Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 381
Filtrar
1.
Nat Commun ; 15(1): 4083, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744825

RESUMEN

Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.


Asunto(s)
Acetil-CoA Carboxilasa , Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Supervivencia Celular , Ácidos Grasos , Glucosa , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Glucosa/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/genética , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ácidos Grasos/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ratones , NADP/metabolismo , Biosíntesis de Proteínas , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Estrés Oxidativo , Línea Celular Tumoral , Factores Eucarióticos de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/genética
2.
Fish Shellfish Immunol ; 146: 109387, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272331

RESUMEN

Acetyl-CoA carboxylase (ACC) plays a regulatory role in both fatty acid synthesis and oxidation, controlling the process of lipid deposition in the liver. Given that existing studies have shown a close relationship between low phosphorus (P) and hepatic lipid deposition, this study was conducted to investigate whether ACC plays a crucial role in this relationship. Zebrafish liver cell line (ZFL) was incubated under low P medium (LP, P concentration: 0.77 mg/L) or adequate P medium (AP, P concentration: 35 mg/L) for 240 h. The results showed that, compared with AP-treated cells, LP-treated cells displayed elevated lipid accumulation, and reduced fatty acid ß-oxidation, ATP content, and mitochondrial mass. Furthermore, transcriptomics analysis revealed that LP-treated cells significantly increased lipid synthesis (Acetyl-CoA carboxylases (acc), Stearyl coenzyme A dehydrogenase (scd)) but decreased fatty acid ß-oxidation (Carnitine palmitoyltransferase I (cptI)) and (AMP-activated protein kinase (ampk)) mRNA levels compared to AP-treated cells. The phosphorylation of AMPK and ACC, and the protein expression of CPTI were significantly decreased in LP-treated cells compared with those in AP-treated cells. After 240 h of LP treatment, PF-05175157 (an ACC inhibitor) was supplemented in the LP treatment for an additional 12 h. PF-05175157-treated cells showed higher phosphorylation of ACC, higher protein expression of CPTI, and lower protein expression of FASN, lower TG content, enhanced fatty acid ß-oxidation, increased ATP content, and mitochondrial mass compared with LP-treated cells. PF-05175157 also relieved the LP-induced oxidative stress and inflammatory response. Overall, these findings suggest that ACC is a promising target for treating LP-induced elevation of lipid deposition in ZFL, and can alleviate oxidative stress and inflammatory response.


Asunto(s)
Acetil-CoA Carboxilasa , Pez Cebra , Animales , Pez Cebra/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Hígado/metabolismo , Estrés Oxidativo , Ácidos Grasos/metabolismo , Fósforo , Lípidos , Adenosina Trifosfato/metabolismo
3.
Free Radic Biol Med ; 212: 464-476, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38211832

RESUMEN

Lipid metabolic reprogramming has been recognized as a hallmark of human cancer. Acetyl-CoA Carboxylases (ACCs) are key rate-limiting enzymes involved in fatty acid metabolism regulation by catalyzing the carboxylation of acetyl-CoA to malonyl-CoA. Previously, most studies focused on the role of ACC1 in fatty acid metabolism in cancer, while the function of ACC2 remains largely uncharacterized in human cancers, especially in ovarian cancer (OC). Here, we show that ACC2 was significantly downregulated in cancerous tissue of OC, and the downregulation of ACC2 is closely associated with lager tumor size, metastases and worse prognosis in OC patients. Downregulation of ACC2 promoted proliferation and metastasis of OC both in vitro and in vivo by enhancing FAO. Notably, mitochondria-associated ubiquitin ligase (MARCH5) was identified to interact with and downregulate ACC2 by ubiquitination and degradation in OC. Moreover, ACC2 downregulation-enhanced FAO contributed to the progression of OC promoted by MARCH5. In conclusion, our findings demonstrate that MARCH5-mediated downregulation of ACC2 promotes FAO and tumorigenesis in OC, suggesting MARCH5-ACC2 axis as a potent candidate for the treatment and prevention of OC.


Asunto(s)
Acetil-CoA Carboxilasa , Ácidos Grasos , Neoplasias Ováricas , Ubiquitina-Proteína Ligasas , Femenino , Humanos , Acetilcoenzima A/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Regulación hacia Abajo , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Neoplasias Ováricas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Pest Manag Sci ; 80(3): 1523-1532, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37966429

RESUMEN

BACKGROUND: Brome grass (Bromus diandrus Roth) is prevalent in the southern and western cropping regions of Australia, where it causes significant economic damage. A targeted herbicide resistance survey was conducted in 2020 by collecting brome grass populations from 40 farms in Western Australia and subjecting these samples to comprehensive herbicide screening. One sample (population 172-20), from a field that had received 12 applications of clethodim over 20 years of continuous cropping, was found to be highly resistant to the acetyl-CoA carboxylase (ACCase)-inhibiting herbicides clethodim and quizalofop, and so the molecular basis of resistance was investigated. RESULTS: All 31 individuals examined from population 172-20 carried the same resistance-endowing point mutation causing an aspartate-to-glycine substitution at position 2078 in the translated ACCase protein sequence. A wild-type susceptible population and the resistant population had similar expression levels of plastidic ACCase genes. The level of resistance to quizalofop, either standalone or in mixture with clethodim, in population 172-20 was lower under cooler growing conditions. CONCLUSION: Target-site resistance to ACCase-inhibiting herbicides, conferred by one ACCase mutation, was selected in all tested brome plants infesting a field with a history of repeated clethodim use. This mutation appears to have been fixed in the infesting population. Notably, clethodim resistance in this population was not detected by the farmer, and a high future incidence of quizalofop resistance is anticipated. Herbicide resistance testing is essential for the detection of evolving weed resistance issues and to inform effective management strategies. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Bromus , Ciclohexanonas , Herbicidas , Propionatos , Quinoxalinas , Humanos , Mutación , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Acetil-CoA Carboxilasa/genética , Poaceae , Proteínas de Plantas/genética
5.
J Transl Med ; 21(1): 877, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049827

RESUMEN

BACKGROUND: ND630 is believed to be a new therapy pharmacologic molecule in targeting the expression of ACACA and regulating the lipid metabolism. However, the function of ND630 in prostate cancer remains unknown. KIF18B, as an oncogene, plays a vital role in prostate cancer progression. circKIF18B_003 was derived from oncogene KIF18B and was markedly overexpressed in prostate cancer tissues. We speculated that oncoprotein KIF18B-derived circRNA circKIF18B_003 might have roles in prostate cancer promotion. The aim of this study was to validate whether ND630 could control ACACA and lipid reprogramming in prostate cancer by regulating the expression of circKIF18B_003. METHODS: RT-qPCR was used to analyze the expression of circKIF18B_003 in prostate cancer cell lines and prostate cancer samples. circKIF18B_003 expression was modulated in prostate cancer cells using circKIF18B_003 interference or overexpression plasmid. We examined the function and effects of circKIF18B_003 in prostate cancer cells using CCK-8, colony formation, wound healing, and Transwell invasion assays and xenograft models. Fluorescence in situ hybridization (FISH) was performed to evaluate the localization of circKIF18B_003. RNA immunoprecipitation (RIP), RNA pull down, and luciferase reporter assay were performed to explore the potential mechanism of circKIF18B_003. RESULTS: The function of ND630 was determined in this study. circKIF18B_003 was overexpressed in prostate cancer tissues, and overexpression of circKIF18B_003 was associated with poor survival outcome of prostate cancer patients. The proliferation, migration, and invasion of prostate cancer cells were enhanced after up-regulation of circKIF18B_003. circKIF18B_003 is mainly located in the cytoplasm of prostate cancer cells, and the RIP and RNA pull down assays confirmed that circKIF18B_003 could act as a sponge for miR-370-3p. Further study demonstrated that up-regulation of circKIF18B_003 increased the expression of ACACA by sponging miR-370-3p. The malignant ability of prostate cancer cells enhanced by overexpression of circKIF18B_003 was reversed by the down-regulation of ACACA. We found that overexpression of circKIF18B_003 was associated with lipid metabolism, and a combination of ND-630 and docetaxel markedly attenuated tumor growth. CONCLUSION: ND630 could control ACACA and lipid reprogramming in prostate cancer by regulating the expression of circKIF18B_003. ND630 and circKIF18B_003 may represent a novel target for prostate cancer.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , ARN Circular , Humanos , Masculino , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Hibridación Fluorescente in Situ , Cinesinas/genética , Cinesinas/metabolismo , Lípidos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Próstata/genética , ARN Circular/genética
6.
BMC Genomics ; 24(1): 637, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875812

RESUMEN

BACKGROUND: Polyadenylation is a crucial process that terminates mRNA molecules at their 3'-ends. It has been observed that alternative polyadenylation (APA) can generate multiple transcripts from a single gene locus, each with different polyadenylation sites (PASs). This leads to the formation of several 3' untranslated regions (UTRs) that vary in length and composition. APA has a significant impact on approximately 60-70% of eukaryotic genes and has far-reaching implications for cell proliferation, differentiation, and tumorigenesis. RESULTS: In this study, we conducted long-read, single-molecule sequencing of mRNA from peanut seeds. Our findings revealed that over half of all peanut genes possess over two PASs, with older developing seeds containing more PASs. This suggesting that the PAS exhibits high tissue specificity and plays a crucial role in peanut seed maturation. For the peanut acetyl-CoA carboxylase A1 (AhACCA1) gene, we discovered four 3' UTRs referred to UTR1-4. RT-PCR analysis showed that UTR1-containing transcripts are predominantly expressed in roots, leaves, and early developing seeds. Transcripts containing UTR2/3 accumulated mainly in roots, flowers, and seeds, while those carrying UTR4 were constitutively expressed. In Nicotiana benthamiana leaves, we transiently expressed all four UTRs, revealing that each UTR impacted protein abundance but not subcellular location. For functional validation, we introduced each UTR into yeast cells and found UTR2 enhanced AhACCA1 expression compared to a yeast transcription terminator, whereas UTR3 did not. Furthermore, we determined ACC gene structures in seven plant species and identified 51 PASs for 15 ACC genes across four plant species, confirming that APA of the ACC gene family is universal phenomenon in plants. CONCLUSION: Our data demonstrate that APA is widespread in peanut seeds and plays vital roles in peanut seed maturation. We have identified four 3' UTRs for AhACCA1 gene, each showing distinct tissue-specific expression patterns. Through subcellular location experiment and yeast transformation test, we have determined that UTR2 has a stronger impact on gene expression regulation compared to the other three UTRs.


Asunto(s)
Acetil-CoA Carboxilasa , Arachis , Arachis/genética , Arachis/metabolismo , Acetil-CoA Carboxilasa/genética , Saccharomyces cerevisiae/genética , Regiones no Traducidas 3' , Poliadenilación , ARN Mensajero/metabolismo
7.
Cell Death Differ ; 30(12): 2462-2476, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37845385

RESUMEN

Cyclin-dependent kinases (CDKs) regulate cell cycle progression and the transcription of a number of genes, including lipid metabolism-related genes, and aberrant lipid metabolism is involved in prostate carcinogenesis. Previous studies have shown that CDK13 expression is upregulated and fatty acid synthesis is increased in prostate cancer (PCa). However, the molecular mechanisms linking CDK13 upregulation and aberrant lipid metabolism in PCa cells remain largely unknown. Here, we showed that upregulation of CDK13 in PCa cells increases the fatty acyl chains and lipid classes, leading to lipid deposition in the cells, which is positively correlated with the expression of acetyl-CoA carboxylase (ACC1), the first rate-limiting enzyme in fatty acid synthesis. Gain- and loss-of-function studies showed that ACC1 mediates CDK13-induced lipid accumulation and PCa progression by enhancing lipid synthesis. Mechanistically, CDK13 interacts with RNA-methyltransferase NSUN5 to promote its phosphorylation at Ser327. In turn, phosphorylated NSUN5 catalyzes the m5C modification of ACC1 mRNA, and then the m5C-modified ACC1 mRNA binds to ALYREF to enhance its stability and nuclear export, thereby contributing to an increase in ACC1 expression and lipid deposition in PCa cells. Overall, our results disclose a novel function of CDK13 in regulating the ACC1 expression and identify a previously unrecognized CDK13/NSUN5/ACC1 pathway that mediates fatty acid synthesis and lipid accumulation in PCa cells, and targeting this newly identified pathway may be a novel therapeutic option for the treatment of PCa.


Asunto(s)
Acetil-CoA Carboxilasa , Neoplasias de la Próstata , Humanos , Masculino , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Proteína Quinasa CDC2 , Ácidos Grasos , Lípidos , Metiltransferasas , Proteínas Musculares , Próstata/metabolismo , Neoplasias de la Próstata/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
Pest Manag Sci ; 79(12): 5220-5229, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37592752

RESUMEN

BACKGROUND: Chloris virgata is a troublesome weed in tropical regions. With the evolution of glyphosate resistance in key grass species, acetyl CoA carboxylase (ACCase) inhibitors have become a commonly used tool in soybean production areas in Brazil. We assessed if suspected resistant populations exhibited cross resistance to the different classes of ACCase inhibitors and investigated the resistance mechanisms in C. virgata. RESULTS: Dose-response experiments revealed resistance to haloxyfop-methyl and pinoxaden, with 432- and 3-fold resistance, respectively, compared to susceptible populations. Due to the lack of genetic resources for C. virgata, we sequenced, assembled, and annotated the genome using short-read Illumina technology. The k-mer analysis estimated a genome size of approximately 336 Mbp, with BUSCO completeness of 97%, and over 36 000 gene models were annotated. We examined if ACCase copy number variation and increased gene expression were involved in the resistance phenotype and found no difference when compared to a susceptible population. A mutation was detected in ACCase that encodes for amino acid position 2027, resulting in a tryptophan-to-cysteine (Trp2027Cys) substitution. We found the resistant population absorbed 11.4% less herbicide and retained 21% more herbicide on the treated leaf compared to the susceptible population. We developed a genotyping assay targeting the resistance-endowing Trp2027Cys substitution for quick resistance diagnosis. CONCLUSION: A Trp2027Cys amino acid substitution in ACCase confers resistance to haloxyfop and pinoxaden in C. virgata. We provide important insights into the evolutionary history of C. virgata and a draft genome as a useful resource to further our understanding of the biology in the genus Chloris. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Herbicidas , Herbicidas/farmacología , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Variaciones en el Número de Copia de ADN , Resistencia a los Herbicidas/genética , Poaceae/genética , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Nat Cell Biol ; 25(9): 1303-1318, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37563253

RESUMEN

Cell growth is regulated by the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which functions both as a nutrient sensor and a master controller of virtually all biosynthetic pathways. This ensures that cells are metabolically active only when conditions are optimal for growth. Notably, although mTORC1 is known to regulate fatty acid biosynthesis, how and whether the cellular lipid biosynthetic capacity signals back to fine-tune mTORC1 activity remains poorly understood. Here we show that mTORC1 senses the capacity of a cell to synthesise fatty acids by detecting the levels of malonyl-CoA, an intermediate of this biosynthetic pathway. We find that, in both yeast and mammalian cells, this regulation is direct, with malonyl-CoA binding to the mTOR catalytic pocket and acting as a specific ATP-competitive inhibitor. When fatty acid synthase (FASN) is downregulated/inhibited, elevated malonyl-CoA levels are channelled to proximal mTOR molecules that form direct protein-protein interactions with acetyl-CoA carboxylase 1 (ACC1) and FASN. Our findings represent a conserved and unique homeostatic mechanism whereby impaired fatty acid biogenesis leads to reduced mTORC1 activity to coordinately link this metabolic pathway to the overall cellular biosynthetic output. Moreover, they reveal the existence of a physiological metabolite that directly inhibits the activity of a signalling kinase in mammalian cells by competing with ATP for binding.


Asunto(s)
Acetil-CoA Carboxilasa , Malonil Coenzima A , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Malonil Coenzima A/metabolismo , Serina-Treonina Quinasas TOR/genética , Ácidos Grasos/metabolismo , Mamíferos/metabolismo , Adenosina Trifosfato
10.
Front Immunol ; 14: 1161676, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180164

RESUMEN

Background and aims: Galanin is a naturally occurring peptide that plays a critical role in regulating inflammation and energy metabolism, with expression in the liver. The exact involvement of galanin in non-alcoholic fatty liver disease and related fibrosis remains controversial. Methods: The effects of subcutaneously administered galanin were studied in mice with non-alcoholic steatohepatitis (NASH) induced by a high-fat and high-cholesterol diet for 8 weeks, and in mice with liver fibrosis induced by CCl4 for 7 weeks. The underlying mechanism was also studied in vitro on murine macrophage cells (J774A.1 and RAW264.7). Results: Galanin reduced inflammation, CD68-positive cell count, MCP-1 level, and mRNA levels of inflammation-related genes in the liver of NASH mice. It also mitigated liver injury and fibrosis caused by CCl4. In vitro, galanin had anti-inflammatory effects on murine macrophages, including reduced phagocytosis and intracellular reactive oxygen species (ROS). Galanin also activated AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) signaling. Conclusion: Galanin ameliorates liver inflammation and fibrosis in mice, potentially by modifying macrophage inflammatory phenotype and activating AMPK/ACC signaling.


Asunto(s)
Hepatitis , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/genética , Galanina , Hepatitis/metabolismo , Fibrosis , Macrófagos/metabolismo , Inflamación/metabolismo , Cirrosis Hepática/metabolismo , Fenotipo
11.
Poult Sci ; 102(6): 102638, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37015160

RESUMEN

This experiment was carried out to investigate the mechanism of action of mulberry leaf extract (MLE) in reducing abdominal fat accumulation in female broilers. A total of 192 one-day-old female Arbor Acres (AA) broilers were divided into 4 diet groups, with each group consisting of 8 replicates with 6 birds per replicate. The diets contained a basal diet and 3 test diets with supplementation of 400, 800, or 1,200 MLE mg/kg, respectively. The trial had 2 phases that lasted from 1 to 21 d and from 22 to 56 d, respectively. The growth performance, abdominal fat deposition, fatty acid composition, serum biochemistry and mRNA expression of genes related to fat metabolism in liver were determined. The results showed that, 1) dietary supplementation with MLE had no significant impact on broilers final body weight, average daily gain (ADG), or feed to gain ration (F/G) (P > 0.05), but linearly reduced abdominal fat accumulation in both experimental phases (P < 0.05); 2) the total contents of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), such as palmitoleic acid, oleic acid, and eicosadienoic acid, were increased quadratically as a result of dietary supplements of 400, 800, and 1,200 mg/kg MLE (P < 0.01), while the total contents of saturated fatty acids (SFA), such as teracosanoic acid were decreased (P < 0.01); 3) the addition of 800 or 1,200 MLE mg/kg to the diet linearly reduced total cholesterol (TC) in the serum and liver (P < 0.05). Adenosine-activated protein kinase (AMPK) mRNA expression in the liver was quadratically increased by the addition of 800 or 1,200 MLE mg/kg to the diet (P < 0.05), and the mRNA expression of sterol regulatory element binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), and acetyl-CoA carboxylate), fatty acid synthase (FAS) were linearly decreased (P < 0.05). In conclusion, MLE can be employed as a viable fat loss feed supplement in fast-growing broiler diets since it reduces abdominal fat deposition in female AA broilers via the AMPK/SREBP-1c/ACC signaling pathway. MLE can also be utilized to modify the fatty acid profile in female broilers (AA) at varied inclusion levels.


Asunto(s)
Pollos , Morus , Animales , Femenino , Pollos/fisiología , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Quinasa/metabolismo , Ácidos Grasos/metabolismo , Hígado/metabolismo , Ácidos Grasos Insaturados/metabolismo , Transducción de Señal , Grasa Abdominal/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , ARN Mensajero/metabolismo
12.
Clin Transl Oncol ; 25(8): 2499-2513, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36976490

RESUMEN

PURPOSE: The de novo lipogenesis has been a longstanding observation in hepatocellular carcinoma (HCC). However, the prognostic value and carcinogenic roles of the enzyme Acetyl-CoA carboxylase alpha (ACACA) in HCC remains unknown. METHODS: The proteins with remarkable prognostic significance were screened out from The Cancer Proteome Atlas Portal (TCPA) database. Furthermore, the expression characteristics and prognostic value of ACACA were evaluated in multiple databases and the local HCC cohort. The loss-of-function assays were performed to uncover the potential roles of ACACA in steering malignant behaviors of HCC cells. The underlying mechanisms were conjectured by bioinformatics and validated in HCC cell lines. RESULTS: ACACA was identified as a crucial factor of HCC prognosis. Bioinformatics analyses showed that HCC patients with higher expression of ACACA protein or mRNA levels had poor prognosis. Knockdown of ACACA remarkably crippled the proliferation, colony formation, migration, invasion, epithelial-mesenchymal transition (EMT) process of HCC cells and induced the cell cycle arrest. Mechanistically, ACACA might facilitate the malignant phenotypes of HCC through aberrant activation of Wnt/ß-catenin signaling pathway. In addition, ACACA expression was associated with the dilute infiltration of immune cells including plasmacytoid DC (pDC) and cytotoxic cells by utilization of relevant database analysis. CONCLUSION: ACACA could be a potential biomarker and molecular target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , beta Catenina/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Pronóstico , Proteínas/metabolismo
13.
Pest Manag Sci ; 79(8): 2725-2736, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36914944

RESUMEN

BACKGROUND: Echinochloa glabrescens Munro ex Hook. f. is one of the main Echinochloa spp. seriously invading Chinese rice fields and has evolved resistance to commonly used herbicides. Previously, an E. glabrescens population (LJ-02) with suspected resistance to the acetyl-CoA carboxylase (ACCase)-inhibiting herbicide metamifop was collected. This study aimed to determine its resistance status to metamifop and investigate the internal molecular mechanisms of resistance. RESULTS: Single-dose testing confirmed that the LJ-02 population had evolved resistance to metamifop. Gene sequencing and a relative expression assay of ACCase ruled out target-site based resistance to metamifop in LJ-02. Whole-plant bioassays revealed that, compared with the susceptible population XZ-01, LJ-02 was highly resistant to metamifop and exhibited cross-resistance to fenoxaprop-P-ethyl. Pretreatment with the known glutathione S-transferase (GST) inhibitor, 4-chloro-7-nitrobenzoxadiazole (NBD-Cl), largely reversed the resistance to metamifop by approximately 81%. Liquid chromatography-tandem mass spectrometry analysis indicated that the metabolic rates of one of the major metabolites of metamifop, N-(2-fluorophenyl)-2-hydroxy-N-methylpropionamide (HPFMA), were up to 383-fold faster in LJ-02 plants than in XZ-01 plants. There were higher basal and metamifop-inducible GST activities toward 1-chloro-2,4-dinitrobenzene (CDNB) in LJ-02 than in XZ-01. Six GST genes were metamifop-induced and overexpressed in the resistant LJ-02 population. CONCLUSION: This study reports, for the first time, the occurrence of metabolic metamifop resistance in E. glabrescens worldwide. The high-level metamifop resistance in the LJ-02 population may mainly involve specific isoforms of GSTs that endow high catalytic activity and strong substrate specificity. © 2023 Society of Chemical Industry.


Asunto(s)
Echinochloa , Herbicidas , Echinochloa/genética , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Glutatión , Transferasas
14.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166694, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36972768

RESUMEN

Cholangiocarcinoma (CCA), a cancer of the biliary tract, is a significant health problem in Thailand. Reprogramming of cellular metabolism and upregulation of lipogenic enzymes have been revealed in CCA, but the mechanism is unclear. The current study highlighted the importance of acetyl-CoA carboxylase 1 (ACC1), a rate-limiting enzyme in de novo lipogenesis, on CCA migration. ACC1 expression in human CCA tissues was determined by immunohistochemistry. The results demonstrated that increased ACC1 was related to the shorter survival of CCA patients. Herein, ACC1-deficient cell lines (ACC1-KD) were generated by the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (cas9) system and were used for the comparative study. The ACC1 levels in ACC1-KD were 80-90 % lower than in parental cells. Suppression of ACC1 significantly reduced intracellular malonyl-CoA and neutral lipid contents. Two-fold growth retardation and 60-80 % reduced CCA cell migration and invasion were observed in ACC1-KD cells. The reduced 20-40 % of intracellular ATP levels, AMPK activation, lowered NF-κB p65 nuclear translocation, and snail expression were emphasized. Migration of ACC1-KD cells was restored by supplementation with palmitic acid and malonyl-CoA. Altogether, the importance of rate-limiting enzyme in de novo fatty acid synthesis, ACC1, and AMPK-NF-κB-snail axis on CCA progression was suggested herein. These might be the novel targets for CCA drug design. (ACC1, AMPK, Cholangiocarcinoma, De novo lipogenesis, NF-κB, Palmitic acid).


Asunto(s)
Acetil-CoA Carboxilasa , Colangiocarcinoma , Humanos , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Proteínas Quinasas Activadas por AMP , FN-kappa B , Ácido Palmítico , Factores de Transcripción de la Familia Snail
15.
Cell Oncol (Dordr) ; 46(3): 643-660, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36607556

RESUMEN

BACKGROUND: Reprogramming of metabolism is strongly associated with the development of cancer. However, the role of metabolic reprogramming in the remodeling of pre-metastatic niche (PMN), a key step in metastasis, is still unknown. We aimed to investigate the metabolic alternation during lung PMN formation in breast cancer. METHODS: We assessed the transcriptomes and lipidomics of lung of MMTV-PyVT mice by microarray and liquid chromatography-tandem mass mass spectrometry before lung metastasis. The validation of gene or protein expressions was performed by quantitative real-time polymerase chain reaction or immunoblot and immunohistochemistry respectively. The lung fibroblasts were isolated from mice and then co-cultured with breast cancer to identify the influence of cancer on the change of lung fibroblasts in PMN. RESULTS: We demonstrated changes in the lipid profile and several lipid metabolism genes in the lungs of breast cancer-bearing MMTV-PyVT mice before cancer spreading. The expression of ACACA (acetyl-CoA carboxylase α) was downregulated in the lung fibroblasts, which contributed to changes in acetylation of protein's lysine residues and the synthesis of fatty acid. The downregulation of ACACA in lung fibroblasts triggered a senescent and inflammatory phenotypic shift of lung fibroblasts in both in vivo and in vitro models. The senescence-associated secretory phenotype of lung fibroblasts enabled the recruitment of immunosuppressive granulocytic myeloid-derived suppressor cells into the lungs through the production of CXCL1 in the lungs. Knock-in of ACACA prevented lung metastasis in the MMTV-PyVT mouse model, further supporting that ACACA was involved in the remodeling of the lung PMN. CONCLUSIONS: Taken together, these data revealed a mechanism by which ACACA downregulation directed the formation of an immunosuppressive lung PMN in breast cancer.


Asunto(s)
Acetil-CoA Carboxilasa , Neoplasias de la Mama , Senescencia Celular , Fibroblastos , Neoplasias Pulmonares , Animales , Ratones , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Senescencia Celular/genética , Regulación hacia Abajo , Fibroblastos/metabolismo , Fibroblastos/patología , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Humanos
16.
Cancer Commun (Lond) ; 43(1): 100-122, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36328987

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) generated by back-splicing of precursor mRNAs (pre-mRNAs) are often aberrantly expressed in cancer cells. Accumulating evidence has revealed that circRNAs play a critical role in the progression of several cancers, including colorectal cancer (CRC). However, the current understandings of the emerging functions of circRNAs in CRC lipid metabolism and the underlying molecular mechanisms are still limited. Here, we aimed to explore the role of circCAPRIN1 in regulating CRC lipid metabolism and tumorigenesis. METHODS: circRNA microarray was performed with three pairs of tumor and non-tumor tissues from CRC patients. The expression of circRNAs were determined by quantitative PCR (qPCR) and in situ hybridization (ISH). The endogenous levels of circRNAs in CRC cells were manipulated by transfection with lentiviruses overexpressing or silencing circRNAs. The regulatory roles of circRNAs in the occurrence of CRC were investigated both in vitro and in vivo using gene expression array, RNA pull-down/mass spectrometry, RNA immunoprecipitation assay, luciferase reporter assay, chromatin immunoprecipitation analysis, and fluorescence in situ hybridization (FISH). RESULTS: Among circRNAs, circCAPRIN1 was most significantly upregulated in CRC tissue specimens. circCAPRIN1 expression was positively correlated with the clinical stage and unfavorable prognosis of CRC patients. Downregulation of circCAPRIN1 suppressed proliferation, migration, and epithelial-mesenchymal transition of CRC cells, while circCAPRIN1 overexpression had opposite effects. RNA sequencing and gene ontology analysis indicated that circCAPRIN1 upregulated the expressions of genes involved in CRC lipid metabolism. Moreover, circCAPRIN1 promoted lipid synthesis by enhancing Acetyl-CoA carboxylase 1 (ACC1) expression. Further mechanistic assays demonstrated that circCAPRIN1 directly bound signal transducer and activator of transcription 2 (STAT2) to activate ACC1 transcription, thus regulating lipid metabolism and facilitating CRC tumorigenesis. CONCLUSIONS: These findings revealed the oncogenic role and mechanism of circCAPRIN1 in CRC. circCAPRIN1 interacted with STAT2 to promote CRC tumor progression and lipid synthesis by enhancing the expression of ACC1. circCAPRIN1 may be considered as a novel potential diagnostic and therapeutic target for CRC patients.


Asunto(s)
Acetil-CoA Carboxilasa , Neoplasias Colorrectales , ARN Circular , Factor de Transcripción STAT2 , Humanos , Acetil-CoA Carboxilasa/genética , Carcinogénesis , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Hibridación Fluorescente in Situ , Lípidos/biosíntesis , Procesos Neoplásicos , ARN Circular/genética , Factor de Transcripción STAT2/genética , Factor de Transcripción STAT2/metabolismo
17.
Sci Adv ; 8(47): eabq1984, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36417534

RESUMEN

Acetyl-CoA carboxylase (ACC) regulates lipid synthesis; however, its role in inflammatory regulation in macrophages remains unclear. We generated mice that are deficient in both ACC isoforms in myeloid cells. ACC deficiency altered the lipidomic, transcriptomic, and bioenergetic profile of bone marrow-derived macrophages, resulting in a blunted response to proinflammatory stimulation. In response to lipopolysaccharide (LPS), ACC is required for the early metabolic switch to glycolysis and remodeling of the macrophage lipidome. ACC deficiency also resulted in impaired macrophage innate immune functions, including bacterial clearance. Myeloid-specific deletion or pharmacological inhibition of ACC in mice attenuated LPS-induced expression of proinflammatory cytokines interleukin-6 (IL-6) and IL-1ß, while pharmacological inhibition of ACC increased susceptibility to bacterial peritonitis in wild-type mice. Together, we identify a critical role for ACC in metabolic regulation of the innate immune response in macrophages, and thus a clinically relevant, unexpected consequence of pharmacological ACC inhibition.


Asunto(s)
Acetil-CoA Carboxilasa , Glucosa , Animales , Ratones , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Glucosa/metabolismo , Metabolismo de los Lípidos , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Ratones Noqueados , Macrófagos/metabolismo , Inflamación/metabolismo
18.
Med Oncol ; 39(12): 247, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209296

RESUMEN

Cancer cells rewire the metabolic processes beneficial for cancer cell proliferation, survival, and their progression. In this study, metabolic processes related to glucose, glutamine, and fatty acid metabolism signatures were collected from the molecular signatures database and investigated in the context of energy metabolic pathways through available genome-wide expression profiles of liver cancer cohorts by gene sets-based pathway activation scoring analysis. The outcomes of this study portray that the fatty acid metabolism, transport, and its storage related signatures are highly expressed across early stages of liver tumors and on the contrary, the gene sets related to glucose transport and glucose metabolism are prominently activated in the hepatocellular carcinoma (HCC) stage. Based on the results, these metabolic pathways are clearly dysregulated across specific stages of carcinogenesis. The identified dimorphic metabolic pathway dysregulation patterns are further reconfirmed by examining corresponding metabolic pathway genes expression patterns across various stages encompassing profiles. Recurrence is the primary concern in the carcinogenesis of liver tumors due to liver tissues regeneration. Hence, to further explore these dysregulation effects on recurrent cirrhosis and recurrent HCC sample containing profile GSE20140 was examined and interestingly, this result also reiterated these differential metabolic pathways dysregulation. In addition, a recently established metabolome profile for the massive panel of cancer cell-lines, including liver cancer cell-lines, was used for further exploration. These findings also reassured those differential metabolites abundance of the fatty acid and glucose metabolic pathways enlighten those dimorphic metabolic pathways dysregulation. Moreover, ROC curves of fatty acid metabolic pathway genes such as acetyl-CoA carboxylase (ACACB), acyl-CoA dehydrogenase long chain (ACADL), and acyl-CoA dehydrogenase medium chain (ACADM) as well as glucose metabolic pathway genes such as phosphoglycerate kinase (PGK1), pyruvate dehydrogenase (PDHA1), pyruvate dehydrogenase kinase (PDK1) demonstrated greater sensitivity and specificity in the corresponding stage-specific tumors with significant p-values (p < 0.05). Furthermore, overall survival (OS) and recurrence-free survival (RFS) studies also reconfirmed that the rate-limiting genes expression of fatty acid and glucose metabolic pathways reveal better and poor survival in HCC patient cohorts, respectively. In conclusion, all these results clearly show that metabolic rewiring and the existence of two diverse metabolic pathways dysregulation involving fatty acid and glucose metabolism across the stages of liver tumors have been identified. These findings might be useful for developing therapeutic target treatments in stage-specific tumors.


Asunto(s)
Acil-CoA Deshidrogenasas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Acil-CoA Deshidrogenasas/metabolismo , Carcinogénesis , Carcinoma Hepatocelular/patología , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Neoplasias Hepáticas/patología , Redes y Vías Metabólicas , Oxidorreductasas , Fosfoglicerato Quinasa/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Piruvatos
19.
J Agric Food Chem ; 70(34): 10620-10634, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35973099

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is among the most prevalent chronic liver diseases around the globe. The accumulation of lipids in the liver and oxidative stress are important pathological mechanisms of NAFLD. Astaxanthin (AT) is a carotenoid extracted from shrimps and crabs with beneficial biological activities, including anti-oxidative and anti-inflammatory activities. 16S microflora sequencing, H&E staining, and the western blot technique were employed to investigate the impacts of AT on a high-fat diet (HFD)-induced NAFLD. Significant mitigation in lipid metabolism-related disorders and decreased oxidative stress in HFD-induced mice were observed due to AT, and significant changes in the gut flora of the model mice were also observed. The in vitro study showed that AT considerably lowered the protein expression level of fatty acid synthetase (FAS), sterol regulatory element-binding protein-1c (SREBP-1c), and acetyl-COA carboxylase (ACC) and increased the protein expression of nuclear factor-E2 associated factor 2 (Nrf2) and AMP-activated protein kinase (AMPK) in oleic acid (OA) and palmitic acid (PA)-induced HepG2 cells. Additionally, mechanistic studies revealed that compound C (AMPK inhibitor, CC) inhibited the regulatory effect of AT on the SREBP-1c and Nrf2 signaling pathways. In conclusion, AT can inhibit the SREBP-1c, FAS, and ACC signaling pathways, activate the AMPK and Nrf2 signaling pathways, and improve the structure of intestinal flora.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Xantófilas , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Animales , Células Hep G2 , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Xantófilas/farmacología
20.
Vet Microbiol ; 273: 109545, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35998542

RESUMEN

We have demonstrated previously that the σA protein of avian reovirus (ARV) functions as an activator of cellular energy, which upregulates glycolysis and the TCA cycle for virus replication. To date, there is no report with respect to σA-modulated regulation of cellular fatty acid metabolism. This study reveals that the σA protein of ARV inhibits fatty acids synthesis and enhance fatty acid oxidation by upregulating PSMB6, which suppresses Akt, sterol regulatory element-binding protein 1 (SREBP1), acetyl-coA carboxylase α (ACC1), and acetyl-coA carboxylase ß (ACC2). SREBP1 is a transcription factor involved in fatty acid and cholesterol biosynthesis. Overexpression of SREBP1 reversed σA-modulated suppression of ACC1 and ACC2. In this work, a fluorescence resonance energy transfer-based genetically encoded indicator, Ateams, was used to study σA-modulated inhibition of fatty acids synthesis which enhances cellular ATP levels in Vero cells and human cancer cell lines (A549 and HeLa). By using Ateams, we demonstrated that σA-modulated inhibition of Akt, SREBP1, ACC1, and ACC2 leads to increased levels of ATP in mammalian and human cancer cells. Furthermore, knockdown of PSMB6 or overexpression of SREBP1 reversed σA-modulated increased levels of ATP in cells, indicating that PSMB6 and SREBP1 play important roles in ARV σA-modulated cellular fatty acid metabolism. Furthermore, we found that σA R155/273A mutant protein loses its ability to enter the nucleolus, which impairs its ability to regulate fatty acid metabolism and does not increase ATP formation, suggesting that nucleolus entry of σA is critical for regulating cellular fatty acid metabolism to generate more energy for virus replication. Collectively, this study provides novel insights into σA-modulated inhibition of fatty acid synthesis and enhancement of fatty acid oxidation to produce more energy for virus replication through the PSMB6/Akt/SREBP1/ACC pathway.


Asunto(s)
Orthoreovirus Aviar , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Adenosina Trifosfato , Animales , Chlorocebus aethiops , Ácidos Grasos/metabolismo , Humanos , Mamíferos , Orthoreovirus Aviar/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Células Vero , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA