Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Texture Stud ; 55(4): e12855, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38992897

RESUMEN

The effects of oil type, emulsifier type, and emulsion particle size on the texture, gel strength, and rheological properties of SPI emulsion-filled gel (SPI-FG) and TFSP emulsion-filled gel (TFSP-FG) were investigated. Using soybean protein isolate or sodium caseinate as emulsifiers, emulsions with cocoa butter replacer (CBR), palm oil (PO), virgin coconut oil (VCO), and canola oil (CO) as oil phases were prepared. These emulsions were filled into SPI and TFSP gel substrates to prepare emulsion-filled gels. Results that the hardness and gel strength of both gels increased with increasing emulsion content when CBR was used as the emulsion oil phase. However, when the other three liquid oils were used as the oil phase, the hardness and gel strength of TFSP-FG decreased with the increasing of emulsion content, but those of SPI-FG increased when SPI was used as emulsifier. Additionally, the hardness and gel strength of both TFSP-FG and SPI-FG increased with the decreasing of mean particle size of emulsions. Rheological measurements were consistent with textural measurements and found that compared with SC, TFSP-FG, and SPI-FG showed higher G' values when SPI was used as emulsifier. Confocal laser scanning microscopy (CLSM) observation showed that the distribution and stability of emulsion droplets in TFSP-FG and SPI-FG were influenced by the oil type, emulsifier type and emulsion particle size. SPI-stabilized emulsion behaved as active fillers in SPI-FG reinforcing the gel matrix; however, the gel matrix of TFSP-FG still had many void pores when SPI-stabilized emulsion was involved. In conclusion, compared to SPI-FG, the emulsion filler effect that could reinforce gel networks became weaker in TFSP-FG.


Asunto(s)
Emulsionantes , Emulsiones , Geles , Tamaño de la Partícula , Reología , Proteínas de Soja , Proteínas de Soja/química , Emulsiones/química , Emulsionantes/química , Geles/química , Aceites de Plantas/química , Aceite de Palma/química , Aceite de Brassica napus/química , Aceite de Coco/química , Dureza , Caseínas/química , Grasas de la Dieta
2.
Poult Sci ; 103(8): 103922, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908122

RESUMEN

This study investigated the effects of supplementing diets consisting of two dent corn hybrids (soft- and hard-type) with different amounts of rapeseed oil (2, 3, and 4%) and with (0.05%) or without emulsifier (Lysoforte Extended, Kemin) on the content and deposition of carotenoids in egg yolk. The feeding trial was conducted with 216 Lohmann Brown laying hens which were by 3 located in 72 cages. The cages were randomly assigned to 12 dietary treatments (2 hybrids × 3 rapeseed oil levels × 2 emulsifier levels), resulting in 6 cages (replicates) per each dietary treatment. After depletion, hens were fed treatment diets without added pigment for 7 wk. After stabilization of the carotenoid profile (lutein, zeaxanthin, α- and ß-cryptoxanthin and ß-carotene and total carotenoids), eggs were collected once a week until the end of the experiment and deposition efficiency was calculated based on carotenoid content in yolk and diets, yolk weight, egg production and diet intake. Corn hybrid and rapeseed oil affected (P < 0.05) the yolk content and deposition efficiency of most carotenoids. Moreover, a significant (P < 0.05) hybrid × rapeseed oil level interaction for all carotenoids indicated hybrid-specific responses to rapeseed oil supplementation. In the soft-type hybrid, the addition of 3% rapeseed oil enhanced the carotenoid content compared to 2% of rapeseed oil, whereas for the hard-type hybrid, 2 and 3% of rapeseed oil resulted in similar contents. Supplementation of 4% rapeseed oil reduced the content regardless of the hybrid. Emulsifier addition positively affected (P < 0.05) the deposition efficiency of all carotenoids except ß-carotene. In conclusion, supplementing corn diets with rapeseed oil and emulsifier affected carotenoid utilization and these responses varied in hybrids differing in grain hardness, which should be considered when using corn as the sole source of carotenoids in hen diets.


Asunto(s)
Alimentación Animal , Carotenoides , Pollos , Dieta , Suplementos Dietéticos , Yema de Huevo , Emulsionantes , Aceite de Brassica napus , Zea mays , Animales , Aceite de Brassica napus/química , Aceite de Brassica napus/administración & dosificación , Pollos/fisiología , Alimentación Animal/análisis , Zea mays/química , Dieta/veterinaria , Yema de Huevo/química , Femenino , Carotenoides/metabolismo , Carotenoides/administración & dosificación , Emulsionantes/administración & dosificación , Emulsionantes/química , Suplementos Dietéticos/análisis , Distribución Aleatoria , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Relación Dosis-Respuesta a Droga
3.
Fish Shellfish Immunol ; 149: 109549, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599365

RESUMEN

The study was designed to investigate the effects of replacing fish oil by algal oil and rapeseed oil on histomorphology indices of the intestine, skin and gill, mucosal barrier status and immune-related genes of mucin and antimicrobial peptide (AMP) genes in Atlantic salmon (Salmo salar). For these purposes, Atlantic salmon smolts were fed three different diets. The first was a control diet containing fish oil but no Schizochytrium oil. In the second diet, almost 50 % of the fish oil was replaced with algal oil, and in the third diet, fish oil was replaced entirely with algal oil. The algal oil contained mostly docosahexaenoic acid (DHA) and some eicosapentaenoic acid (EPA). The study lasted for 49 days in freshwater (FW), after which some fish from each diet group were transferred to seawater (SW) for a 48-h challenge test at 33 ppt to test their ability to tolerate high salinity. Samples of skin, gills, and mid intestine [both distal (DI) and anterior (AI) portions of the mid intestine] were collected after the feeding trial in FW and after the SW-challenge test to assess the effects of the diets on the structure and immune functions of the mucosal surfaces. The results showed that the 50 % VMO (Veramaris® algal oil) dietary group had improved intestinal, skin, and gill structures. Principal component analysis (PCA) of the histomorphological parameters demonstrated a significant effect of the algal oil on the intestine, skin, and gills. In particular, the mucosal barrier function of the intestine, skin, and gills was enhanced in the VMO 50 % dietary group after the SW challenge, as evidenced by increased mucous cell density. Immunolabelling of heat shock protein 70 (HSP70) in the intestine (both DI and AI) revealed downregulation of the protein expression in the 50 % VMO group and a corresponding upregulation in the 100 % VMO group compared to 0 % VMO. The reactivity of HSP70 in the epithelial cells was higher after the SW challenge compared to the FW phase. Immune-related genes related to mucosal defense, such as mucin genes [muc2, muc5ac1 (DI), muc5ac1 (AI), muc5ac2, muc5b (skin), and muc5ac1 (gills)], and antimicrobial peptide genes [def3 (DI), def3 (AI), and cath1 (skin)] were significantly upregulated in the 50 % VMO group. PCA of gene expression demonstrated the positive influences on gene regulation in the 50 % VMO dietary group. In conclusion, this study demonstrated the positive effect of substituting 50 % of fish oil with algal oil in the diets of Atlantic salmon. The findings of histomorphometry, mucosal mapping, immunohistochemistry, and immune-related genes connected to mucosal responses all support this conclusion.


Asunto(s)
Alimentación Animal , Dieta , Aceite de Brassica napus , Salmo salar , Animales , Salmo salar/inmunología , Dieta/veterinaria , Aceite de Brassica napus/química , Alimentación Animal/análisis , Membrana Mucosa/inmunología , Aceites de Pescado/administración & dosificación , Piel/inmunología , Piel/efectos de los fármacos , Estaciones del Año , Branquias/inmunología , Branquias/efectos de los fármacos , Intestinos/efectos de los fármacos , Intestinos/inmunología
4.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38646666

RESUMEN

Asparagopsis taxiformis (Asparagopsis) has been shown to be highly efficacious at inhibiting the production of methane (CH4) in ruminants. To date, Asparagopsis has been primarily produced as a dietary supplement by freeze-drying to retain the volatile bioactive compound bromoform (CHBr3) in the product. Steeping of Asparagopsis bioactive compounds into a vegetable oil carrier (Asp-Oil) is an alternative method of stabilizing Asparagopsis as a ruminant feed additive. A dose-response experimental design used 3 Asp-Oil-canola oil blends, low, medium, and high Asp-Oil which provided 17, 34, and 51 mg Asparagopsis derived CHBr3/kg dry matter intake (DMI), respectively (in addition to a zero CHBr3 canola oil control), in a tempered-barley based feedlot finisher diet, fed for 59 d to 20 Angus heifers (five replicates per treatment). On four occasions, live weight was measured and CH4 emissions were quantified in respiration chambers, and blood, rumen fluid, and fecal samples were collected. At the end of the experiment, all animals were slaughtered, with carcasses graded, and samples of meat and edible offal collected for testing of consumer sensory qualities and residues of CHBr3, bromide, and iodide. All Asp-Oil treatments reduced CH4 yield (g CH4/kg DMI, P = 0.008) from control levels, with the low, medium, and high Asp-Oil achieving 64%, 98%, and 99% reduction, respectively. Dissolved hydrogen increased linearly with increasing Asp-Oil inclusion, by more than 17-fold in the high Asp-Oil group (P = 0.017). There was no effect of Asp-Oil treatment on rumen temperature, pH, reduction potential, volatile fatty acid and ammonia production, rumen pathology, and histopathology (P > 0.10). There were no differences in animal production and carcass parameters (P > 0.10). There was no detectable CHBr3 in feces or any carcass samples (P > 0.10), and iodide and bromide residues in kidneys were at levels unlikely to lead to consumers exceeding recommended maximum intakes. Overall, Asp-Oil was found to be safe for animals and consumers of meat, and effective at reducing CH4 emissions and yield by up to 99% within the range of inclusion levels tested.


Red seaweed, Asparagopsis taxiformis (Asparagopsis), has been shown to be highly effective at inhibiting the production of methane (CH4) in ruminants. An alternative to feeding whole, freeze-dried Asparagopsis is steeping the biomass in vegetable oil to stabilize the bioactive compounds (Asp-Oil) and feeding Asp-Oil to ruminants as a component of their dietary intake. This experiment measured the CH4 reduction potential and safety of Asp-Oil in a trial with 20 Angus heifers, fed iso-fat feedlot diets containing one of the three levels of Asp-Oil, or a control oil. Compared to the control, bromoform inclusion levels of 17, 34, and 51 mg/kg of dry matter (DM; low, medium, high) reduced CH4 yield (g CH4/kg DM intake) by 64%, 98%, and 99%, respectively. There were no effects on animal production or carcass characteristics. There were no impacts on animal health, welfare, or rumen function. Carcasses were safe for human consumption, and there was no bromoform detected in any carcass samples. Overall, Asp-Oil was found to effectively reduce CH4 emissions and is safe for animals and consumers of meat and edible offal.


Asunto(s)
Alimentación Animal , Dieta , Metano , Aceite de Brassica napus , Animales , Bovinos , Alimentación Animal/análisis , Metano/metabolismo , Dieta/veterinaria , Aceite de Brassica napus/química , Aceite de Brassica napus/farmacología , Femenino , Suplementos Dietéticos/análisis , Rumen/metabolismo , Rumen/efectos de los fármacos , Aceites de Plantas/farmacología , Aceites de Plantas/química
5.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 664-679, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38223994

RESUMEN

The objective of this study was to characterize ruminal degradation, intestinal digestion and total true nutrient supply to dairy cows from canola feedstock (canola seeds) and coproducts (meal and pellets) from bio-oil processing which were impacted by source origin. The feedstocks and coproducts (mash, pellet) were randomly collected from five different bio-oil processing plants with five different batches of samples in each bio-processing plant in Canada (CA) and China (CH). In situ rumen degradation kinetics were determined using four fistulated Holstein cows with incubation times at 0, 2, 4, 8, 12, 24 and 48 h. Intestinal digestions were determined using the three-step in vitro method with preincubation at 12 h. The DVE/OEB and National Research Council systems were applied to evaluate the truly absorbable nutrient supply to dairy cows and feed milk values (FMVs). The results showed that in situ undegradable fractions (U) (p = 0.025) were higher in CA meals, and potentially degradable fraction of D was higher (p = 0.016) in CH meals. CH meals had higher total digestible dry matter (TDDM, p = 0.018) and intestinal digestibility of protein (dIDP, p = 0.016). Canola meals from CA had lower MREE (microbial protein synthesized in the rumen based on available rumen degradable protein; p = 0.011) and DVME (rumen synthesized microbial protein digested in the small intestine; p = 0.011) and had higher ECP (endogenous protein in the small intestine, p = 0.001) and absorbed endogenous crude protein (truly absorbed ECP in the small intestine) than CH (p = 0.001). The FMV evaluated based on the metabolic protein and net energy showed no differences between CA and CH in both coproducts and feedstocks.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta , Digestión , Rumen , Animales , Bovinos/fisiología , Rumen/metabolismo , Rumen/fisiología , Alimentación Animal/análisis , Digestión/fisiología , Femenino , Dieta/veterinaria , Aceite de Brassica napus/química
6.
J Sci Food Agric ; 104(4): 1953-1961, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37897493

RESUMEN

BACKGROUND: A new enzymatic hydrolysis-based process inspired by the Maillard reaction can produce strong flavored, high-value rapeseed oil that meets safety requirements. In the present study, the effect of reaction time (10-30 min) and temperature (130-160 °C) on the physicochemical properties, nutritional status, fatty acids composition and key aroma compounds of fragrant rapeseed oil (FRO) was investigated. RESULTS: An increasing reaction time and temperature substantially decreased the total tocopherol, polyphenol and sterol contents of FRO, but increased benzo[a]pyrene content, as well as the acid and peroxide values, which did not exceed the European Union legislation limit. Among the volatile components, 2,5-dimethyl was the main substance contributing to the barbecue flavor of FRO. The 150 °C for 30 min reaction conditions produced a FRO with a strong, fragrant flavor, with high total tocopherol (560.15 mg kg-1 ), polyphenol (6.82 mg kg-1 ) and sterol (790.65 mg kg-1 ) contents; acceptable acid (1.60 mg g-1 ) and peroxide values (4.78 mg g-1 ); and low benzo[a]pyrene (1.39 mg g-1 ) content. These were the optimal conditions for the enzymatic Maillard reaction, according to the principal component analysis. Furthermore, hierarchical cluster analysis showed that reaction temperature had a stronger effect on FRO than reaction time. CONCLUSION: The optimal enzymatic Maillard reaction conditions for the production of FRO are heating at 150 °C for 30 min. These findings provide new foundations for better understanding the composition and flavor profile of FRO, toward guiding its industrial production. © 2023 Society of Chemical Industry.


Asunto(s)
Reacción de Maillard , Compuestos Orgánicos Volátiles , Aceite de Brassica napus/química , Ácidos Grasos , Odorantes/análisis , Estado Nutricional , Benzo(a)pireno , Compuestos Orgánicos Volátiles/química , Polifenoles/análisis , Peróxidos , Esteroles , Tocoferoles
7.
Food Chem ; 412: 135594, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36731240

RESUMEN

This study aims to investigate the effect of three rapeseed varieties with different erucic acid (EA) and glucosinolates (GLSs) content, and different degumming methods on the volatile flavor profiles of fragrant rapeseed oil (FRO). A total of 171 volatile compounds were identified by headspace solid-phase microextraction combine with gas chromatography-mass spectrometry (HS-SPME/GC-MS), and 87 compounds were identified as key odorants owing to their relative odor activity values (ROAV) ≥ 1. Methyl furfuryl disulfide was identified in rapeseed oil for the first time, with highest ROAVs (up to 26805.46). The volatile flavor profile of rapeseed oil was affected by GLSs content to a certain extent rather than EA content. Rapeseed varieties with low-EA and high-GLSs are suitable to produce FRO. Silicon dioxide adsorbing was an effective alternative method to water degumming in FRO. This work provided a new idea for selection of raw materials and degumming methods in FRO production.


Asunto(s)
Brassica napus , Brassica rapa , Compuestos Orgánicos Volátiles , Aceite de Brassica napus/química , Odorantes/análisis , Glucosinolatos , Compuestos Orgánicos Volátiles/análisis , Brassica rapa/química , Microextracción en Fase Sólida
8.
Food Res Int ; 163: 112282, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596189

RESUMEN

The rapeseed (Brassica napus L.) are the important oil bearing material worldwide, which contain wide variety of bioactive components with polyphenolic compounds considered the most typical. The rapeseed polyphenols encompass different structural variants, and have been considered to have many bioactive functions, which are beneficial for the human health. Whereas, the rapeseed oil processing technologies affect their content and the biofunctional activities. The present review of the literature highlighted the major types of the rapeseed polyphenols, and summarized their biofunctional roles. The influences of rapeseed oil processing technologies on these polyphenols were also elucidated. Furthermore, the directions of the future studies for producing nutritional rapeseed oils preserved higher level of polyphenols were prospected. The rapeseed polyphenols are divided into the phenolic acids and polyphenolic tannins, both of which contained different subtypes. They are reported to have multiple biofunctional roles, thus showing outstanding health improvement effects. The rapeseed oil processing technologies have significant effects on both of the polyphenol content and activity. Some novel processing technologies, such as aqueous enzymatic extraction (AEE), subcritical or supercritical extraction showed advantages for producing rapeseed oil with higher level of polyphenols. The oil refining process involved heat or strong acid and alkali conditions affected their stability and activity, leading to the loss of polyphenols of the final products. Future efforts are encouraged to provide more clinic evidence for the practical applications of the rapeseed polyphenols, as well as optimizing the processing technologies for the green manufacturing of rapeseed oils.


Asunto(s)
Brassica napus , Brassica rapa , Humanos , Brassica napus/química , Aceite de Brassica napus/química , Disponibilidad Biológica , Brassica rapa/química , Polifenoles
9.
Crit Rev Food Sci Nutr ; 63(23): 6484-6490, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35152796

RESUMEN

This article aims to review research progress and provide future study on physicochemical, nutritional, and molecular structural characteristics of canola and rapeseed feedstocks and co-products from bio-oil processing and nutrient modeling evaluation methods. The review includes Canola oil seed production, utilization and features; Rapeseed oil seed production and canola oil seed import in China; Bio-processing, co-products and conventional evaluation methods; Modeling methods for evaluation of truly absorbed protein supply from canola feedstock and co-products. The article provides our current research in feedstocks and co-products from bio-oil processing which include Characterization of chemical and nutrient profiles and ruminal degradation and intestinal digestion; Revealing intrinsic molecular structures and relationship between the molecular structure spectra features and nutrient supply from feedstocks and co-products using advanced vibrational molecular spectroscopy technique. The study focused on advanced vibrational molecular spectroscopy which can be used as a fast tool to study molecular structure features of feedstock and co-products from bio-oil processing. The article also provides future in depth study areas. This review provides an insight as how to use advanced vibrational molecular spectroscopy for in-depth analysis of the relationship between molecular structure spectral feature and nutrition delivery from canola feedstocks and co-products from bio-oil processing.


Asunto(s)
Brassica napus , Brassica rapa , Aceite de Brassica napus/química , Brassica rapa/química , Nutrientes , Alimentación Animal/análisis
10.
Food Funct ; 13(1): 270-279, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34888592

RESUMEN

Extraction technology can influence the vegetable oil functional quality. Polyphenols in rapeseed oil have been proved to be beneficial for cardiovascular health. In this study, we evaluated the effect of extraction methods on the functional quality of rapeseed oil from the perspective of phenolic compounds. The results showed that hot pressing produces the highest amount of phenolic compounds in rapeseed oil. Its most abundant phenolic compound, sinapine (9.18 µg g-1), showed the highest activity in inhibiting anaerobic choline metabolism with an EC50 value of 1.9 mM, whose downstream products are related to cardiovascular diseases. Molecular docking and molecular dynamics (MD) simulations revealed that sinapine exhibits good binding affinity toward CutC, and CutC-sinapine is a stable complex with fewer conformational fluctuations and similar tightness. Taken together, hot pressing can be considered the best extraction method for rapeseed oil from the perspective of phenolic compounds.


Asunto(s)
Polifenoles , Aceite de Brassica napus/química , Cromatografía Liquida , Simulación del Acoplamiento Molecular , Polifenoles/análisis , Polifenoles/química , Polifenoles/aislamiento & purificación , Polifenoles/metabolismo , Espectrometría de Masas en Tándem
11.
J Sci Food Agric ; 102(2): 488-495, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34138466

RESUMEN

BACKGROUND: The exact mechanism of lipid autoxidation in vegetable oils, taking into account physical aspects of this phenomenon, including the role of association colloids, is still not fully understood. The purpose of this study was to consider changes in moisture content and DOPC phospholipid (1,2-dioleoyl-sn-glycero-3-phosphocholine) critical micelle concentration (CMC) in rapeseed oil during autoxidation as well as to find the relationship between these parameters and the accumulation of primary and secondary lipid oxidation products. RESULTS: The experiments were performed at initial oil humidity 220 ppm and 700 ppm, with DOPC below and above CMC. The increase in water concentration was favored by the presence of phospholipids above CMC and, at the same time, high initial water level, which favored oxidation processes and the creation of amphiphilic autoxidation products. At relatively high water level and low amphiphilic DOPC concentration, the growth of water content does not affect the concentration of oxidation products. CONCLUSION: Amphiphilic substances play a significant role in increasing the water content of oil. Autoxidation products may reduce CMC of DOPC, but water is able to compensate for the CMC-reducing effect of oxidation products. The presence of association colloids and initial water content play a crucial role in the oxidation process of rapeseed oil. The increase in water concentration does not cause a sufficiently large increase in the number of micelles or sufficiently significant changes in their structure to effect an increase in the level of oxidation products. The formation of micelles requires an appropriate content of both water and amphiphilic substances derived from seeds (phospholipids). © 2021 Society of Chemical Industry.


Asunto(s)
Fosfolípidos/química , Aceite de Brassica napus/química , Agua/análisis , Coloides/química , Micelas , Oxidación-Reducción
12.
Food Funct ; 12(22): 11537-11546, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34708225

RESUMEN

Glycolipids are a group of sugar-containing lipids with versatile functions. In this study, a natural glycolipid product was obtained from soy lecithin, and its emulsifying, oil-gelling, antibacterial and antiviral properties were investigated. A silica-based extraction method on a preparative scale was used to recover the glycolipid product (GLP) from soy lecithin. The GLP consisted of three different glycolipid classes: acylated sterol glucoside (64.16%), sterol glucoside (25.57%) and cerebroside (6.71%). As an emulsifier, the GLP was able to form a stable water-in-oil emulsion. The GLP exhibited a good oil-gelling property, capable of gelling rapeseed oil at a concentration of 6%. For the investigated microorganisms (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus), the GLP did not show any antibacterial effects. The GLP exerted antiviral activity against lentivirus, but not adenovirus. The results of this study help in enriching the knowledge on the properties of naturally occurring glycolipids, which may find potential applications in the food, pharmaceutical and related industries.


Asunto(s)
Antiinfecciosos , Productos Biológicos , Glucolípidos , Tensoactivos , Adenoviridae/efectos de los fármacos , Antiinfecciosos/química , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Productos Biológicos/química , Productos Biológicos/farmacología , Emulsionantes/química , Emulsionantes/farmacología , Glucolípidos/química , Glucolípidos/farmacología , Lentivirus/efectos de los fármacos , Aceite de Brassica napus/química , Tensoactivos/química , Tensoactivos/farmacología
13.
Lipids Health Dis ; 20(1): 102, 2021 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-34511125

RESUMEN

BACKGROUND: Canola oil (Can) and several vegetable oils shorten the lifespan of stroke-prone spontaneously hypertensive rats (SHRSP). Although similar lifespan shortening has been reported for partially hydrogenated Can, the efficacy of fully hydrogenated oils on the lifespan remains unknown. The present study aimed to investigate the lifespan of SHRSP fed diets containing 10 % (w/w) of fully hydrogenated Can (FHCO) or other oils. METHODS: Survival test: Upon weaning, male SHRSP were fed a basal diet for rodents mixed with one of the test oils -i.e., FHCO, Can, lard (Lrd), and palm oil (Plm) throughout the experiment. The animals could freely access the diet and drinking water (water containing 1 % NaCl), and their body weight, food intake, and lifespan were recorded. Biochemical analysis test: Male SHRSP were fed a test diet with either FHCO, Can, or soybean oil (Soy) under the same condition, except to emphasize effects of fat, that no NaCl loading was applied. Soy was used as a fat source in the basal diet and was set the control group. Blood pressures was checked every 2 weeks, and serum fat levels and histological analyses of the brain and kidney were examined after 7 or 12 weeks of feeding. RESULTS: During the survival study period, the food consumption of FHCO-fed rats significantly increased (15-20 % w/w) compared with that of rats fed any other oil. However, the body weight gain in the FHCO group was significantly less (10-12 %) than that in the control group at 9-11 weeks old. The FHCO (> 180 days) intervention had the greatest effect on lifespan, followed by the Lrd (115 ± 6 days), Plm (101 ± 2 days), and Can (94 ± 3 days) diets. FHCO remarkably decreased the serum cholesterol level compared with Can and the systolic blood pressure from 12 to 16 weeks of age. In addition, while some rats in the Can group exhibited brain hemorrhaging and renal dysfunction at 16 weeks old, no symptoms were observed in the FHCO group. CONCLUSION: This current study suggests that complete hydrogenation decreases the toxicity of Can and even prolongs the lifespan in SHRSP.


Asunto(s)
Grasas de la Dieta/administración & dosificación , Hipertensión/dietoterapia , Longevidad/efectos de los fármacos , Aceite de Palma/administración & dosificación , Aceite de Brassica napus/administración & dosificación , Aceite de Soja/administración & dosificación , Accidente Cerebrovascular/prevención & control , Animales , Presión Sanguínea/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Encéfalo/irrigación sanguínea , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Colesterol/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Ácidos Grasos/metabolismo , Hidrogenación , Hipertensión/metabolismo , Hipertensión/mortalidad , Hipertensión/fisiopatología , Riñón/irrigación sanguínea , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Fitosteroles/metabolismo , Aceite de Brassica napus/química , Ratas , Ratas Endogámicas SHR , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/mortalidad , Accidente Cerebrovascular/fisiopatología , Análisis de Supervivencia
14.
Food Funct ; 12(16): 7185-7197, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34169299

RESUMEN

Structured fat phases are the basis of many consumer relevant properties of fat-containing foods. To realise a nutritional improvement - less saturated, more unsaturated fatty acids - edible oleogels could be remedy. The feasibility of traditional fat phases structured by oleogel in culinary products has been evaluated in this study. In this contribution the oleogel application in bouillon cubes as model system for culinary products is discussed. Three different gelators (sunflower wax (SFW), a mixture of ß-Sitosterol and γ-Oryzanol (SO) and ethylcellulose (EC)), at two concentration levels (5% and 10% (w/w)) each, were evaluated with respect to their physical properties, in the food matrix and application. The application of pure and structured canola oil (CO) was benchmarked against the reference, palm fat (PO). The assessment of the prototypes covered attempts to correlate the physicochemical analyses and sensory data. Organoleptic and analytical studies covered storage stability (up to 6 months) monitoring texture, color and fat oxidation. The results indicate that the substitution of palm fat by oleogel is essentially possible. The characteristics of the bouillon cubes are tuneable by gelator choice and inclusion level. Most importantly, the data show that the anticipated risk of intolerable effects of oxidation during shelf life is limited if antioxidants are used.


Asunto(s)
Sustitutos de Grasa/química , Manipulación de Alimentos/métodos , Calidad de los Alimentos , Valor Nutritivo , Celulosa/análogos & derivados , Celulosa/química , Fenómenos Químicos , Helianthus/química , Humanos , Compuestos Orgánicos/química , Fenilpropionatos/química , Aceite de Brassica napus/química , Sitoesteroles/química , Gusto , Ceras/química
15.
J Oleo Sci ; 70(4): 479-490, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33692235

RESUMEN

The effects of sucrose ester of fatty acid (SEF) on the nanostructure and the physical properties of water-in-oil (W/O)-type emulsified semisolid fats were investigated. Model emulsions including palm-based semisolid fats and fully hydrogenated rapeseed oils with 0.5% SEF or fractionated lecithin, were prepared by rapidly cooling crystallization using 0.5% monoacylglycerol as an emulsifier. The SEFs used in this study were functionalized with various fatty acids, namely, lauric, palmitic, stearic, oleic, and erucic acids. Cryogenic transmission electron microscopy (cryo-TEM) was used to observe the sizes of the solvent- extracted nanoplatelets. The solid fat content (SFC), oil migration value, and storage elastic modulus were also determined. The average crystal size, which was measured in length, of the fat blends with SEFs containing saturated fatty acids (namely, palmitic and stearic acids) was smaller than that of the SEFs containing unsaturated fatty acids (namely, oleic and erucic acids). The effects exerted by these fatty acid moieties on the spherulite size in the corresponding bulk fat blends were observed via polarized microscopy (PLM). The results suggest that nanostructure formation upon the addition of SEF ultimately influenced these aggregated microstructures. Generally, smaller platelets resulted in higher SFC in the fat phase, and a high correlation between the SFC and the G' values in W/O emulsion fats was observed (R2 = 0.884) at 30°C. In contrast, the correlation was low at 10℃. Furthermore, samples with larger nanocrystals had a higher propensity for oil migration. Thus, the addition of SEF regulated the fat crystal nanostructure during nucleation and crystal growth, which could ultimately influence the physical properties of commercially manufactured fat products such as margarine.


Asunto(s)
Emulsiones/química , Grasas/química , Ácidos Grasos/química , Nanopartículas/química , Aceite de Palma/química , Sacarosa/química , Agua/química , Fenómenos Químicos , Cristalización , Emulsionantes/química , Hidrogenación , Lecitinas/química , Margarina , Aceite de Brassica napus/química , Temperatura
16.
Molecules ; 26(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672898

RESUMEN

The research concerns the use of proton transfer reaction mass spectrometer to track real-time emissions of volatile secondary oxidation products released from rapeseed oil as a result of deep-frying of potato cubes. Therefore, it was possible to observe a sudden increase of volatile organic compound (VOC) emissions caused by immersion of the food, accompanied by a sudden release of steam from a potato cube and a decrease of the oil temperature by more than 20 °C. It was possible to identify and monitor the emission of major secondary oxidation products such as saturated and unsaturated aldehydes, namely acrolein, pentanal, 2-hexenal, hexanal, 2-nonenal and 2-decenal. Each of them has an individual release characteristic. Moreover, the impact of different initial frying temperatures on release kinetics was investigated. Subsequently, it was possible to approximate the cumulative emission by a second-degree polynomial (R2 ≥ 0.994). Using the proposed solution made it possible for the first time to observe the impact of the immersion of food in vegetable oil on the early emission of thermal degradation products oil.


Asunto(s)
Culinaria , Aceite de Brassica napus/química , Compuestos Orgánicos Volátiles/análisis , Cinética , Oxidación-Reducción , Solanum tuberosum/química , Temperatura
17.
Rapid Commun Mass Spectrom ; 35(9): e9064, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33554384

RESUMEN

RATIONALE: Gas chromatographic analyses for vegetable oils require transesterification, which generally involves multiple steps, mainly to generate fatty acid methyl esters (FAMEs). A quick method based on acid-catalyzed transesterification using 2,2-dimethoxypropane (DMP) enables the conversion in one step, in a single reactor. For compound-specific stable carbon and hydrogen isotope analyses (C- and H-CSIA) of individual fatty acids (FAs) in oil, the verification of this one-step method has not yet been reported. METHODS: In this study, we evaluated the feasibility of the one-step method for C- and H-CSIA of individual FAMEs in rapeseed samples. The focus was on the investigation of the influence of methanol, which was produced from the reactions of DMP with glycerol and water during transesterification, on the accuracy of isotope composition of FAMEs, consequently of the FAs. The reproducibility of the one-step method was assessed by the measurement of the FAMEs from rapeseed and rapeseed oil. For the C- and H-CSIA of individual FAMEs, a gas chromatography combustion/pyrolysis isotope ratio mass spectrometry system was used. RESULTS: Our results showed that no significant differences arise in the carbon and hydrogen isotope compositions of the selected main FAMEs produced with and without DMP except for the H-CSIA value of C18:3. The reproducibility of the one-step method for rapeseed was in the range of ±0.1 mUr to ± 0.3 mUr for C-CSIA and ±1 mUr to ±3 mUr for H-CSIA of the main FAMEs. CONCLUSIONS: DMP improves the transesterification efficiency without influencing the accuracy of the C- and H-CSIA of FAMEs. The performance of the one-step method for rapeseed samples for the determination of C- and H-CSIA values of FAMEs is satisfactory. Thus, the applicability of the one-step method for isotopic fingerprint analyses of FAs in oilseeds is reported for the first time.


Asunto(s)
Brassica napus/química , Isótopos de Carbono/análisis , Deuterio/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Propanoles/química , Aceite de Brassica napus/química , Esterificación , Ácidos Grasos/química , Metilación , Pirólisis , Reproducibilidad de los Resultados
18.
J Food Sci ; 86(3): 867-873, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33580513

RESUMEN

The solubility of oxygen and its transfer rate to the lipid phase play important roles in lipid oxidation, which affects the taste and safety of lipid-containing foods. In this study, we measured the Henry's constants (solubility) of oxygen for fatty acids, fatty acid esters, and triacylglycerols (TAGs; vegetable oils), as well as the mass transfer coefficients of oxygen at the gas- and water-lipid interfaces. The constants and coefficients were estimated by analyzing the change over time in the oxygen partial pressure or concentration in the closed container based on the mass balance equations of oxygen in the gas and liquid phases. The constant for water obtained by the method used in this study was in agreement with the previously reported value to confirm the validity of the method. The constants for lipids depended on the lipid type, and were higher in the order of fatty acid ester, fatty acid, and TAG. That is, the solubility of oxygen decreased in this order. For all lipids, the constant increased as the number of carbon atoms in the fatty acid chain increased. The constants for fatty acids and their esters were linearly correlated with the enthalpies of evaporation of the lipids. The mass transfer coefficients of oxygen at the gas-liquid interface were on the order of 10-5 m/s for water and methyl dodecanoate and of 10-6 m/s for TAG (rapeseed oil). The coefficient at the water-lipid interface was on the order of 10-6 m/s. PRACTICAL APPLICATION: The Henry's constants (solubility) and transfer rate of oxygen to the lipid phase, fatty acids, fatty acid esters, and triacylglycerols (TAG) were measured. The lipids solubilized three to five times more oxygen than water, and mass transfer rate of oxygen at gas- and water-lipid interfaces were almost same. The constants for fatty acids and fatty acid esters were linearly correlated to their enthalpies of evaporation, and this correlation is expected to be useful for estimating the Henry's constants for other fatty acids and their esters.


Asunto(s)
Lípidos/química , Oxígeno/química , Agua/química , Ésteres/química , Ácidos Grasos/química , Lauratos/química , Peroxidación de Lípido , Aceite de Brassica napus/química , Solubilidad , Termodinámica , Triglicéridos/química
19.
J Food Sci ; 86(2): 394-403, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33462859

RESUMEN

A novel deodorization method of edible oil by using ethanol steam at low-temperature was developed. We compared the chemical changes in predeodorized rapeseed oil after anhydrous ethanol steam distillation at low temperature (140 to 220 °C) (L-ESD) and conventional high-temperature (250 °C) water-steam distillation (H-WSD) in terms of odor characteristics, physicochemical properties, micronutrient contents, antioxidant performance, and fatty acid composition. Compared with H-WSD (250 °C for 60 min), L-ESD at 180 °C for 80 to 100 min resulted in lower response values of electronic nose, free fatty acid (0.03% to 0.07%), and peroxide value (0.00 to 0.67 meq/kg), but higher retention of tocopherols (554.93 to 551.59 mg/kg), total phenols (43.36 to 45.42 mgGAE/kg), total carotenoids (65.78 to 67.85 mg/kg), phytosterols (585.80 to 596.53 mg/100 g), polyunsaturated fatty acids (27.95 to 28.01%), and better antioxidant properties. In conclusion, L-ESD can mitigate the damage of oil and thus significantly improve the safety of vegetable oils with a high retention of nutrients compared with conventional H-WSD. PRACTICAL APPLICATION: The present study aimed to compare the chemical changes in predeodorized rapeseed oil after anhydrous ethanol steam distillation at low temperature (140 to 220 °C) (L-ESD) and conventional high-temperature (250 °C) water-steam distillation (H-WSD) in terms of odor characteristics, physicochemical properties, micronutrient contents, antioxidant performance, and fatty acid composition. Results indicated that this finding supplies a theoretical basis for developing a method with retaining more micronutrients and producing less harmful substances for the deodorization of rapeseed oil.


Asunto(s)
Etanol , Manipulación de Alimentos/métodos , Odorantes/prevención & control , Aceite de Brassica napus/química , Vapor , Antioxidantes/análisis , Carotenoides/análisis , Fenómenos Químicos , Destilación/métodos , Ácidos Grasos/análisis , Micronutrientes/análisis , Fitosteroles/análisis , Aceite de Brassica napus/análisis , Temperatura , Tocoferoles/análisis
20.
Life Sci ; 265: 118856, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33278395

RESUMEN

PURPOSE: Reusing deep-fried vegetable oils multiple times is a common practice to save costs, and their chronic consumption may cause hepatic dysfunction. In this investigation, we assessed the modulatory effects of ginger and turmeric lipid-solubles that may migrate to oils during heating on the hepatic inflammatory response in rats. METHODS: Male Wistar rats were fed with; 1) control {native canola (N-CNO) or native sunflower (N-SFO)} oil, 2) heated (heated canola {(H-CNO) or heated sunflower (H-SFO)} oil, and 3) heated oil with ginger or turmeric {heated canola with ginger (H-CNO + GI) or heated canola oil with turmeric (H-CNO + TU), heated sunflower oil with ginger (H-SFO + GI) or heated sunflower oil with turmeric (H-SFO + TU)} for 120 days. Hepatic inflammatory response comprising eicosanoids, cytokines, and NF-kB were assessed. RESULTS: Compared to respective controls, feeding heated oils significantly (p < 0.05); 1) increased eicosanoids (PGE2, LTB4, and LTC4) and cytokines (TNF-α, MCP-1, IL-1ß, and IL-6), 2) increased nuclear translocation of NF-kB in the liver, and 3) increased the hepatic expression of 5-LOX, COX-2, BLT-1, and EP-4. However, feeding oils heated with ginger or turmeric positively countered the changes induced by consumption of heated oils. CONCLUSIONS: Consumption of repeatedly heated oil may cause hepatic dysfunction by inducing inflammatory stress through NF-kB upregulation. Lipid-solubles from ginger and turmeric that may migrate to oil during heating prevent the hepatic inflammatory response triggered by heated oils in rats.


Asunto(s)
Curcuma/química , Inflamación/prevención & control , Hepatopatías/prevención & control , FN-kappa B/genética , Zingiber officinale/química , Animales , Citocinas , Regulación hacia Abajo , Eicosanoides/metabolismo , Calor , Inflamación/etiología , Lípidos/química , Hepatopatías/etiología , Masculino , Aceite de Brassica napus/química , Aceite de Brassica napus/toxicidad , Ratas , Ratas Wistar , Aceite de Girasol/química , Aceite de Girasol/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA