inhibits microbial H+-ATPases. This protein includes an ancestral structural motif (i.e., γ-core motif) intimately associated with the antimicrobial activity of many natural Cys-rich peptides. Peptides containing a complete γ-core motif from hLf or other phylogenetically diverse antimicrobial peptides (i.e., afnA, SolyC, PA1b, PvD1, thanatin) showed microbicidal activity with similar features to those previously reported for hLf and defensins. Common mechanistic characteristics included (1) cell death independent of plasma membrane (PM) lysis, (2) loss of intracellular K+ (mediated by Tok1p K+ channels in yeast), (3) inhibition of microbicidal activity by high extracellular K+, (4) influence of cellular respiration on microbicidal activity, (5) involvement of mitochondrial ATP synthase in yeast cell death processes, and (6) increment of intracellular ATP. Similar features were also observed with the BM2 peptide, a fungal PM H+-ATPase inhibitor. Collectively, these findings suggest host defense peptides containing a homologous γ-core motif inhibit PM H+-ATPases. Based on this discovery, we propose that the γ-core motif is an archetypal effector involved in the inhibition of PM H+-ATPases across kingdoms of life and contributes to the in vitro microbicidal activity of Cys-rich antimicrobial peptides.


Asunto(s)
Secuencias de Aminoácidos , ATPasas de Translocación de Protón , Humanos , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/antagonistas & inhibidores , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Lactoferrina/farmacología , Lactoferrina/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Cisteína/metabolismo , Cisteína/química , Candida albicans/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos
6.
J Agric Food Chem ; 72(35): 19333-19341, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39183467

RESUMEN

The regulation solutions and mechanisms of reducing pesticide phytotoxicity to nontarget plants are not well-defined and detailed. Here, we have proposed a new detoxification strategy to control the toxic effects of herbicide imazethapyr (IM) induced in wheat seedlings from the perspective of the plasma membrane (PM) H+-ATPase. We found that the changes in PM H+-ATPase activity have a regulatory effect on the phytotoxic effects induced by IM in plants. Treatment with PM H+-ATPase activators restored the reduced auxin content and photosynthetic efficiency caused by IM, thereby promoting plant growth. Application of a PM H+-ATPase inhibitor further reduced phosphorus content and significantly increased 2,4-dihydroxy-7-methoxy-2H,1,4-benzoxazin-3(4H)one (DIMBOA) and jasmonic acid levels. These effects indicate that auxin and DIMBOA may regulate plant growth trends and detoxification effects mediated by PM H+-ATPase. This work opens a new strategy for regulating herbicide toxicity to nontarget plants from the PM H+-ATPase.


Asunto(s)
Herbicidas , Ácidos Nicotínicos , Proteínas de Plantas , ATPasas de Translocación de Protón , Triticum , Triticum/crecimiento & desarrollo , Triticum/efectos de los fármacos , Triticum/metabolismo , Triticum/enzimología , Herbicidas/toxicidad , ATPasas de Translocación de Protón/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácidos Nicotínicos/toxicidad , Ácidos Nicotínicos/farmacología , Ácidos Indolacéticos/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Oxilipinas/farmacología , Ciclopentanos/farmacología
7.
Plant Sci ; 348: 112213, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39117001

RESUMEN

Soil salinization, especially in arid environments, is a leading cause of land degradation and desertification. Excessive salt in the soil is detrimental to plants. Plants have developed various sophisticated regulatory mechanisms that allow them to withstand adverse environments. Through cross-adaptation, plants improve their resistance to an adverse condition after experiencing a different kind of adversity. Our analysis of Ammopiptanthus nanus, a desert shrub, showed that mechanical wounding activates the biosynthesis of jasmonic acid (JA) and abscisic acid (ABA), enhancing plasma membrane H+-ATPase activity to establish an electrochemical gradient that promotes Na+ extrusion via Na+/H+ antiporters. Mechanical wounding reduces K+ loss under salt stress, improving the K/Na and maintaining root ion balance. Meanwhile, mechanical damage enhances the activity of antioxidant enzymes and the content of osmotic substances, working together with cellular ions to alleviate water loss and growth inhibition under salt stress. This study provides new insights and approaches for enhancing salt tolerance and stress adaptation in plants by elucidating the signaling mechanisms of cross-adaptation.


Asunto(s)
Homeostasis , Raíces de Plantas , Tolerancia a la Sal , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Ciclopentanos/metabolismo , Clima Desértico , Oxilipinas/metabolismo , Ácido Abscísico/metabolismo , Sodio/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , ATPasas de Translocación de Protón/metabolismo
8.
Nat Commun ; 15(1): 7260, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179563

RESUMEN

Sweet potato starch is in high demand globally for food and industry. However, starch content is negatively correlated with fresh yield. It is urgent to uncover the genetic basis and molecular mechanisms underlying the starch yield of sweet potato. Here we systematically explore source-sink synergy-mediated sweet potato starch yield formation: the production, loading, and transport of photosynthates in leaves, as well as their unloading and allocation in storage roots, lead to starch content divergence between sweet potato varieties. Moreover, we find that six haplotypes of IbPMA1 encoding a plasma membrane H+-ATPase are significantly linked with starch accumulation. Overexpression of IbPMA1 in sweet potato results in significantly increased starch and sucrose contents, while its knockdown exhibits an opposing effect. Furthermore, a basic helix-loop-helix (bHLH) transcription factor IbbHLH49 directly targets IbPMA1 and activates its transcription. Overexpression of IbbHLH49 notably improves source-sink synergy-mediated fresh yield and starch accumulation in sweet potato. Both IbbHLH49 and IbPMA1 substantially influence sugar transport and starch biosynthesis in source and sink tissues. These findings expand our understanding of starch yield formation and provide strategies and candidate genes for high starch breeding in root and tuber crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ipomoea batatas , Hojas de la Planta , Proteínas de Plantas , Raíces de Plantas , Almidón , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Ipomoea batatas/crecimiento & desarrollo , Almidón/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , Haplotipos , Sacarosa/metabolismo , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/genética
9.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000442

RESUMEN

Human defensins are cysteine-rich peptides (Cys-rich peptides) of the innate immune system. Defensins contain an ancestral structural motif (i.e., γ-core motif) associated with the antimicrobial activity of natural Cys-rich peptides. In this study, low concentrations of human α- and ß-defensins showed microbicidal activity that was not associated with cell membrane permeabilization. The cell death pathway was similar to that previously described for human lactoferrin, also an immunoprotein containing a γ-core motif. The common features were (1) cell death not related to plasma membrane (PM) disruption, (2) the inhibition of microbicidal activity via extracellular potassium, (3) the influence of cellular respiration on microbicidal activity, and (4) the influence of intracellular pH on bactericidal activity. In addition, in yeast, we also observed (1) partial K+-efflux mediated via Tok1p K+-channels, (2) the essential role of mitochondrial ATP synthase in cell death, (3) the increment of intracellular ATP, (4) plasma membrane depolarization, and (5) the inhibition of external acidification mediated via PM Pma1p H+-ATPase. Similar features were also observed with BM2, an antifungal peptide that inhibits Pma1p H+-ATPase, showing that the above coincident characteristics were a consequence of PM H+-ATPase inhibition. These findings suggest, for the first time, that human defensins inhibit PM H+-ATPases at physiological concentrations, and that the subsequent cytosolic acidification is responsible for the in vitro microbicidal activity. This mechanism of action is shared with human lactoferrin and probably other antimicrobial peptides containing γ-core motifs.


Asunto(s)
Membrana Celular , ATPasas de Translocación de Protón , Humanos , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/antagonistas & inhibidores , Permeabilidad de la Membrana Celular/efectos de los fármacos , Antiinfecciosos/farmacología , Defensinas/farmacología , Defensinas/metabolismo , Concentración de Iones de Hidrógeno , Saccharomyces cerevisiae/metabolismo , beta-Defensinas/metabolismo , beta-Defensinas/farmacología , Lactoferrina/farmacología , Lactoferrina/metabolismo , Potasio/metabolismo , Pruebas de Sensibilidad Microbiana , Candida albicans/efectos de los fármacos
10.
J Immunol ; 213(2): 109-114, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-38950331

RESUMEN

ATPase cation transporting 13A2 (ATP13A2) is an endolysosomal P-type ATPase known to be a polyamine transporter, explored mostly in neurons. As endolysosomal functions are also crucial in innate immune cells, we aimed to explore the potential role of ATP13A2 in the human immunocellular compartment. We found that human plasmacytoid dendritic cells (pDCs), the professional type I IFN-producing immune cells, especially have a prominent enrichment of ATP13A2 expression in endolysosomal compartments. ATP13A2 knockdown in human pDCs interferes with cytokine induction in response to TLR9/7 activation in response to bona fide ligands. ATP13A2 plays this crucial role in TLR9/7 activation in human pDCs by regulating endolysosomal pH and mitochondrial reactive oxygen generation. This (to our knowledge) hitherto unknown regulatory mechanism in pDCs involving ATP13A2 opens up a new avenue of research, given the crucial role of pDC-derived type I IFNs in protective immunity against infections as well as in the immunopathogenesis of myriad contexts of autoreactive inflammation.


Asunto(s)
Células Dendríticas , Endosomas , Lisosomas , Receptor Toll-Like 9 , Humanos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Lisosomas/metabolismo , Lisosomas/inmunología , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/inmunología , Endosomas/metabolismo , Endosomas/inmunología , ATPasas de Translocación de Protón/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Mitocondrias/inmunología , Células Cultivadas , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Receptor Toll-Like 7
11.
J Exp Bot ; 75(18): 5531-5546, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-38989653

RESUMEN

Fusicoccin (FC) is one of the most studied fungal metabolites to date. The finding that the plasma membrane H+-ATPase in combination with 14-3-3 proteins acts as a high-affinity receptor for FC was a breakthrough in the field. Ever since, the binding of FC to the ATPase-14-3-3 receptor complex has taken center stage in explaining all FC-induced physiological effects. However, a more critical review shows that this is not evident for a number of FC-induced effects. This review challenges the notion that all FC-affected processes start with the binding to and activation of the plasma membrane ATPase, and raises the question of whether other proteins with a key role in the respective processes are directly targeted by FC. A second unresolved question is whether FC may be another example of a fungal molecule turning out to be a 'copy' of an as yet unknown plant molecule. In view of the evidence, albeit not conclusive, that plants indeed produce 'FC-like ligands', it is worthwhile making a renewed attempt with modern improved technology to answer this question; the answer might upgrade FC or its structural analogue(s) to the classification of plant hormone.


Asunto(s)
Glicósidos , Glicósidos/metabolismo , Plantas/metabolismo , Proteínas 14-3-3/metabolismo , ATPasas de Translocación de Protón/metabolismo , Proteínas de Plantas/metabolismo
12.
Curr Opin Struct Biol ; 88: 102884, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39053417

RESUMEN

Ion-driven membrane motors, essential across all domains of life, convert a gradient of ions across a membrane into rotational energy, facilitating diverse biological processes including ATP synthesis, substrate transport, and bacterial locomotion. Herein, we highlight recent structural advances in the understanding of two classes of ion-driven membrane motors: rotary ATPases and 5:2 motors. The recent structure of the human F-type ATP synthase is emphasised along with the gained structural insight into clinically relevant mutations. Furthermore, we highlight the diverse roles of 5:2 motors and recent mechanistic understanding gained through the resolution of ions in the structure of a sodium-driven motor, combining insights into potential unifying mechanisms of ion selectivity and rotational torque generation in the context of their function as part of complex biological systems.


Asunto(s)
Proteínas Motoras Moleculares , Humanos , Proteínas Motoras Moleculares/metabolismo , Proteínas Motoras Moleculares/química , Membrana Celular/metabolismo , Membrana Celular/química , Iones/metabolismo , Iones/química , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Modelos Moleculares , Relación Estructura-Actividad
13.
Theory Biosci ; 143(3): 217-227, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39078560

RESUMEN

The F1-ATPase enzyme is the smallest-known molecular motor that rotates in 120° steps, driven by the hydrolysis of ATP. It is a multi-subunit enzyme that contains three catalytic sites. A central question is how the elementary chemical reactions that occur in the three sites are coupled to mechanical rotation. Various models and coupling schemes have been formulated in an attempt to answer this question. They can be classified as 2-site (bi-site) models, exemplified by Boyer's binding change mechanism first proposed 50 years ago, and 3-site (tri-site) models such as Nath's torsional mechanism, first postulated 25 years ago and embellished 1 year back. Experimental data collated using diverse approaches have conclusively shown that steady-state ATP hydrolysis by F1-ATPase occurs in tri-site mode. Hence older models have been continually modified to make them conform to the new facts. Here, we have developed a pure mathematical approach based on combinatorics and conservation laws to test if proposed models are 2-site or 3-site. Based on this novel combinatorial approach, we have proved that older and modified models are effectively bi‒site models in that catalysis and rotation in F1-ATPase occurs in these models with only two catalytic sites occupied by bound nucleotide. Hence these models contradict consensus experimental data. The recent 2023 model of ATP hydrolysis by F1-ATPase has been proved to be a true tri-site model based on our novel mathematical approach. Such pure mathematical proofs constitute an important step forward for ATP mechanism. However, in what must be considered an aspect with great scientific potential, the power of such mathematical proofs has not been fully exploited to solve molecular biological problems, in our opinion. We believe that the creative application of pure mathematical proofs (for another example see Nath in Theory Biosci 141:249-260, 2022) can help resolve with finality various longstanding molecular-level issues that arise as a matter of course in the analysis of fundamental biological problems. Such issues have proved extraordinarily difficult to resolve by standard experimental, theoretical, or computational approaches.


Asunto(s)
Adenosina Trifosfato , ATPasas de Translocación de Protón , Hidrólisis , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Dominio Catalítico , Cinética , Algoritmos , Catálisis , Rotación , Sitios de Unión , Modelos Moleculares
14.
Tree Physiol ; 44(8)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-38982738

RESUMEN

To understand the role of reactive oxygen species (ROS) in regulation of the plasma membrane (PM) H+-ATPase in acid-stressed Masson pine roots, different acidity (pH 6.6 as the control, pH 5.6 and pH 4.6) of simulated acid rain (SAR) added with and without external chemicals (H2O2, enzyme inhibitors and ROS scavenger) was prepared. After 30 days of SAR exposure, the plant morphological phenotype attributes, levels of cellular ROS and lipid peroxidation, enzymatic activities of antioxidants, PM nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and PM H+-ATPase activity in pine seedlings were measured. Compared with the control, the growth of pine seedlings exposed to SAR in the presence or absence of H2O2 was well-maintained, but the application of Na3VO4, 1,3-dimethyl-2-thiourea, N, N-dimethylthiourea (DMTU) and diphenyleneiodonium chloride (DPI) caused a substantial growth inhibition. In addition, SAR exposure, SAR with H2O2 treatment, and SAR with Na3VO4 treatment increased the cellular H2O2 content, O2- content and malondialdehyde (MDA) content, while the use of DMTU and DPI lead to relatively low levels. Similarly, the enzymatic activities of antioxidants, PM NADPH oxidase and PM H+-ATPase in acid stressed pine seedlings elevated with the increasing acidity. A significant stimulation of these enzymatic activities obtained from SAR with H2O2 treatment was observed, whereas which decreased obviously with the addition of Na3VO4, DMTU and DPI (P < 0.05). Moreover, a positive correlation was found between plant morphological attributes and the PM H+-ATPase activity (P < 0.05). Besides, the PM H+-ATPase activity positively correlated with the cellular ROS contents and the enzymatic activities of antioxidants and PM NADPH oxidase (P < 0.05). Therefore, the PM H+-ATPase is instrumental in the growth of pine seedlings resisting to acid stress by enhancing its activity. The process involves the signaling transduction of cellular ROS and coordination with PM NADPH oxidase.


Asunto(s)
Membrana Celular , Pinus , Raíces de Plantas , ATPasas de Translocación de Protón , Especies Reactivas de Oxígeno , Pinus/crecimiento & desarrollo , Pinus/metabolismo , Pinus/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , ATPasas de Translocación de Protón/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/metabolismo , Lluvia Ácida , Estrés Fisiológico , Antioxidantes/metabolismo
15.
Physiol Plant ; 176(3): e14380, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38894644

RESUMEN

Phototropism movement is crucial for plants to adapt to various environmental changes. Plant P-type H+-ATPase (HA) plays diverse roles in signal transduction during cell expansion, regulation of cellular osmotic potential and stomatal opening, and circadian movement. Despite numerous studies on the genome-wide analysis of Vitis vinifera, no research has been done on the P-type H+-ATPase family genes, especially concerning pulvinus-driven leaf movement. In this study, 55 VvHAs were identified and classified into nine distinct subgroups (1 to 9). Gene members within the same subgroups exhibit similar features in motif, intron/exon, and protein tertiary structures. Furthermore, four pairs of genes were derived by segmental duplication in grapes. Cis-acting element analysis identified numerous light/circadian-related elements in the promoters of VvHAs. qRT-PCR analysis showed that several genes of subgroup 7 were highly expressed in leaves and pulvinus during leaf movement, especially VvHA14, VvHA15, VvHA16, VvHA19, VvHA51, VvHA52, and VvHA54. Additionally, we also found that the VvHAs genes were asymmetrically expressed on both sides of the extensor and flexor cell of the motor organ, the pulvinus. The expression of VvHAs family genes in extensor cells was significantly higher than that in flexor cells. Overall, this study serves as a foundation for further investigations into the functions of VvHAs and contributes to the complex mechanisms underlying grapevine pulvinus growth and development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Fototropismo , Hojas de la Planta , Proteínas de Plantas , ATPasas de Translocación de Protón , Vitis , Vitis/genética , Vitis/fisiología , Vitis/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fototropismo/genética , Fototropismo/fisiología , Pulvino/genética , Pulvino/metabolismo , Pulvino/fisiología , Membrana Celular/metabolismo , Filogenia , Familia de Multigenes
16.
Cell Calcium ; 123: 102909, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38861767

RESUMEN

Many studies have focused on identifying the signaling pathway by which addition of glucose triggers post-translational activation of the plasma membrane H+-ATPase in yeast. They have revealed that calcium signaling is involved in the regulatory pathway, supported for instance by the phenotype of mutants inARG82 that encodes an inositol kinase that phosphorylates inositol triphosphate (IP3). Strong glucose-induced calcium signaling, and high glucose-induced plasma membrane H+-ATPase activation have been observed in a specific yeast strain with the PJ genetic background. In this study, we have applied pooled-segregant whole genome sequencing, QTL analysis and a new bioinformatics methodology for determining SNP frequencies to identify the cause of this discrepancy and possibly new components of the signaling pathway. This has led to the identification of an STT4 allele with 6 missense mutations as a major causative allele, further supported by the observation that deletion of STT4 in the inferior parent caused a similar increase in glucose-induced plasma membrane H+-ATPase activation. However, the effect on calcium signaling was different indicating the presence of additional relevant genetic differences between the superior and reference strains. Our results suggest that phosphatidylinositol-4-phosphate might play a role in the glucose-induced activation of plasma membrane H+-ATPase by controlling intracellular calcium release through the modulation of the activity of phospholipase C.


Asunto(s)
Membrana Celular , Glucosa , ATPasas de Translocación de Protón , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Membrana Celular/metabolismo , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/genética , Glucosa/farmacología , Glucosa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Genómica , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Activación Enzimática/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos
17.
Chempluschem ; 89(10): e202400242, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38881532

RESUMEN

Single particle cryo electron microscopy (cryo-EM) is now the major method for the determination of integral membrane protein structure. For the success of a given project the type of membrane mimetic used for extraction from the native cell membrane, purification to homogeneity and finally cryo-grid vitrification is crucial. Although small molecule amphiphiles - detergents - are the most widely used membrane mimetic, specific tailoring of detergent structure for single particle cryo-EM is rare and the demand for effective detergents not satisfied. Here, we compare the popular detergent lauryl maltose-neopentyl glycol (LMNG) with the novel detergent neopentyl glycol-derived triglucoside-C11 (NDT-C11) in its behavior as free detergent and when bound to two types of multisubunit membrane protein complexes - cyanobacterial photosystem I (PSI) and mammalian F-ATP synthase. We conclude that NDT-C11 has high potential to become a very useful detergent for single particle cryo-EM of integral membrane proteins.


Asunto(s)
Microscopía por Crioelectrón , Detergentes , Microscopía por Crioelectrón/métodos , Detergentes/química , Complejo de Proteína del Fotosistema I/química , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Glucósidos/química , Maltosa/química , Animales
18.
Plant Physiol Biochem ; 211: 108723, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749376

RESUMEN

Legume-rhizobia symbiosis requires high phosphorus (P) in the form of ATP to convert atmospheric nitrogen (N) into ammonia. The fixed ammonia is converted to NH4+ by H+-ATPase via protonation. To the best of our knowledge, most of these research works resort to using only inorganic P (Pi) to the neglect of the organic P (Po) counterpart. As it stands, the potential regulating roles of plasma membrane (PM) H+-ATPases during legume-rhizobia symbiosis in response to phytic acid supply and how it alters and modulates the regulation of PM H+-ATPases remain obscure. To contribute to the above hypothesis, we investigate the mechanisms that coordinately facilitate the growth, uptake, and transcript expression of PM H+-ATPase gene isoforms in response to different P sources when hydroponically grown Vicia faba plants were exposed to three P treatments, viz., low- and high-Pi (2.0 and 200 µM KH2PO4; LPi and HPi), and phytic acid (200 µM; Po) and inoculated with Rhizobium leguminosarum bv. viciae 384 for 30 days. The results consistently reveal that the supply of Po improved not only the growth and biomass, but also enhanced photosynthetic parameters, P uptake and phosphatase activities in symbiotically grown Vicia faba relative to Pi. The supply of Po induced higher transcriptional expression of all PM H+-ATPase gene isoforms, with possible interactions between phosphatases and H+-ATPase genes in Vicia faba plants when exclusively reliant on N derived from nodule symbiosis. Overall, preliminary results suggest that Po could be used as an alternative nutrition in symbiotic crops to improve plant growth.


Asunto(s)
Fósforo , Vicia faba , Vicia faba/crecimiento & desarrollo , Vicia faba/fisiología , Simbiosis , Biomasa , Fósforo/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Carbono/metabolismo , Membrana Celular/metabolismo , ATPasas de Translocación de Protón/metabolismo , Expresión Génica , Transcripción Genética
19.
Plant Cell ; 36(9): 3498-3520, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38819320

RESUMEN

The brassinosteroid (BR) receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) plays a critical role in plant growth and development. Although much is known about how BR signaling regulates growth and development in many crop species, the role of StBRI1 in regulating potato (Solanum tuberosum) tuber development is not well understood. To address this question, a series of comprehensive genetic and biochemical methods were applied in this investigation. It was determined that StBRI1 and Solanum tuberosum PLASMA MEMBRANE (PM) PROTON ATPASE2 (PHA2), a PM-localized proton ATPase, play important roles in potato tuber development. The individual overexpression of StBRI1 and PHA2 led to a 22% and 25% increase in tuber yield per plant, respectively. Consistent with the genetic evidence, in vivo interaction analysis using double transgenic lines and PM H+-ATPase activity assays indicated that StBRI1 interacts with the C-terminus of PHA2, which restrains the intramolecular interaction of the PHA2 C-terminus with the PHA2 central loop to attenuate autoinhibition of PM H+-ATPase activity, resulting in increased PHA2 activity. Furthermore, the extent of PM H+-ATPase autoinhibition involving phosphorylation-dependent mechanisms corresponds to phosphorylation of the penultimate Thr residue (Thr-951) in PHA2. These results suggest that StBRI1 phosphorylates PHA2 and enhances its activity, which subsequently promotes tuber development. Altogether, our results uncover a BR-StBRI1-PHA2 module that regulates tuber development and suggest a prospective strategy for improving tuberous crop growth and increasing yield via the cell surface-based BR signaling pathway.


Asunto(s)
Brasinoesteroides , Membrana Celular , Proteínas de Plantas , Tubérculos de la Planta , ATPasas de Translocación de Protón , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/metabolismo , Solanum tuberosum/enzimología , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/genética , Membrana Celular/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/genética , Brasinoesteroides/metabolismo , Plantas Modificadas Genéticamente , Regulación de la Expresión Génica de las Plantas , Fosforilación , Transducción de Señal
20.
Proc Natl Acad Sci U S A ; 121(21): e2314604121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38748581

RESUMEN

We developed a significantly improved genetically encoded quantitative adenosine triphosphate (ATP) sensor to provide real-time dynamics of ATP levels in subcellular compartments. iATPSnFR2 is a variant of iATPSnFR1, a previously developed sensor that has circularly permuted superfolder green fluorescent protein (GFP) inserted between the ATP-binding helices of the ε-subunit of a bacterial F0-F1 ATPase. Optimizing the linkers joining the two domains resulted in a ~fivefold to sixfold improvement in the dynamic range compared to the previous-generation sensor, with excellent discrimination against other analytes, and affinity variants varying from 4 µM to 500 µM. A chimeric version of this sensor fused to either the HaloTag protein or a suitable spectrally separated fluorescent protein provides an optional ratiometric readout allowing comparisons of ATP across cellular regions. Subcellular targeting the sensor to nerve terminals reveals previously uncharacterized single-synapse metabolic signatures, while targeting to the mitochondrial matrix allowed direct quantitative probing of oxidative phosphorylation dynamics.


Asunto(s)
Adenosina Trifosfato , Proteínas Fluorescentes Verdes , Animales , Humanos , Adenosina Trifosfato/análisis , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Técnicas Biosensibles/métodos , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Fosforilación Oxidativa , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA