Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
Microb Cell Fact ; 23(1): 4, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172917

RESUMEN

BACKGROUND: The supply of ATP is a limiting factor for cellular metabolism. Therefore, cell factories require a sufficient ATP supply to drive metabolism for efficient bioproduction. In the current study, a light-driven proton pump in the vacuolar membrane was constructed in yeast to reduce the ATP consumption required by V-ATPase to maintain the acidification of the vacuoles and increase the intracellular ATP supply for bioproduction. RESULTS: Delta rhodopsin (dR), a microbial light-driven proton-pumping rhodopsin from Haloterrigena turkmenica, was expressed and localized in the vacuolar membrane of Saccharomyces cerevisiae by conjugation with a vacuolar membrane-localized protein. Vacuoles with dR were isolated from S. cerevisiae, and the light-driven proton pumping activity was evaluated based on the pH change outside the vacuoles. A light-induced increase in the intracellular ATP content was observed in yeast harboring vacuoles with dR. CONCLUSIONS: Yeast harboring the light-driven proton pump in the vacuolar membrane developed in this study are a potential optoenergetic cell factory suitable for various bioproduction applications.


Asunto(s)
Saccharomyces cerevisiae , ATPasas de Translocación de Protón Vacuolares , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vacuolas , Protones , Rodopsina/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , Adenosina Trifosfato/metabolismo
2.
J Biol Chem ; 299(12): 105473, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979916

RESUMEN

Vacuolar H+-ATPases (V-ATPases) are highly conserved multisubunit enzymes that maintain the distinct pH of eukaryotic organelles. The integral membrane a-subunit is encoded by tissue- and organelle-specific isoforms, and its cytosolic N-terminal domain (aNT) modulates organelle-specific regulation and targeting of V-ATPases. Organelle membranes have specific phosphatidylinositol phosphate (PIP) lipid enrichment linked to maintenance of organelle pH. In yeast, the aNT domains of the two a-subunit isoforms bind PIP lipids enriched in the organelle membranes where they reside; these interactions affect activity and regulatory properties of the V-ATPases containing each isoform. Humans have four a-subunit isoforms, and we hypothesize that the aNT domains of these isoforms will also bind to specific PIP lipids. The a1 and a2 isoforms of human V-ATPase a-subunits are localized to endolysosomes and Golgi, respectively. We determined that bacterially expressed Hua1NT and Hua2NT bind specifically to endolysosomal PIP lipids PI(3)P and PI(3,5)P2 and Golgi enriched PI(4)P, respectively. Despite the lack of canonical PIP-binding sites, we identified potential binding sites in the HuaNT domains by sequence comparisons and existing subunit structures and models. We found that mutations at a similar location in the distal loops of both HuaNT isoforms compromise binding to their cognate PIP lipids, suggesting that these loops encode PIP specificity of the a-subunit isoforms. These data suggest a mechanism through which PIP lipid binding could stabilize and activate V-ATPases in distinct organelles.


Asunto(s)
Fosfatos de Fosfatidilinositol , Subunidades de Proteína , ATPasas de Translocación de Protón Vacuolares , Humanos , Sitios de Unión , Endosomas/enzimología , Endosomas/metabolismo , Aparato de Golgi/enzimología , Aparato de Golgi/metabolismo , Concentración de Iones de Hidrógeno , Lisosomas/enzimología , Lisosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , Dominios Proteicos
3.
Nat Chem ; 15(11): 1591-1598, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37414880

RESUMEN

Allostery produces concerted functions of protein complexes by orchestrating the cooperative work between the constituent subunits. Here we describe an approach to create artificial allosteric sites in protein complexes. Certain protein complexes contain subunits with pseudo-active sites, which are believed to have lost functions during evolution. Our hypothesis is that allosteric sites in such protein complexes can be created by restoring the lost functions of pseudo-active sites. We used computational design to restore the lost ATP-binding ability of the pseudo-active site in the B subunit of a rotary molecular motor, V1-ATPase. Single-molecule experiments with X-ray crystallography analyses revealed that binding of ATP to the designed allosteric site boosts this V1's activity compared with the wild-type, and the rotation rate can be tuned by modulating ATP's binding affinity. Pseudo-active sites are widespread in nature, and our approach shows promise as a means of programming allosteric control over concerted functions of protein complexes.


Asunto(s)
ATPasas de Translocación de Protón Vacuolares , Dominio Catalítico , Sitio Alostérico , Modelos Moleculares , ATPasas de Translocación de Protón Vacuolares/química , Adenosina Trifosfato/química , Sitios de Unión
4.
J Biol Chem ; 299(2): 102884, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36626983

RESUMEN

Vacuolar/archaeal-type ATPase (V/A-ATPase) is a rotary ATPase that shares a common rotary catalytic mechanism with FoF1 ATP synthase. Structural images of V/A-ATPase obtained by single-particle cryo-electron microscopy during ATP hydrolysis identified several intermediates, revealing the rotary mechanism under steady-state conditions. However, further characterization is needed to understand the transition from the ground state to the steady state. Here, we identified the cryo-electron microscopy structures of V/A-ATPase corresponding to short-lived initial intermediates during the activation of the ground state structure by time-resolving snapshot analysis. These intermediate structures provide insights into how the ground-state structure changes to the active, steady state through the sequential binding of ATP to its three catalytic sites. All the intermediate structures of V/A-ATPase adopt the same asymmetric structure, whereas the three catalytic dimers adopt different conformations. This is significantly different from the initial activation process of FoF1, where the overall structure of the F1 domain changes during the transition from a pseudo-symmetric to a canonical asymmetric structure (PNAS NEXUS, pgac116, 2022). In conclusion, our findings provide dynamical information that will enhance the future prospects for studying the initial activation processes of the enzymes, which have unknown intermediate structures in their functional pathway.


Asunto(s)
Adenosina Trifosfato , ATPasas de Translocación de Protón Vacuolares , Adenosina Trifosfato/metabolismo , Dominio Catalítico , Microscopía por Crioelectrón , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , Activación Enzimática , Conformación Proteica
5.
Biol Pharm Bull ; 45(10): 1404-1411, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36184496

RESUMEN

Proton pumping ATPases, both F-type and V/A-type ATPases, generate ATP using electrochemical energy or pump protons/sodium ions by hydrolyzing ATP. The enzymatic reaction and proton transport are coupled through subunit rotation, and this unique rotational mechanism (rotational catalysis) has been intensively studied. Single-molecule and thermodynamic analyses have revealed the detailed rotational mechanism, including the catalytically inhibited state and the roles of subunit interactions. In mammals, F- and V-ATPases are involved in ATP synthesis and organelle acidification, respectively. Most bacteria, including anaerobes, have F- and/or A-ATPases in the inner membrane. However, these ATPases are not believed to be essential in anaerobic bacteria since anaerobes generate sufficient ATP without oxidative phosphorylation. Recent studies suggest that F- and A-ATPases perform indispensable functions beyond ATP synthesis in oral pathogenic anaerobes; F-ATPase is involved in acid tolerance in Streptococcus mutans, and A-ATPase mediates nutrient import in Porphyromonas gingivalis. Consistently, inhibitors of oral bacterial F- and A-ATPases, such as phytopolyphenols and bedaquiline, strongly diminish growth and survival. Herein, we discuss rotational catalysis of bacterial F- and A-ATPases, and discuss their physiological roles, focusing on oral bacteria. We also review the effects of ATPase inhibitors on the growth and survival of oral pathogenic bacteria. The features of the catalytic mechanism and unique physiological roles in oral bacteria highlight the potential for proton pumping ATPases to serve as targets for oral antimicrobial agents.


Asunto(s)
Protones , ATPasas de Translocación de Protón Vacuolares , Adenosina Trifosfato , Animales , Bacterias/metabolismo , Catálisis , Mamíferos/metabolismo , Sodio , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo
6.
Structure ; 30(10): 1403-1410.e4, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36041457

RESUMEN

We used the Legionella pneumophila effector SidK to affinity purify the endogenous vacuolar-type ATPases (V-ATPases) from lemon fruit. The preparation was sufficient for cryoelectron microscopy, allowing structure determination of the enzyme in two rotational states. The structure defines the ATP:H+ ratio of the enzyme, demonstrating that it can establish a maximum ΔpH of ∼3, which is insufficient to maintain the low pH observed in the vacuoles of juice sac cells in lemons and other citrus fruit. Compared with yeast and mammalian enzymes, the membrane region of the plant V-ATPase lacks subunit f and possesses an unusual configuration of transmembrane α helices. Subunit H, which inhibits ATP hydrolysis in the isolated catalytic region of V-ATPase, adopts two different conformations in the intact complex, hinting at a role in modulating activity in the intact enzyme.


Asunto(s)
Citrus , ATPasas de Translocación de Protón Vacuolares , Adenosina Trifosfato , Animales , Microscopía por Crioelectrón , Mamíferos/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/metabolismo
7.
Cancer Gene Ther ; 29(11): 1529-1541, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35504950

RESUMEN

Transmembrane ATPases are membrane-bound enzyme complexes and ion transporters that can be divided into F-, V-, and A-ATPases according to their structure. The V-ATPases, also known as H+-ATPases, are large multi-subunit protein complexes composed of a peripheral domain (V1) responsible for the hydrolysis of ATP and a membrane-integrated domain (V0) that transports protons across plasma membrane or organelle membrane. V-ATPases play a fundamental role in maintaining pH homeostasis through lysosomal acidification and are involved in modulating various physiological and pathological processes, such as macropinocytosis, autophagy, cell invasion, and cell death (e.g., apoptosis, anoikis, alkaliptosis, ferroptosis, and lysosome-dependent cell death). In addition to participating in embryonic development, V-ATPase pathways, when dysfunctional, are implicated in human diseases, such as neurodegenerative diseases, osteopetrosis, distal renal tubular acidosis, and cancer. In this review, we summarize the structure and regulation of isoforms of V-ATPase subunits and discuss their context-dependent roles in cancer biology and cell death. Updated knowledge about V-ATPases may enable us to design new anticancer drugs or strategies.


Asunto(s)
Neoplasias , ATPasas de Translocación de Protón Vacuolares , Humanos , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , Membrana Celular/metabolismo , Neoplasias/metabolismo , Muerte Celular
8.
ACS Chem Biol ; 17(3): 619-628, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35148071

RESUMEN

Vacuolar-type adenosine triphosphatases (V-ATPases) are proton pumps found in almost all eukaryotic cells. These enzymes consist of a soluble catalytic V1 region that hydrolyzes ATP and a membrane-embedded VO region responsible for proton translocation. V-ATPase activity leads to acidification of endosomes, phagosomes, lysosomes, secretory vesicles, and the trans-Golgi network, with extracellular acidification occurring in some specialized cells. Small-molecule inhibitors of V-ATPase have played a crucial role in elucidating numerous aspects of cell biology by blocking acidification of intracellular compartments, while therapeutic use of V-ATPase inhibitors has been proposed for the treatment of cancer, osteoporosis, and some infections. Here, we determine structures of the isolated VO complex from Saccharomyces cerevisiae bound to two well-known macrolide inhibitors: bafilomycin A1 and archazolid A. The structures reveal different binding sites for the inhibitors on the surface of the proton-carrying c ring, with only a small amount of overlap between the two sites. Binding of both inhibitors is mediated primarily through van der Waals interactions in shallow pockets and suggests that the inhibitors block rotation of the ring. Together, these structures indicate the existence of a large chemical space available for V-ATPase inhibitors that block acidification by binding the c ring.


Asunto(s)
Saccharomyces cerevisiae , ATPasas de Translocación de Protón Vacuolares , Sitios de Unión , Microscopía por Crioelectrón , Macrólidos/farmacología , Protones , Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Vacuolares/química
9.
Sci Rep ; 11(1): 22654, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811399

RESUMEN

We recently found that nuclear receptor coactivator 7 (Ncoa7) and Oxr1 interact with the proton-pumping V-ATPase. Ncoa7 and Oxr1 belong to a group of proteins playing a role in the oxidative stress response, that contain the conserved "TLDc" domain. Here we asked if the three other proteins in this family, i.e., Tbc1d24, Tldc1 and Tldc2 also interact with the V-ATPase and if the TLDc domains are involved in all these interactions. By co-immunoprecipitation, endogenous kidney Tbc1d24 (and Ncoa7 and Oxr1) and overexpressed Tldc1 and Tldc2, all interacted with the V-ATPase. In addition, purified TLDc domains of Ncoa7, Oxr1 and Tldc2 (but not Tbc1d24 or Tldc1) interacted with V-ATPase in GST pull-downs. At the amino acid level, point mutations G815A, G845A and G896A in conserved regions of the Ncoa7 TLDc domain abolished interaction with the V-ATPase, and S817A, L926A and E938A mutations resulted in decreased interaction. Furthermore, poly-E motifs upstream of the TLDc domain in Ncoa7 and Tldc2 show a (nonsignificant) trend towards enhancing the interaction with V-ATPase. Our principal finding is that all five members of the TLDc family of proteins interact with the V-ATPase. We conclude that the TLDc motif defines a new class of V-ATPase interacting regulatory proteins.


Asunto(s)
ATPasas de Translocación de Protón Vacuolares/química , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas Activadoras de GTPasa/química , Células HEK293 , Humanos , Iones/química , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Proteínas Mitocondriales/química , Mutación , Coactivadores de Receptor Nuclear/química , Coactivadores de Receptor Nuclear/metabolismo , Estrés Oxidativo , Mutación Puntual , Dominios Proteicos , ARN Interferente Pequeño/metabolismo , Termodinámica , ATPasas de Translocación de Protón Vacuolares/clasificación , ATPasas de Translocación de Protón Vacuolares/metabolismo , Pez Cebra
10.
Int J Biol Macromol ; 186: 54-70, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34237360

RESUMEN

Lactoferrin (Lf), a bioactive milk protein, exhibits strong anticancer and antifungal activities. The search for Lf targets and mechanisms of action is of utmost importance to enhance its effective applications. A common feature among Lf-treated cancer and fungal cells is the inhibition of a proton pump called V-ATPase. Lf-driven V-ATPase inhibition leads to cytosolic acidification, ultimately causing cell death of cancer and fungal cells. Given that a detailed elucidation of how Lf and V-ATPase interact is still missing, herein we aimed to fill this gap by employing a five-stage computational approach. Molecular dynamics simulations of both proteins were performed to obtain a robust sampling of their conformational landscape, followed by clustering, which allowed retrieving representative structures, to then perform protein-protein docking. Subsequently, molecular dynamics simulations of the docked complexes and free binding energy calculations were carried out to evaluate the dynamic binding process and build a final ranking based on the binding affinities. Detailed atomist analysis of the top ranked complexes clearly indicates that Lf binds to the V1 cytosolic domain of V-ATPase. Particularly, our data suggest that Lf binds to the interfaces between A/B subunits, where the ATP hydrolysis occurs, thus inhibiting this process. The free energy decomposition analysis further identified key binding residues that will certainly aid in the rational design of follow-up experimental studies, hence bridging computational and experimental biochemistry.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Lactoferrina/farmacología , ATPasas de Translocación de Protón Vacuolares/farmacología , Adenosina Trifosfato/metabolismo , Sitios de Unión , Dominio Catalítico , Inhibidores Enzimáticos/química , Hidrólisis , Lactoferrina/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo
11.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203247

RESUMEN

This review focuses on one of the 16 proteins composing the V-ATPase complex responsible for resorbing bone: the a3 subunit. The rationale for focusing on this biomolecule is that mutations in this one protein account for over 50% of osteopetrosis cases, highlighting its critical role in bone physiology. Despite its essential role in bone remodeling and its involvement in bone diseases, little is known about the way in which this subunit is targeted and regulated within osteoclasts. To this end, this review is broadened to include the three other mammalian paralogues (a1, a2 and a4) and the two yeast orthologs (Vph1p and Stv1p). By examining the literature on all of the paralogues/orthologs of the V-ATPase a subunit, we hope to provide insight into the molecular mechanisms and future research directions specific to a3. This review starts with an overview on bone, highlighting the role of V-ATPases in osteoclastic bone resorption. We then cover V-ATPases in other location/functions, highlighting the roles which the four mammalian a subunit paralogues might play in differential targeting and/or regulation. We review the ways in which the energy of ATP hydrolysis is converted into proton translocation, and go in depth into the diverse role of the a subunit, not only in proton translocation but also in lipid binding, cell signaling and human diseases. Finally, the therapeutic implication of targeting a3 specifically for bone diseases and cancer is discussed, with concluding remarks on future directions.


Asunto(s)
Osteoclastos/citología , Osteoclastos/metabolismo , Osteopetrosis/metabolismo , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Resorción Ósea , Humanos , Mutación/genética
12.
STAR Protoc ; 2(1): 100350, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33665630

RESUMEN

Vesicular- or vacuolar-type adenosine triphosphatases (V-ATPases) are multi-component, ATP-driven proton pumps, which play important roles in many physiological processes by acidifying intracellular vesicles, organelles, and the extracellular milieu. Long-standing challenges in purifying mammalian V-ATPases have limited the biochemical and structural study of mammalian V-ATPase. Here, we provide a protocol for purifying milligrams of human V-ATPase and detail procedures for the reconstruction of its structure by cryo-EM. Our method can be applied to any biochemical and biophysical study of human V-ATPase. For complete details on the use and execution of this protocol, please refer to Wang et al. (2020).


Asunto(s)
Microscopía por Crioelectrón , ATPasas de Translocación de Protón Vacuolares , Células HEK293 , Humanos , Estructura Cuaternaria de Proteína , ATPasas de Translocación de Protón Vacuolares/biosíntesis , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/aislamiento & purificación , ATPasas de Translocación de Protón Vacuolares/ultraestructura
13.
Nat Commun ; 12(1): 1782, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741963

RESUMEN

Pharmacological inhibition of vacuolar-type H+-ATPase (V-ATPase) by its specific inhibitor can abrogate tumor metastasis, prevent autophagy, and reduce cellular signaling responses. Bafilomycin A1, a member of macrolide antibiotics and an autophagy inhibitor, serves as a specific and potent V-ATPases inhibitor. Although there are many V-ATPase structures reported, the molecular basis of specific inhibitors on V-ATPase remains unknown. Here, we report the cryo-EM structure of bafilomycin A1 bound intact bovine V-ATPase at an overall resolution of 3.6-Å. The structure reveals six bafilomycin A1 molecules bound to the c-ring. One bafilomycin A1 molecule engages with two c subunits and disrupts the interactions between the c-ring and subunit a, thereby preventing proton translocation. Structural and sequence analyses demonstrate that the bafilomycin A1-binding residues are conserved in yeast and mammalian species and the 7'-hydroxyl group of bafilomycin A1 acts as a unique feature recognized by subunit c.


Asunto(s)
Macrólidos/farmacología , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Sitios de Unión , Biocatálisis/efectos de los fármacos , Bovinos , Microscopía por Crioelectrón , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Macrólidos/química , Macrólidos/metabolismo , Modelos Moleculares , Estructura Molecular , Unión Proteica , Dominios Proteicos , Homología de Secuencia de Aminoácido , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/ultraestructura
14.
Biochem Biophys Res Commun ; 533(4): 1413-1418, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33097182

RESUMEN

V-ATPases are ubiquitous proton-transporting ATPases of eukaryotic and prokaryotic membranes that utilize energy from ATP hydrolysis. The hydrophilic catalytic part called V1-ATPase is composed of a ring-shaped hexametric A3B3 complex and a central DF shaft. We previously proposed a rotation mechanism of the Enterococcus hirae V1-ATPase based on the crystal structures of the V1 and A3B3 complexes. However, the driving force that induces the conformational changes of A3B3 and rotation of the DF shaft remains unclear. In this study, we investigated the binding affinity changes between subunits of V1-ATPase by surface plasmon resonance analysis. The binding of ATP to subunit A was found to considerably increase the affinity between the A and B subunits, and thereby ATP binding contributes to forming the A1B1 tight conformation. Furthermore, the DF shaft bound to the reconstituted A1B1 complex with high affinity, suggesting that the tight A1B1 complex is a major binding unit of the shaft in the A3B3 ring complex. Based on these results, we propose that rotation of the V1-ATPase is driven by affinity changes between each subunit via thermal fluctuations.


Asunto(s)
ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Modelos Moleculares , Conformación Proteica , Subunidades de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Rotación , Resonancia por Plasmón de Superficie , ATPasas de Translocación de Protón Vacuolares/genética
15.
Nat Chem ; 12(12): 1187-1192, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32958886

RESUMEN

The ATPase-catalysed conversion of ATP to ADP is a fundamental process in biology. During the hydrolysis of ATP, the α3ß3 domain undergoes conformational changes while the central stalk (γ/D) rotates unidirectionally. Experimental studies have suggested that different catalytic mechanisms operate depending on the type of ATPase, but the structural and energetic basis of these mechanisms remains unclear. In particular, it is not clear how the positions of the catalytic dwells influence the energy transduction. Here we show that the observed dwell positions, unidirectional rotation and movement against the applied torque are reflections of the free-energy surface of the systems. Instructively, we determine that the dwell positions do not substantially affect the stopping torque. Our results suggest that the three resting states and the pathways that connect them should not be treated equally. The current work demonstrates how the free-energy landscape determines the behaviour of different types of ATPases.


Asunto(s)
Torque , ATPasas de Translocación de Protón Vacuolares/química , Adenosina Trifosfato/metabolismo , Biocatálisis , Chlorophyta/enzimología , Conformación Proteica , Rotación , Spinacia oleracea/enzimología , Termodinámica , Thermus thermophilus/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo
16.
Nat Commun ; 11(1): 3921, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764564

RESUMEN

The vacuolar-type H+-ATPases (V-ATPase) hydrolyze ATP to pump protons across the plasma or intracellular membrane, secreting acids to the lumen or acidifying intracellular compartments. It has been implicated in tumor metastasis, renal tubular acidosis, and osteoporosis. Here, we report two cryo-EM structures of the intact V-ATPase from bovine brain with all the subunits including the subunit H, which is essential for ATPase activity. Two type-I transmembrane proteins, Ac45 and (pro)renin receptor, along with subunit c", constitute the core of the c-ring. Three different conformations of A/B heterodimers suggest a mechanism for ATP hydrolysis that triggers a rotation of subunits DF, inducing spinning of subunit d with respect to the entire c-ring. Moreover, many lipid molecules have been observed in the Vo domain to mediate the interactions between subunit c, c", (pro)renin receptor, and Ac45. These two structures reveal unique features of mammalian V-ATPase and suggest a mechanism of V1-Vo torque transmission.


Asunto(s)
Encéfalo/enzimología , ATPasas de Translocación de Protón Vacuolares/química , Adenosina Trifosfato/metabolismo , Animales , Bovinos , Microscopía por Crioelectrón , Hidrólisis , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Protones , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/ultraestructura
17.
Mol Cancer Ther ; 19(9): 1844-1855, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32669314

RESUMEN

We previously reported that silencing of the PRR gene, which encodes the (pro)renin receptor [(P)RR], significantly reduced Wnt/ß-catenin-dependent development of pancreatic ductal adenocarcinoma (PDAC). Here, we examined the effects of a panel of blocking mAbs directed against the (P)RR extracellular domain on proliferation of the human PDAC cell lines PK-1 and PANC-1 in vitro and in vivo We observed that four rat anti-(P)RR mAbs induced accumulation of cells in the G0-G1-phase of the cell cycle and significantly reduced proliferation in vitro concomitant with an attenuation of Wnt/ß-catenin signaling. Systemic administration of the anti-(P)RR mAbs to nude mice bearing subcutaneous PK-1 xenografts significantly decreased tumor expression of active ß-catenin and the proliferation marker Ki-67, and reduced tumor growth. In contrast, treatment with the handle region peptide of (pro)renin did not inhibit tumor growth in vitro or in vivo, indicating that the effects of the anti-(P)RR mAbs were independent of the renin-angiotensin system. These data indicate that mAbs against human (P)RR can suppress PDAC cell proliferation by hindering activation of the Wnt/ß-catenin signaling pathway. Thus, mAb-mediated (P)RR blockade could be an attractive therapeutic strategy for PDAC.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Antineoplásicos Inmunológicos/administración & dosificación , Carcinoma Ductal Pancreático/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Receptores de Superficie Celular/química , ATPasas de Translocación de Protón Vacuolares/química , Animales , Anticuerpos Monoclonales/farmacología , Antineoplásicos Inmunológicos/farmacología , Carcinoma Ductal Pancreático/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Masculino , Ratones , Neoplasias Pancreáticas/metabolismo , Dominios Proteicos , Ratas , Receptores de Superficie Celular/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , Vía de Señalización Wnt/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Biochim Biophys Acta Biomembr ; 1862(12): 183341, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32422136

RESUMEN

The vacuolar H+-ATPases (V-ATPases) are essential, ATP-dependent proton pumps present in a variety of eukaryotic cellular membranes. Intracellularly, V-ATPase-dependent acidification functions in such processes as membrane traffic, protein degradation, autophagy and the coupled transport of small molecules. V-ATPases at the plasma membrane of certain specialized cells function in such processes as bone resorption, sperm maturation and urinary acidification. V-ATPases also function in disease processes such as pathogen entry and cancer cell invasiveness, while defects in V-ATPase genes are associated with disorders such as osteopetrosis, renal tubular acidosis and neurodegenerative diseases. This review highlights recent advances in our understanding of V-ATPase structure, mechanism, function and regulation, with an emphasis on the signaling pathways controlling V-ATPase assembly in mammalian cells. The role of V-ATPases in cancer and other human pathologies, and the prospects for therapeutic intervention, are also discussed.


Asunto(s)
Neoplasias/patología , Enfermedades Neurodegenerativas/patología , Osteopetrosis/patología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Transporte Biológico , Membrana Celular/metabolismo , Humanos , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Osteopetrosis/metabolismo , Transducción de Señal , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/genética
19.
Science ; 367(6483): 1240-1246, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32165585

RESUMEN

In neurons, the loading of neurotransmitters into synaptic vesicles uses energy from proton-pumping vesicular- or vacuolar-type adenosine triphosphatases (V-ATPases). These membrane protein complexes possess numerous subunit isoforms, which complicates their analysis. We isolated homogeneous rat brain V-ATPase through its interaction with SidK, a Legionella pneumophila effector protein. Cryo-electron microscopy allowed the construction of an atomic model, defining the enzyme's ATP:proton ratio as 3:10 and revealing a homolog of yeast subunit f in the membrane region, which we tentatively identify as RNAseK. The c ring encloses the transmembrane anchors for cleaved ATP6AP1/Ac45 and ATP6AP2/PRR, the latter of which is the (pro)renin receptor that, in other contexts, is involved in both Wnt signaling and the renin-angiotensin system that regulates blood pressure. This structure shows how ATP6AP1/Ac45 and ATP6AP2/PRR enable assembly of the enzyme's catalytic and membrane regions.


Asunto(s)
Biomarcadores/química , Encéfalo/enzimología , Receptores de Superficie Celular/química , ATPasas de Translocación de Protón Vacuolares/química , Animales , Proteínas Bacterianas/química , Biocatálisis , Membrana Celular/enzimología , Microscopía por Crioelectrón , Modelos Químicos , Dominios Proteicos , Ratas , Sistema Renina-Angiotensina , Vía de Señalización Wnt
20.
Mol Ther ; 28(4): 1078-1091, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32053770

RESUMEN

Caspase-8, a well-characterized initiator of apoptosis, has also been found to play non-apoptotic roles in cells. In this study, we reveal that caspase-8 can induce cell death in a special way, which does not depend on activation of caspases and mitochondrial initiation. Instead, we prove that caspase-8 can cause lysosomal deacidification and thus lysosomal membrane permeabilization. V-ATPase is a multi-subunit proton pump that acidifies the lumen of lysosome. Our results demonstrate that caspase-8 can bind to the V0 domain of lysosomal Vacuolar H+-ATPase (V-ATPase), but not the V1 domain, to block the assembly of functional V-ATPase and alkalinize lysosomes. We further demonstrate that the C-terminal of caspase-8 is mainly responsible for the interaction with V-ATPase and can suffice to inhibit survival of cancer cells. Interestingly, regardless of the protein level, it is the expression rate of caspase-8 that is the major cause of cell death. Taken together, we identify a previously unrevealed caspase-8-mediated cell death pathway different form typical apoptosis, which could render caspase-8 a particular physiological function and may be potentially applied in treatments for apoptosis-resistant cancers.


Asunto(s)
Caspasa 8/química , Caspasa 8/metabolismo , Lisosomas/metabolismo , Neoplasias/metabolismo , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , Caspasa 8/genética , Proliferación Celular , Supervivencia Celular , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA