Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.100
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nutrients ; 16(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38999871

RESUMEN

IL-17A drives inflammation and oxidative stress, affecting the progression of chronic lung diseases (asthma, chronic obstructive pulmonary disease (COPD), lung cancer, and cystic fibrosis). Oleuropein (OLP) is a polyphenolic compound present in olive oil and widely included in the Mediterranean diet. It exerts antioxidant and anti-inflammatory activities, oxidative stress resistance, and anticarcinogenic effects with a conceivable positive impact on human health. We hypothesized that OLP positively affects the mechanisms of oxidative stress, apoptosis, DNA damage, cell viability during proliferation, and cell growth in alveolar epithelial cells and tested its effect in a human alveolar epithelial cell line (A549) in the presence of IL-17A. Our results show that OLP decreases the levels of oxidative stress (Reactive Oxygen Species, Mitochondrial membrane potential) and DNA damage (H2AX phosphorylation-ser139, Olive Tail Moment data) and increases cell apoptosis in A549 cells exposed to IL-17A. Furthermore, OLP decreases the number of viable cells during proliferation, the migratory potential (Scratch test), and the single cell capacity to grow within colonies as a cancer phenotype in A549 cells exposed to IL-17A. In conclusion, we suggest that OLP might be useful to protect lung epithelial cells from oxidative stress, DNA damage, cell growth, and cell apoptosis. This effect might be exerted in lung diseases by the downregulation of IL-17A activities. Our results suggest a positive effect of the components of olive oil on human lung health.


Asunto(s)
Apoptosis , Proliferación Celular , Daño del ADN , Interleucina-17 , Glucósidos Iridoides , Iridoides , Estrés Oxidativo , Humanos , Estrés Oxidativo/efectos de los fármacos , Interleucina-17/metabolismo , Glucósidos Iridoides/farmacología , Proliferación Celular/efectos de los fármacos , Células A549 , Daño del ADN/efectos de los fármacos , Apoptosis/efectos de los fármacos , Iridoides/farmacología , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Aceite de Oliva/farmacología , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo
2.
Cutis ; 113(6): 260-263, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39082992

RESUMEN

In proper skin healing, inflammation will stop once the harmful microbes are removed. However, an excess and prolongation of inflammation can result in delayed healing. Thus, interventions that can limit the amount of inflammation can help promote wound healing. The use of olive oil in wound therapy has been of great interest. Herein, we will review studies that investigated the use of olive oil on diabetic foot ulcers, pressure ulcers, perineal ulcers, and chronic ulcers.


Asunto(s)
Aceite de Oliva , Cicatrización de Heridas , Aceite de Oliva/farmacología , Aceite de Oliva/administración & dosificación , Humanos , Cicatrización de Heridas/efectos de los fármacos , Úlcera Cutánea/terapia , Úlcera Cutánea/tratamiento farmacológico , Pie Diabético/tratamiento farmacológico , Pie Diabético/terapia , Úlcera por Presión/tratamiento farmacológico , Úlcera por Presión/terapia
3.
Mar Drugs ; 22(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39057427

RESUMEN

Oleogels are of high interest as promising substitutes for trans fats in foods. An emulsion-templated method was used to trap olive oil in the chitosan crosslinked with vanillin matrix. Oil in water emulsions (50:50 w/w) with different chitosan content (0.7 and 0.8% w/w) with a constant vanillin/chitosan ratio (1.3) were air-dried at different temperatures (50, 60, 70, and 80 °C) and freeze-dried (-26 °C and 0.1 mbar) to produce oleogels. Only falling rate periods were determined during air-drying kinetics and were successfully modeled with empirical and diffusional models. At a drying temperature of 70 °C, the drying kinetics were the fastest. The viscoelasticity of oleogels showed that the elastic modulus significantly increased after drying at 60 and 70 °C, and those dried at 50 °C and freeze-dried were weaker. All oleogels showed high oil binding capacity (>91%), but the highest values (>97%) were obtained in oleogels with a threshold elastic modulus (50,000 Pa). The oleogels' color depended on the drying temperature and chitosan content (independent of the drying method). Significant differences were observed between air-dried and freeze-dried oleogels with respect to oxidative stability. Oxidation increased with the air-drying time regardless of chitosan content. The found results indicated that drying conditions must be carefully selected to produce oleogels with specific features.


Asunto(s)
Quitosano , Emulsiones , Liofilización , Aceite de Oliva , Compuestos Orgánicos , Reología , Quitosano/química , Aceite de Oliva/química , Compuestos Orgánicos/química , Cinética , Viscosidad , Benzaldehídos/química , Temperatura , Desecación
4.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 608-635, jul. 2024. tab, ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1538071

RESUMEN

Chile has two certified origin olive products: Extra-Virgin Olive Oil (EVOO) from Huasco valley and the Azapa variety table olive from the Azapa valley. However, efficient methodologies are needed to determine the varieties and raw materials involved in the end products. In this study, we assessed the size of alleles from ten microsatellites in 20 EVOOs and in leaves and fruits of 16 olive varieties cultivated in Chile to authenticate their origins. The identification of varieties relied on specific allele sizes derived from microsatellites markers UDO99-011 and DCA18-M found in leaves and fruit mesocarp. While most Chilean single-variety EVOOs matched the variety declared on the label, inconsistencies were observed in single-variety EVOOs containing multiple varieties. Our findings confirm that microsatellites serve as a valuable as diagnostic tools for ensuring the quality control of Geographical Indication certification for Azapa olives and EVOO with Designation of Origin from Huasco.


Chile cuenta con dos productos de oliva de origen certificado: El aceite de oliva virgen extra (AOVE) del valle del Huasco y la aceituna de mesa de la variedad Azapa del valle de Azapa. Sin embargo, se necesitan metodologías eficientes para determinar las variedades y materias primas involucradas en los productos finales. En este estudio, evaluamos el tamaño de los alelos de diez microsatélites en 20 AOVEs y en hojas y frutos de 16 variedades de aceituna cultivadas en Chile para autentificar sus orígenes. La identificación de las variedades se basó en los tamaños alélicos específicos derivados de los marcadores microsatélites UDO99-011 y DCA18-M encontrados en las hojas y el mesocarpio de los frutos. Aunque la mayoría de los AOVEs chilenos monovarietales coincidían con la variedad declarada en la etiqueta, se observaron incoherencias en los AOVEs monovarietales que contenían múltiples variedades. Nuestros hallazgos confirman que los microsatélites sirven como valiosas herramientas de diagnóstico para asegurar el control de calidad de la certificación de Indicación Geográfica para aceitunas de Azapa y AOVE con Denominación de Origen de Huasco.


Asunto(s)
Aceite de Oliva/química , Geografía , Extractos Vegetales/química , Chile , Estructuras de las Plantas/química
5.
Nutrients ; 16(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892716

RESUMEN

Maternal breast milk plays a key role in providing newborns with passive immunity and stimulating the maturation of an infant's immune system, protecting them from many diseases. It is known that diet can influence the immune system of lactating mothers and the composition of their breast milk. The aim of this study was to establish if a supplementation during the gestation and lactation of Lewis rats with extra virgin olive oil (EVOO), due to the high proportion of antioxidant components in its composition, has an impact on the mother's immune system and on the breast milk's immune composition. For this, 10 mL/kg of either EVOO, refined oil (control oil) or water (REF group) were orally administered once a day to rats during gestation and lactation periods. Immunoglobulin (Ig) concentrations and gene expressions of immune molecules were quantified in several compartments of the mothers. The EVOO group showed higher IgA levels in both the breast milk and the mammary glands than the REF group. In addition, the gene expression of IgA in mammary glands was also boosted by EVOO consumption. Overall, EVOO supplementation during gestation and lactation is safe and does not negatively affect the mother's immune system while improving breast milk immune composition by increasing the presence of IgA, which could be critical for an offspring's immune health.


Asunto(s)
Lactancia , Aceite de Oliva , Ratas Endogámicas Lew , Animales , Femenino , Embarazo , Ratas , Fenómenos Fisiologicos Nutricionales Maternos , Inmunoglobulina A/metabolismo , Inmunoglobulina A/análisis , Sistema Inmunológico/efectos de los fármacos , Suplementos Dietéticos , Glándulas Mamarias Animales/inmunología , Glándulas Mamarias Animales/metabolismo , Leche/química , Leche/inmunología , Leche Humana/química , Leche Humana/inmunología
6.
Appl Microbiol Biotechnol ; 108(1): 379, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888798

RESUMEN

The transition towards a sustainable model, particularly the circular economy, emphasizes the importance of redefining waste as a valuable resource, paving the way for innovative upcycling strategies. The olive oil industry, with its significant output of agricultural waste, offers a promising avenue for high-value biomass conversion into useful products through microbial processes. This study focuses on exploring new, high-value applications for olive leaves waste, utilizing a biotechnological approach with Lactobacillus casei for the production of second-generation lactic acid. Contrary to initial expectations, the inherent high polyphenol content and low fermentable glucose levels in olive leaves posed challenges for fermentation. Addressing this, an enzymatic hydrolysis step, following a preliminary extraction process, was implemented to increase glucose availability. Subsequent small-scale fermentation tests were conducted with and without nutrient supplements, identifying the medium that yielded the highest lactic acid production for scale-up. The scaled-up batch fermentation process achieved an enhanced conversion rate (83.58%) and specific productivity (0.26 g/L·h). This research confirms the feasibility of repurposing olive waste leaves for the production of lactic acid, contributing to the advancement of a greener economy through the valorization of agricultural waste. KEY POINTS: • Olive leaves slurry as it did not allow L. casei to ferment. • High concentrations of polyphenols inhibit fermentation of L. casei. • Enzymatic hydrolysis combined to organosolv extraction is the best pretreatment for lactic acid production starting from leaves and olive pruning waste.


Asunto(s)
Fermentación , Ácido Láctico , Lacticaseibacillus casei , Olea , Aceite de Oliva , Hojas de la Planta , Ácido Láctico/metabolismo , Lacticaseibacillus casei/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Aceite de Oliva/metabolismo , Glucosa/metabolismo , Hidrólisis , Residuos Industriales , Polifenoles/metabolismo , Biomasa
7.
Planta Med ; 90(7-08): 554-560, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843795

RESUMEN

A selective Oxone-induced oxidation of oleocanthal and oleacein, the two main secoiridoids of olive oil, to their bis-oxidized products is described. This protocol is based on a Baeyer-Villiger mechanism and the concentration of Oxone in the final solution. The bis-oxidation of the aldehydic compounds could be extended for the synthesis of various semisynthetic analogs. The obtained acids exhibit strong antioxidant activity, being efficient free radical scavengers.


Asunto(s)
Aldehídos , Aceite de Oliva , Oxidación-Reducción , Aldehídos/química , Aceite de Oliva/química , Antioxidantes/química , Antioxidantes/farmacología , Fenoles/química , Furanos/química , Monoterpenos Ciclopentánicos/química
8.
J Orthop Surg Res ; 19(1): 338, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849876

RESUMEN

BACKGROUND: We aimed to analyze the outcomes of intraarticular extra virgin olive oil (EVOO) injection on mechanically induced rabbit knee osteoarthritis (OA) by studying the morphological, histological, and radiological findings. METHODS: The study was conducted on 32 New Zealand White rabbits. The randomly numbered subjects were divided into two main groups. The rabbits numbered 1 to 16 were selected to be the group to receive EVOO, and the remaining were selected into a control group. Both groups were separated into two subgroups for short-term (five weeks) and long-term (10 weeks) follow-up. Anterior cruciate ligament transection was applied on the left knees of all the rabbits via medial parapatellar arthrotomy to simulate knee instability. Immediately after the surgical procedure, 0.2 cc of EVOO was injected into the knee joint of rabbits numbered 1-16, and the control group received 0.2 cc of sterile saline. On the 14th day, long-term group subjects were administered another dose of 0.2 cc EVOO intraarticularly. RESULTS: The gross morphological scores of the control group subjects were significantly different from the EVOO group for both short-term (p = 0,055) and long-term (p = 0,041) scores. In parallel, the MRI results of the EVOO subjects were significantly different from the control group for both short-term and long-term follow-up assessment scores (p = 0.017, p = 0.014, respectively). The Mankin scoring results showed that there were statistically significant differences between the EVOO and control group in the comparison of both total scores (p = 0.001 for short-term and p = 0.004 for long-term) and subgroup scoring, including macroscopic appearance, chondrocyte cell number, staining, and Tidemark integrity in both short-term (p = 0.005, p = 0.028, p = 0.001, p = 0.005, respectively) and long-term assessments (p = 0.002, p = 0.014, p < 0.001, p = 0. 200, respectively). CONCLUSIONS: We have observed promising outcomes of intra-articular application of extra virgin olive oil in the treatment of acute degenerative osteoarthritis in rabbit knees. Due to its potential cartilage restorative and regenerative effects, EVOO, when administered intra-articularly, may be a promising agent to consider for further research in the treatment of OA.


Asunto(s)
Aceite de Oliva , Osteoartritis de la Rodilla , Conejos , Animales , Aceite de Oliva/administración & dosificación , Inyecciones Intraarticulares , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/patología , Masculino
9.
Appl Microbiol Biotechnol ; 108(1): 358, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829381

RESUMEN

Biosurfactants are in demand by the global market as natural commodities suitable for incorporation into commercial products or utilization in environmental applications. Fungi are promising producers of these molecules and have garnered interest also for their metabolic capabilities in efficiently utilizing recalcitrant and complex substrates, like hydrocarbons, plastic, etc. Within this framework, biosurfactants produced by two Fusarium solani fungal strains, isolated from plastic waste-contaminated landfill soils, were analyzed. Mycelia of these fungi were grown in the presence of 5% olive oil to drive biosurfactant production. The characterization of the emulsifying and surfactant capacity of these extracts highlighted that two different components are involved. A protein was purified and identified as a CFEM (common in fungal extracellular membrane) containing domain, revealing a good propensity to stabilize emulsions only in its aggregate form. On the other hand, an unidentified cationic smaller molecule exhibits the ability to reduce surface tension. Based on the 3D structural model of the protein, a plausible mechanism for the formation of very stable aggregates, endowed with the emulsifying ability, is proposed. KEY POINTS: • Two Fusarium solani strains are analyzed for their surfactant production. • A cationic surfactant is produced, exhibiting the ability to remarkably reduce surface tension. • An identified protein reveals a good propensity to stabilize emulsions only in its aggregate form.


Asunto(s)
Proteínas Fúngicas , Fusarium , Tensoactivos , Fusarium/metabolismo , Fusarium/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Tensoactivos/metabolismo , Tensoactivos/química , Emulsionantes/metabolismo , Emulsionantes/química , Microbiología del Suelo , Emulsiones/química , Emulsiones/metabolismo , Tensión Superficial , Cisteína/metabolismo , Cisteína/química , Aceite de Oliva/metabolismo , Aceite de Oliva/química , Micelio/metabolismo
10.
Anal Chim Acta ; 1312: 342740, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38834260

RESUMEN

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) represent a diverse group of organic compounds characterized by the fusion of two or more benzene rings arranged in various structural forms. Due to their harmful effects on human health, it is essential to implement monitoring systems and preventive measures to regulate human exposure. Given the affinity of PAHs for lipids, extensive research has been focused on their presence in vegetable oils. This study aimed to develop an on-line liquid-gas chromatography (LC-GC) method (using tandem mass spectrometry) with minimized solvent consumption for the determination of 16 PAHs in extra-virgin olive oil (EVOO). RESULTS: A side-by-side comparison of the selected-ion-monitoring and the pseudo multiple-reaction-monitoring (p-MRM) acquisition modes was performed, in terms of specificity and detectability. The results obtained using the p-MRM mode were superior, and for this reason it was selected. The method was linear over the concentration range 1-200 µg kg-1 (except in five cases, over 2-200 and 5-200 µg kg-1 ranges). Accuracy (at the 2 µg kg-1 and 20 µg kg-1 concentration levels) was in the 86.9-109.3 % range, with an RSD <10 %. Intra-day and inter-day precision (at 2 µg kg-1 and 20 µg kg-1 concentration levels) were in the 1.2-9.7 % and 3.2-10.8 % ranges, respectively. For all the PAHs, a negative matrix effect was observed. Three out of sixteen PAHs were detected in three EVOOs (among ten samples), albeit at the low ppb level. Limits of quantification were satisfactory in relation to EU legislation on the presence of PAHs in vegetable oils. SIGNIFICANCE: A dilute-and-inject LC-GC-tandem mass spectrometry method is herein proposed fulfilling EU legislation requirements; sample preparation was very simple, inasmuch that it involved only a dilution step, thus avoiding extraction, clean-up, and thus a high consumption of organic solvents. In fact, considering both oil dilution and the LC mobile phase, less than 8 mL of solvents were used.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Aceite de Oliva , Hidrocarburos Policíclicos Aromáticos , Aceite de Oliva/química , Aceite de Oliva/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Cromatografía Liquida/métodos
11.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928048

RESUMEN

Olive oil phenols are recognized as molecules with numerous positive health effects, many of which rely on their antioxidative activity, i.e., the ability to transfer hydrogen to radicals. Proton-coupled electron transfer reactions and hydrogen tunneling are ubiquitous in biological systems. Reactions of olive oil phenols, hydroxytyrosol, tyrosol, oleuropein, oleacein, oleocanthal, homovanillyl alcohol, vanillin, and a few phenolic acids with a DPPH• (2,2-diphenyl-1-picrylhydrazyl) radical in a 1,4-dioxane:water = 95:5 or 99:1 v/v solvent mixture were studied through an experimental kinetic analysis and computational chemistry calculations. The highest rate constants corresponding to the highest antioxidative activity are obtained for the ortho-diphenols hydroxytyrosol, oleuropein, and oleacein. The experimentally determined kinetic isotope effects (KIEs) for hydroxytyrosol, homovanillyl alcohol, and caffeic acid reactions are 16.0, 15.4, and 16.7, respectively. Based on these KIEs, thermodynamic activation parameters, and an intrinsic bond orbital (IBO) analysis along the IRC path calculations, we propose a proton-coupled electron transfer mechanism. The average local ionization energy and electron donor Fukui function obtained for the phenolic compounds show that the most reactive electron-donating sites are associated with π electrons above and below the aromatic ring, in support of the IBO analysis and proposed PCET reaction mechanism. Large KIEs and isotopic values of Arrhenius pre-exponential factor AH/AD determined for the hydroxytyrosol, homovanillyl alcohol, and caffeic acid reactions of 0.6, 1.3, and 0.3, respectively, reveal the involvement of hydrogen tunneling in the process.


Asunto(s)
Hidrógeno , Aceite de Oliva , Fenoles , Protones , Aceite de Oliva/química , Hidrógeno/química , Fenoles/química , Transporte de Electrón , Cinética , Termodinámica , Antioxidantes/química
12.
Cell Commun Signal ; 22(1): 309, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835076

RESUMEN

BACKGROUND: Neuroinflammation is widely acknowledged as a characteristic feature of almost all neurological disorders and specifically in depression- and anxiety-like disorders. In recent years, there has been significant attention on natural compounds with potent anti-inflammatory effects due to their potential in mitigating neuroinflammation and neuroplasticity. METHODS: In the present study, we aimed to evaluate the neuroprotective effects of oleacein (OC), a rare secoiridoid derivative found in extra virgin olive oil. Our goal was to explore the BDNF/TrkB neurotrophic activity of OC and subsequently assess its potential for modulating neuroinflammatory response using human neuroblastoma cells (SH-SY5Y cells) and an in vivo model of depression induced by lipopolysaccharide (LPS)-mediated inflammation. RESULTS: In SH-SY5Y cells, OC exhibited a significant dose-dependent increase in BDNF expression. This enhancement was absent when cells were co-treated with inhibitors of BDNF's receptor TrkB, as well as downstream molecules PI3K and MEK. Whole-transcriptomics analysis revealed that OC upregulated cell cycle-related genes under normal conditions, while downregulating inflammation-associated genes in LPS-induced conditions. Furthermore, surface plasmon resonance (SPR) assays demonstrated that OC exhibited a stronger and more stable binding affinity to TrkB compared to the positive control, 7,8-dihydroxyflavone. Importantly, bioluminescence imaging revealed that a single oral dose of OC significantly increased BDNF expression in the brains of Bdnf-IRES-AkaLuc mice. Furthermore, oral administration of OC at a dosage of 10 mg/kg body weight for 10 days significantly reduced immobility time in the tail suspension test compared to the LPS-treated group. RT-qPCR analysis revealed that OC significantly decreased the expression of pro-inflammatory cytokines Tnfα, Il6, and Il1ß, while simultaneously enhancing Bdnf expression, as well as both pro and mature BDNF protein levels in mice hippocampus. These changes were comparable to those induced by the positive control antidepressant drug fluoxetine. Additionally, microarray analysis of mouse brains confirmed that OC could counteract LPS-induced inflammatory biological events. CONCLUSION: Altogether, our study represents the first report on the potential antineuroinflammatory and antidepressant properties of OC via modulation of BDNF/TrkB neurotrophic activity. This finding underscores the potential of OC as a natural therapeutic agent for depression- and anxiety-related disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Lipopolisacáridos , Receptor trkB , Animales , Humanos , Receptor trkB/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Lipopolisacáridos/farmacología , Ratones , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Línea Celular Tumoral , Monoterpenos Ciclopentánicos/farmacología , Masculino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratones Endogámicos C57BL , Aceite de Oliva/farmacología , Aceite de Oliva/química , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Inflamación/patología , Aldehídos , Glicoproteínas de Membrana , Fenoles
13.
Food Chem ; 456: 139935, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38870805

RESUMEN

This study investigated the effects of oil phases on the encapsulation rate, storage stability, and bioavailability of astaxanthin (ASTA) in Pickering emulsions (PEs). Results showed PEs of mixed oils (olive oil/edible tea oil) had excellent encapsulation efficiency (about 96.0%) and storage stability of ASTA. In vitro simulated gastrointestinal digestion results showed the mixed oil PE with a smaller interfacial area and higher monounsaturated fatty acid content may play a better role in improving ASTA retention and bioaccessibility. In vivo absorption results confirmed the mixed oil PE with an olive oil/edible tea oil of 7:3 was more favorable for ASTA absorption. Molecular dynamics simulation showed ASTA bound more strongly and stably to fatty acid molecules in the system of olive oil/edible tea oil of 7:3; and van der Waals force was the main binding force. NMR further proved there really were interactions between ASTA and four main fatty acids.


Asunto(s)
Disponibilidad Biológica , Emulsiones , Simulación de Dinámica Molecular , Aceite de Oliva , Xantófilas , Xantófilas/química , Xantófilas/metabolismo , Emulsiones/química , Aceite de Oliva/química , Animales , Masculino , Digestión , Humanos , Estabilidad de Medicamentos
14.
J Alzheimers Dis ; 100(1): 119-126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38848192

RESUMEN

Background: Chronic intake of extra virgin olive oil is beneficial for brain health and protects from age-related cognitive decline and dementia, whose most common clinical manifestation is Alzheimer's disease. Besides the classical pathologic deposits of amyloid beta peptides and phosphorylated tau proteins, another frequent feature of the Alzheimer's brain is neuroinflammation. Objective: In the current study, we assessed the effect that extra virgin olive oil has on neuroinflammation when administered to a mouse model of the disease. Methods: Triple transgenic mice were randomized to receive a diet enriched with extra virgin olive oil or regular diet for 8 weeks. At the end of this treatment period the expression level of several inflammatory biomarkers was assessed in the central nervous system. Results: Among the 79 biomarkers measured, compared with the control group, mice receiving the extra virgin olive oil had a significant reduction in MIP-2, IL-17E, IL-23, and IL-12p70, but an increase in IL-5. To validate these results, specific ELISA kits were used for each of them. Confirmatory results were obtained for MIP-2, IL-17E, IL-23, and IL-12-p70. No significant differences between the two groups were observed for IL-5. Conclusions: Our results demonstrate that chronic administration of extra virgin olive oil has a potent anti-neuroinflammatory action in a model of Alzheimer's disease. They provide additional pre-clinical support and novel mechanistic insights for the beneficial effect that this dietary intervention has on brain health and dementia.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Ratones Transgénicos , Aceite de Oliva , Animales , Aceite de Oliva/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/dietoterapia , Ratones , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Precursor de Proteína beta-Amiloide/genética , Humanos , Encéfalo/patología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Biomarcadores , Presenilina-1/genética , Masculino , Citocinas/metabolismo
15.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891768

RESUMEN

Gut-dysbiosis-induced lipopolysaccharides (LPS) translocation into systemic circulation has been suggested to be implicated in nonalcoholic fatty liver disease (NAFLD) pathogenesis. This study aimed to assess if oleuropein (OLE), a component of extra virgin olive oil, lowers high-fat-diet (HFD)-induced endotoxemia and, eventually, liver steatosis. An immunohistochemistry analysis of the intestine and liver was performed in (i) control mice (CTR; n = 15), (ii) high-fat-diet fed (HFD) mice (HFD; n = 16), and (iii) HFD mice treated with 6 µg/day of OLE for 30 days (HFD + OLE, n = 13). The HFD mice developed significant liver steatosis compared to the controls, an effect that was significantly reduced in the HFD + OLE-treated mice. The amount of hepatocyte LPS localization and the number of TLR4+ macrophages were higher in the HFD mice in the than controls and were lowered in the HFD + OLE-treated mice. The number of CD42b+ platelets was increased in the liver sinusoids of the HFD mice compared to the controls and decreased in the HFD + OLE-treated mice. Compared to the controls, the HFD-treated mice showed a high percentage of intestine PAS+ goblet cells, an increased length of intestinal crypts, LPS localization and TLR4+ expression, and occludin downregulation, an effect counteracted in the HFD + OLE-treated mice. The HFD-fed animals displayed increased systemic levels of LPS and zonulin, but they were reduced in the HFD + OLE-treated animals. It can be seen that OLE administration improves liver steatosis and inflammation in association with decreased LPS translocation into the systemic circulation, hepatocyte localization of LPS and TLR4 downregulation in HFD-induced mouse model of NAFLD.


Asunto(s)
Glucósidos Iridoides , Iridoides , Lipopolisacáridos , Enfermedad del Hígado Graso no Alcohólico , Aceite de Oliva , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Glucósidos Iridoides/farmacología , Ratones , Aceite de Oliva/farmacología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Masculino , Iridoides/farmacología , Regulación hacia Abajo/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Ratones Endogámicos C57BL , Inflamación/metabolismo , Hígado Graso/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/etiología , Hígado Graso/patología
16.
Sci Total Environ ; 945: 173977, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38879018

RESUMEN

This study was conceived with the aim of exploring applications of the circular economy (CE) principles in the olive oil sector, with the lens of Life Cycle Assessment (LCA). To that end, the authors performed a systematic literature review (SLR), from a pre-determined set of keywords that were searched for in the two most comprehensive databases of peer-reviewed journals, namely Scopus and Web-of-Science. From the screening process provided by the PRISMA model, a total of fifteen papers were selected that formed the final review sample, most of which included research on production systems in the Mediterranean region. To facilitate a comparative analysis of the findings from those studies, the latter were grouped into clusters, considering their characteristics and methodological approaches. Five articles were classified as dealing with 'closed-loop' systems wherein the resources from the valorisation of by-products were reintegrated into the same production system. The remaining articles were categorised as related to 'open loop' systems since by-products were utilised in processes and systems outside olive oil production. Notably, the 'closed-loop' systems showed the best LCA outcomes. Identified hotspots within the sector included the agricultural and packaging phases. Although comparing LCA applications is challenging due to the inherent nature of the method and researcher autonomy in selecting basic characteristics, valuable best practices emerged from the analysis of the current state of the art. These practices included valorisation of olive pomace (OP) by converting it into biogas to meet the energy needs of the system processes themselves, the collection of waste cooking oil to convert it into biodiesel, and the use of organic farming techniques in olive production. OP oil extraction emerged as a widespread practice enhancing system sustainability. Moreover, increasing industrial symbiosis by promoting proximity amongst plants was documented by this SLR to be a key factor in strengthening system sustainability.


Asunto(s)
Aceite de Oliva , Agricultura/métodos
17.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 1-6, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836689

RESUMEN

This study aimed to investigate the antibacterial and antimicrobial activity of ozone gel against oral biofilms grown on titanium dental implant discs. The experiment used medical grade five titanium discs on which peri-implant isolated biofilms were grown. The experimental groups were control, Streptococcus mutans (S. mutans) and Granulicatella adiacens (G. adiacens), (n = 6). The oral microbes grown on titanium discs were exposed to ozone gel for 3 minutes and the antibacterial activity was assessed by turbidity test and adherence test for the antibiofilm activity test. Bacterial morphology and confluence were investigated by scanning electron microscopy (SEM), (n=3). Two bacterial species were identified from the peri-implant sample, S. mutans and G. adiacens. The results showed that adding ozone to the bacterial biofilm on titanium dental implants did not exhibit significant antibacterial activity against S. mutans. Moreover, there was no significant difference in antibiofilm activity between control and treatment groups. However, significant antibacterial and antibiofilm effect was exhibited by ozone gel against G. adiacens. Ozonated olive oil can be considered as a potential antimicrobial agent for disinfecting dental implant surfaces and treating peri-implantitis.


Asunto(s)
Biopelículas , Implantes Dentales , Aceite de Oliva , Ozono , Periimplantitis , Streptococcus mutans , Ozono/farmacología , Aceite de Oliva/farmacología , Aceite de Oliva/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Periimplantitis/microbiología , Periimplantitis/tratamiento farmacológico , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/fisiología , Humanos , Implantes Dentales/microbiología , Titanio/farmacología , Titanio/química , Antibacterianos/farmacología , Microscopía Electrónica de Rastreo , Pruebas de Sensibilidad Microbiana
18.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 59-68, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38814234

RESUMEN

Development of novel functional foods is trending as one of the hot topics in food science and food/beverage industries. In the present study, the anti-diabetic, anti-hyperlipidemic and histo-protective effects of the extra virgin olive oil (EVOO) enriched with the organosulfur diallyl sulfide (DAS) (DAS-rich EVOO) were evaluated in alloxan-induced diabetic mice. The ingestion of EVOO (500µL daily for two weeks) attenuated alloxan-induced elevated glucose, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase, lactate dehydrogenase (LDH), urea and creatinine. It also normalized the levels of triglycerides (TG), total cholesterols (TC), low-density lipoprotein-cholesterol (LDL-c) and their consequent atherogenic index of plasma (AIP) in diabetic animals. Additionally, EVOO prevented lipid peroxidation (MDA) and reduced the level of hydrogen peroxide (H2O2) in diabetic animals. Concomitantly, it enhanced the activity of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD), reducing thereby tissue oxidative stress injury. The overall histologic (pancreas, liver, and kidney) alterations were also improved after EVOO ingestion. The manifest anti-diabetic, lipid-lowering and histo-protective properties of EVOO were markedly potentiated with DAS-rich EVOO suggesting possible synergistic interactions between DAS and EVOO lipophilic bioactive ingredients. Overall, EVOO and DAS-rich EVOO show promise as functional foods and/or adjuvants for the treatment of diabetes and its complications.


Asunto(s)
Compuestos Alílicos , Diabetes Mellitus Experimental , Hipoglucemiantes , Hipolipemiantes , Aceite de Oliva , Sulfuros , Animales , Aceite de Oliva/química , Aceite de Oliva/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Compuestos Alílicos/farmacología , Compuestos Alílicos/uso terapéutico , Sulfuros/farmacología , Sulfuros/uso terapéutico , Sulfuros/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Ratones , Hipolipemiantes/farmacología , Masculino , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Páncreas/efectos de los fármacos , Páncreas/patología , Páncreas/metabolismo , Glutatión Peroxidasa/metabolismo , Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Superóxido Dismutasa/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Alanina Transaminasa/sangre , Alanina Transaminasa/metabolismo , Aspartato Aminotransferasas/metabolismo , Aspartato Aminotransferasas/sangre , Triglicéridos/sangre , Triglicéridos/metabolismo
19.
Nutrients ; 16(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38794712

RESUMEN

Extra virgin olive oil (EVOO) is a symbol of the Mediterranean diet, constituting its primary source of fat. The beneficial effect of EVOO is strictly related to the presence of fatty acids and polyphenols, bioactive compounds endowed with nutraceutical properties. Among EVOO polyphenols, lignans possess a steroid-like chemical structure and are part of the phytoestrogen family, which is renowned for its health properties. The natural lignans (+)-pinoresinol and 1-acetoxypinoresinol (1-AP) are commonly present in olives and in EVOO. Although (+)-pinoresinol is found in different edible plants, such as flaxseed, beans, whole-grain cereals, sesame seeds, and certain vegetables and fruit, 1-AP was exclusively identified in olives in 2000. So far, the scientific literature has extensively covered different aspects of (+)-pinoresinol, including its isolation and nutraceutical properties. In contrast, less is known about the olive lignan 1-AP. Therefore, this review aimed to comprehensively evaluate the more important aspects of 1-AP, collecting all the literature from 2016 to the present, exploring its distribution in different cultivars, analytical isolation and purification, and nutraceutical properties.


Asunto(s)
Suplementos Dietéticos , Lignanos , Olea , Aceite de Oliva , Lignanos/análisis , Olea/química , Humanos , Aceite de Oliva/química , Frutas/química , Furanos
20.
J Phys Chem B ; 128(23): 5630-5641, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38814052

RESUMEN

Alzheimer's disease (AD) and other taupathies are neurodegenerative disorders associated with the amyloid deposition of the Tau protein in the brain. This amyloid formation may be inhibited by small molecules, which is recognized as one of the best therapeutic strategies to stop the progression of the disease. This work focuses on the small nucleating segment, hexapeptide-paired helical filament 6 (PHF6), responsible for Tau aggregation. Using computational modeling and classical molecular dynamics simulations, we show that PHF6 monomers collapse in water to form ß-sheet rich structures, and the main olive oil polyphenol oleuropein aglycone (OleA) prevents peptide aggregation significantly. We gradually increase the ratio of the PHF6-OleA from 1:1 to 1:3 and find that for the 1:1 ratio, the peptide monomers are prone to form aggregated structures, while for the 1:2 ratio, the formation of the extended ß-sheet structure is significantly less. For a 1:3 ratio of protein/OleA, the peptide residues are sufficiently crowded by OleA molecules through hydrogen bonding, hydrophobic interactions, and π-π stacking; hence, the peptide chains prefer to exist in a monomeric random coil conformation.


Asunto(s)
Simulación de Dinámica Molecular , Aceite de Oliva , Proteínas tau , Aceite de Oliva/química , Proteínas tau/química , Proteínas tau/metabolismo , Proteínas tau/antagonistas & inhibidores , Oligopéptidos/química , Humanos , Glucósidos Iridoides/química , Glucósidos Iridoides/farmacología , Monoterpenos Ciclopentánicos , Acetatos , Piranos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA