Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1467-1478, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37310146

RESUMEN

The emergence of anti-EGFR therapy has revolutionized the treatment of colorectal cancer (CRC). However, not all patients respond consistently well. Therefore, it is imperative to conduct further research to identify the molecular mechanisms underlying the development of cetuximab resistance in CRC. In this study, we find that the expressions of many metabolism-related genes are downregulated in cetuximab-resistant CRC cells compared to their sensitive counterparts. Specifically, acetyl-CoA acyltransferase 2 (ACAA2), a key enzyme in fatty acid metabolism, is downregulated during the development of cetuximab resistance. Silencing of ACAA2 promotes proliferation and increases cetuximab tolerance in CRC cells, while overexpression of ACAA2 exerts the opposite effect. RTK-Kras signaling might contribute to the downregulation of ACAA2 expression in CRC, and ACAA2 predicts CRC prognosis in patients with Kras mutations. Collectively, our data suggest that modulating ACAA2 expression contributes to secondary cetuximab resistance in Kras wild-type CRC patients. ACAA2 expression is related to Kras mutation and demonstrates a prognostic role in CRC patients with Kras mutation. Thus, ACAA2 is a potential target in CRC with Kras mutation.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Acetilcoenzima A/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Cetuximab/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Resistencia a Antineoplásicos/genética , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal
2.
J Exp Clin Cancer Res ; 42(1): 108, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37122003

RESUMEN

BACKGROUND: Tumor cells display augmented capability to maintain endoplasmic reticulum (ER) homeostasis and hijack ER stress pathway for malignant phenotypes under microenvironmental stimuli. Metabolic reprogramming is a well-known hallmark for tumor cells to provide specific adaptive traits to the microenvironmental alterations. However, it's unknown how tumor cells orchestrate metabolic reprogramming and tumor progression in response to ER stress. Herein, we aimed to explore the pivotal roles of SEC63-mediated metabolic remodeling in hepatocellular carcinoma (HCC) cell metastasis after ER stress. METHODS: The expression levels of SEC63 in HCC tissues and adjacent non-cancerous tissues were determined by immunohistochemistry and western blot. The regulatory roles of SEC63 in HCC metastasis were investigated both in vitro and in vivo by RNA-sequencing, metabolites detection, immunofluorescence, and transwell migration/invasion analyses. GST pull-down, immunoprecipitation/mass spectrometry and in vivo ubiquitination/phosphorylation assay were conducted to elucidate the underlying molecular mechanisms. RESULTS: We identified SEC63 as a new regulator of HCC cell metabolism. Upon ER stress, the phosphorylation of SEC63 at T537 by IRE1α pathway contributed to SEC63 activation. Then, the stability of ACLY was upregulated by SEC63 to increase the supply of acetyl-CoA and lipid biosynthesis, which are beneficial for improving ER capacity. Meanwhile, SEC63 also entered into nucleus for increasing nuclear acetyl-CoA production to upregulate unfolded protein response targets to improve ER homeostasis. Importantly, SEC63 coordinated with ACLY to epigenetically modulate expression of Snail1 in the nucleus. Consequently, SEC63 promoted HCC cell metastasis and these effects were reversed by ACLY inhibition. Clinically, SEC63 expression was significantly upregulated in HCC tissue specimens and was positively correlated with ACLY expression. Importantly, high expression of SEC63 predicted unfavorable prognosis of HCC patients. CONCLUSIONS: Our findings revealed that SEC63-mediated metabolic reprogramming plays important roles in keeping ER homeostasis upon stimuli in HCC cells. Meanwhile, SEC63 coordinates with ACLY to upregulate the expression of Snail1, which further promotes HCC metastasis. Metastasis is crucial for helping cancer cells seek new settlements upon microenvironmental stimuli. Taken together, our findings highlight a cancer selective adaption to ER stress as well as reveal the potential roles of the IRE1α-SEC63-ACLY axis in HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Endorribonucleasas/genética , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Acetilcoenzima A/farmacología , Línea Celular Tumoral , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés del Retículo Endoplásmico , Regulación Neoplásica de la Expresión Génica
3.
Cancer Commun (Lond) ; 42(8): 716-749, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35838183

RESUMEN

BACKGROUND: Autophagy is elevated in metastatic tumors and is often associated with active epithelial-to-mesenchymal transition (EMT). However, the extent to which EMT is dependent on autophagy is largely unknown. This study aimed to identify the mechanisms by which autophagy facilitates EMT. METHODS: We employed a liquid chromatography-based metabolomic approach with kirsten rat sarcoma viral oncogene (KRAS) and liver kinase B1 (LKB1) gene co-mutated (KL) cells that represent an autophagy/EMT-coactivated invasive lung cancer subtype for the identification of metabolites linked to autophagy-driven EMT activation. Molecular mechanisms of autophagy-driven EMT activation were further investigated by quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting analysis, immunoprecipitation, immunofluorescence staining, and metabolite assays. The effects of chemical and genetic perturbations on autophagic flux were assessed by two orthogonal approaches: microtubule-associated protein 1A/1B-light chain 3 (LC3) turnover analysis by Western blotting and monomeric red fluorescent protein-green fluorescent protein (mRFP-GFP)-LC3 tandem fluorescent protein quenching assay. Transcription factor EB (TFEB) activity was measured by coordinated lysosomal expression and regulation (CLEAR) motif-driven luciferase reporter assay. Experimental metastasis (tail vein injection) mouse models were used to evaluate the impact of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) or ATP citrate lyase (ACLY) inhibitors on lung metastasis using IVIS luciferase imaging system. RESULTS: We found that autophagy in KL cancer cells increased acetyl-coenzyme A (acetyl-CoA), which facilitated the acetylation and stabilization of the EMT-inducing transcription factor Snail. The autophagy/acetyl-CoA/acetyl-Snail axis was further validated in tumor tissues and in autophagy-activated pancreatic cancer cells. TFEB acetylation in KL cancer cells sustained pro-metastatic autophagy in a mammalian target of rapamycin complex 1 (mTORC1)-independent manner. Pharmacological inhibition of this axis via CAMKK2 inhibitors or ACLY inhibitors consistently reduced the metastatic capacity of KL cancer cells in vivo. CONCLUSIONS: This study demonstrates that autophagy-derived acetyl-CoA promotes Snail acetylation and thereby facilitates invasion and metastasis of KRAS-LKB1 co-mutated lung cancer cells and that inhibition of the autophagy/acetyl-CoA/acetyl-Snail axis using CAMKK2 or ACLY inhibitors could be a potential therapeutic strategy to suppress metastasis of KL lung cancer.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Factores de Transcripción de la Familia Snail/metabolismo , Acetilcoenzima A/farmacología , Acetilación , Animales , Autofagia/genética , Neoplasias Pulmonares/genética , Mamíferos , Ratones , Procesos Neoplásicos , Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Transcripción/genética
4.
J Food Biochem ; 46(10): e14265, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35661366

RESUMEN

There are no medical drugs that provide an acceptable weight loss with minimal adverse effects. This study evaluated the Moringa peregrina (MP) seed extract's anti-obesity effect. Twenty-four (6/each group) male Sprague Dawley rats were divided into group Ι (control), group ΙΙ (high-fat diet [HFD]), group ΙΙΙ (HFD+ MP [250 mg/kg b.wt]), and group ΙV (HFD+ MP [500 mg/kg b.wt]). MP administration significantly ameliorated body weight gains and HFD induced elevation in cholesterol, triglycerides, LDL, and reduced HDL. Moreover, MP seed oil showed high free radical-scavenging activity, delayed ß-carotene bleaching and inhibited lipoprotein and pancreatic lipase enzymes. High-performance liquid chromatography (HPLC) revealed three major active components: crypto-chlorogenic acid, isoquercetin, and astragalin. Both quantitative Real-time PCR (RT-PCR) and western blotting revealed that MP seeds oil significantly decreased the expression of lipogenesis-associated genes such as peroxisome proliferator-activated receptors gamma (PPARγ) and fatty acid synthase (FAS) and significantly elevated the expression of lipolysis-associated genes (acetyl-CoA carboxylase1, ACCl). The oil also enhanced phosphorylation of AMP-activated protein kinase alpha (AMPK-α) and suppressed CCAAT/enhancer-binding protein ß (C/EBPß). In conclusion, administration of M. peregrina seeds oil has anti-obesity potential in HFD-induced obesity in rats. PRACTICAL APPLICATIONS: M. peregrina seeds oil had a potential anti-obesity activity that may be attributed to different mechanisms. These included decreasing body weight, and body mass index and improving lipid levels by decreasing total cholesterol, triglycerides and LDL-C, and increasing HDL-C. Also, M. peregrina seeds oil regulated adipogenesis-associated genes, such as downregulating the expression of (PPARγ, C/EBPα, and FAS) and improving and upregulating the expression and phosphorylation of AMPKα and ACCl. Despite that M. peregrina extract has reported clear anti-obesity potential through animal and laboratory studies, the available evidence-based on human clinical trials are very limited. Therefore, further studies are needed that could focus on clinical trials investigating anti-obesity potential different mechanisms of M. peregrina extract in humans.


Asunto(s)
Dieta Alta en Grasa , Moringa , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/farmacología , Acetilcoenzima A/metabolismo , Acetilcoenzima A/farmacología , Acetilcoenzima A/uso terapéutico , Adipocitos , Animales , Antioxidantes/metabolismo , Peso Corporal , Ácido Clorogénico/metabolismo , Colesterol/metabolismo , LDL-Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácido Graso Sintasas/metabolismo , Ácido Graso Sintasas/farmacología , Ácido Graso Sintasas/uso terapéutico , Radicales Libres/metabolismo , Radicales Libres/farmacología , Radicales Libres/uso terapéutico , Humanos , Lipasa/metabolismo , Masculino , Moringa/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/etiología , PPAR gamma/genética , PPAR gamma/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Aceites de Plantas/metabolismo , Ratas , Ratas Sprague-Dawley , Semillas/metabolismo , Triglicéridos/metabolismo , beta Caroteno
5.
J Mol Histol ; 53(2): 511-521, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35137294

RESUMEN

ATG5-induced autophagy is triggered in the early stages after SAH, which plays a vital role in subarachnoid hemorrhage (SAH). Acyl-CoA synthetase short-chain family 2 (ACSS2) is not just involved in energy metabolism but also binds to TEFB to form a complex translocated to related autophagy genes to regulate the expression of autophagy-related genes. However, the contribution of ACSS2 to the activation of autophagy in early brain injury (EBI) after SAH has barely been discussed. The purpose of this study was to investigate the alterations of ACSS2 and its neuroprotective effects following SAH. We first evaluated the expression of ACSS2 at different time points (6, 12, 24, and 72 h after SAH) in vivo and primary cortical neurons stimulated by oxyhemoglobin (OxyHb). Subsequently, adeno-associated virus and lentivirus were used to regulate ACSS2 expression to investigate the effect of ACSS2 after SAH. The results showed that the ACSS2 level decreased significantly in the early stages of SAH and was minimized at 24 h post-SAH. After artificial intervention to overexpress ACSS2, ATG5-induced autophagy was further enhanced in EBI after SAH, and neuronal apoptosis was alleviated to protect brain injury. In addition, brain edema and neurological function scores were improved. These results suggest that ACSS2 plays an important role in the neuroprotection against EBI after SAH by increasing ATG5-induce autophagy and inhibiting apoptosis.


Asunto(s)
Acetato CoA Ligasa/metabolismo , Lesiones Encefálicas , Fármacos Neuroprotectores , Hemorragia Subaracnoidea , Acetilcoenzima A/farmacología , Animales , Apoptosis , Autofagia/fisiología , Lesiones Encefálicas/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Hemorragia Subaracnoidea/metabolismo
6.
Nat Metab ; 2(10): 1034-1045, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32839596

RESUMEN

Benign hepatosteatosis, affected by lipid uptake, de novo lipogenesis and fatty acid (FA) oxidation, progresses to non-alcoholic steatohepatitis (NASH) on stress and inflammation. A key macronutrient proposed to increase hepatosteatosis and NASH risk is fructose. Excessive intake of fructose causes intestinal-barrier deterioration and endotoxaemia. However, how fructose triggers these alterations and their roles in hepatosteatosis and NASH pathogenesis remain unknown. Here we show, using mice, that microbiota-derived Toll-like receptor (TLR) agonists promote hepatosteatosis without affecting fructose-1-phosphate (F1P) and cytosolic acetyl-CoA. Activation of mucosal-regenerative gp130 signalling, administration of the YAP-induced matricellular protein CCN1 or expression of the antimicrobial peptide Reg3b (beta) peptide counteract fructose-induced barrier deterioration, which depends on endoplasmic-reticulum stress and subsequent endotoxaemia. Endotoxin engages TLR4 to trigger TNF production by liver macrophages, thereby inducing lipogenic enzymes that convert F1P and acetyl-CoA to FA in both mouse and human hepatocytes.


Asunto(s)
Fructosa/farmacología , Inflamación/metabolismo , Lipogénesis/efectos de los fármacos , Acetilcoenzima A/farmacología , Animales , Endotoxemia/sangre , Femenino , Fructosafosfatos/farmacología , Microbioma Gastrointestinal , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Intestinos/efectos de los fármacos , Lipidómica , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Regeneración/efectos de los fármacos , Receptores Toll-Like/agonistas
7.
Blood Cells Mol Dis ; 76: 82-90, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30853332

RESUMEN

Differentiation of myeloid progenitor cells into macrophages is accompanied by increased PU.1 concentration and increasing cell cycle length, culminating in cell cycle arrest. Induction of PU.1 expression in a cultured myeloid cell line expressing low PU.1 concentration results in decreased levels of mRNA encoding ATP-Citrate Lyase (ACL) and cell cycle arrest. ACL is an essential enzyme for generating acetyl-CoA, a key metabolite for the first step in fatty acid synthesis and for histone acetylation. We hypothesized that ACL may play a role in cell cycle regulation in the myeloid lineage. In this study, we found that acetyl-CoA or acetate supplementation was sufficient to rescue cell cycle progression in cultured BN cells treated with an ACL inhibitor or induced for PU.1 expression. Acetyl-CoA supplementation was also sufficient to rescue cell cycle progression in BN cells treated with a fatty acid synthase (FASN) inhibitor. We demonstrated that acetyl-CoA was utilized in both fatty acid synthesis and histone acetylation pathways to promote proliferation. Finally, we found that Acly mRNA transcript levels decrease during normal macrophage differentiation from bone marrow precursors. Our results suggest that regulation of ACL activity is a potentially important point of control for cell cycle regulation in the myeloid lineage.


Asunto(s)
ATP Citrato (pro-S)-Liasa/fisiología , Ciclo Celular , Diferenciación Celular , Células Progenitoras Mieloides/citología , Acetilcoenzima A/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Humanos , Macrófagos/citología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/fisiología , ARN Mensajero/metabolismo , Transactivadores/metabolismo , Transactivadores/fisiología
8.
Thorac Cancer ; 8(3): 131-137, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28296173

RESUMEN

BACKGROUND: Epithelial to mesenchymal transition (EMT) is a complex and dynamic molecular event in lung cancer metastasis that has not yet been thoroughly investigated. EMT transcriptional factors, such as Snail, play a central role in regulation of the EMT process. In this study, we sought to identify an association between p300 and Snail in lung cancer, as well as the engagement of p300 in Snail acetylation. METHODS: We transfected p300 small interfering RNA into lung cancer cells to detect Snail and E-cadherin expression levels by real time-PCR. Immunoprecipitation assay was conducted to determine Snail acetylation in vivo. Bacteria-expressed Snail was purified to analyze Snail acetylation in vitro. We further mutated lysine 187 for identifying acetylated residue in Snail. RESULTS: Snail transcription in lung cancer cells was repressed by p300 knockdown. E-cadherin expression was increased by transfection of p300 small interfering RNA in a dose-dependent manner. Immunoprecipitation and Western blot assay with anti-acetylated lysine antibody were used to confirm that Snail was acetylated by p300. A sequence coding snail gene was cloned into glutathione S-transferase-tagged vector and the fusion protein was purified using glutathione. We observed Snail acetylation in vitro by incubation of recombinant Snail and p300 histone acetyltransferase domain with acetyl coenzyme A. The reduced Snail acetylation level was related to lysine mutation at position 187 of Snail. CONCLUSION: There was a correlation between Snail and p300 expressions in lung cancer. Moreover, p300 acetylates Snail both in vivo and in vitro, and K187 may be involved in this modification.


Asunto(s)
Cadherinas/genética , Neoplasias Pulmonares/genética , Factores de Transcripción de la Familia Snail/genética , Transcripción Genética , Factores de Transcripción p300-CBP/genética , Células A549 , Acetilcoenzima A/farmacología , Acetilación , Antígenos CD , Cadherinas/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/patología , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , ARN Interferente Pequeño , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción p300-CBP/metabolismo
9.
Br J Pharmacol ; 168(8): 1911-22, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23215951

RESUMEN

BACKGROUND AND PURPOSE: Acyl derivatives of CoA have been shown to act as antagonists at human platelet and recombinant P2Y1 receptors, but little is known about their effects in the cardiovascular system. This study evaluated the effect of these endogenous nucleotide derivatives at P2Y1 receptors natively expressed in rat and porcine blood vessels. EXPERIMENTAL APPROACH: Isometric tension recordings were used to evaluate the effects of CoA, acetyl CoA, palmitoyl CoA (PaCoA) and 3'-dephospho-palmitoyl-CoA on concentration relaxation-response curves to ADP and uridine triphosphate (UTP). A FlexStation monitored ADP- and UTP-evoked calcium responses in HEK293 cells. KEY RESULTS: Acetyl CoA and PaCoA, but not CoA, inhibited endothelium-dependent relaxations to ADP with apparent selectivity for P2Y1 receptors (over P2Y(2/4) receptors) in rat thoracic aorta; PaCoA was more potent than acetyl CoA (331-fold vs. fivefold shift of ADP response curve evoked by 10 µM PaCoA and acetyl CoA, respectively); the apparent pA2 value for PaCoA was 6.44. 3'-dephospho-palmitoyl-CoA (10 µM) was significantly less potent than PaCoA (20-fold shift). In porcine mesenteric arteries, PaCoA and the P2Y1 receptor antagonist MRS2500 blocked ADP-mediated endothelium-dependent relaxations; in contrast, they were ineffective against ADP-mediated endothelium-independent relaxation in porcine coronary arteries (which does not involve P2Y1 receptors). Calcium responses evoked by ADP activation of endogenous P2Y1 receptors in HEK293 cells were inhibited in the presence of PaCoA, which failed to alter responses to UTP (acting at endogenous P2Y(2/4) receptors). CONCLUSIONS AND IMPLICATIONS: Acyl derivatives of CoA can act as endogenous selective antagonists of P2Y1 receptors in blood vessels, and this inhibitory effect critically depends on the palmitate and 3'-ribose phosphate substituents on CoA.


Asunto(s)
Acilcoenzima A/farmacología , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/metabolismo , Aorta Torácica/fisiología , Relajación Muscular , Antagonistas del Receptor Purinérgico P2Y/farmacología , Uridina Difosfato/metabolismo , Acetilcoenzima A/farmacología , Adenosina Difosfato/farmacología , Animales , Calcio/metabolismo , Vasos Coronarios/fisiología , Células HEK293 , Humanos , Técnicas In Vitro , Masculino , Arterias Mesentéricas/fisiología , Relajación Muscular/efectos de los fármacos , Palmitoil Coenzima A/farmacología , Ratas , Ratas Wistar , Receptores Purinérgicos P2Y1/metabolismo , Porcinos
10.
J Neurochem ; 123(4): 525-31, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22906069

RESUMEN

Physiological or α-processing of amyloid-ß precursor protein (APP) prevents the formation of Aß, which is deposited in the aging brain and may contribute to Alzheimer's disease. As such, drugs promoting this pathway could be useful for prevention of the disease. Along this line, we searched through a number of substances and unexpectedly found that a group of high-energy compounds (HECs), namely ATP, phosphocreatine, and acetyl coenzyme A, potently increased APP α-processing in cultured SH-SY5Y cells, whereas their cognate counterparts, i.e., ADP, creatine, or coenzyme A did not show the same effects. Other HECs such as GTP, CTP, phosphoenol pyruvate, and S-adenosylmethionine also promoted APP α-processing with varying potencies and the effects were abolished by energy inhibitors rotenone or NaN(3). The overall efficacy of the HECs in the process ranged from three- to four-fold, which was significantly greater than that exhibited by other physiological stimulators such as glutamate and nicotine. This suggested that the HECs were perhaps the most efficient physiological stimulators for APP α-processing. Moreover, the HECs largely offset the inefficient APP α-processing in aged human fibroblasts or in cells impaired by rotenone or H(2) O(2). Most importantly, some HECs markedly boosted the survival rate of SH-SY5Y cells in the death process induced by energy suppression or oxidative stress. These findings suggest a new, energy-dependent regulatory mechanism for the putative α-secretase and thus will help substantially in its identification. At the same time, the study raises the possibility that the HECs may be useful to energize and strengthen the aging brain cells to slow down the progression of Alzheimer's disease.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Fosfocreatina/farmacología , Nucleótidos de Purina/farmacología , Acetilcoenzima A/farmacología , Adenosina Trifosfato/farmacología , Factores de Edad , Análisis de Varianza , Recuento de Células , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cianatos/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Peróxido de Hidrógeno/farmacología , Neuroblastoma/patología , Rotenona/farmacología , Piel/citología
11.
Biochemistry ; 50(45): 9694-707, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21958066

RESUMEN

While crystallographic structures of the R. etli pyruvate carboxylase (PC) holoenzyme revealed the location and probable positioning of the essential activator, Mg(2+), and nonessential activator, acetyl-CoA, an understanding of how they affect catalysis remains unclear. The current steady-state kinetic investigation indicates that both acetyl-CoA and Mg(2+) assist in coupling the MgATP-dependent carboxylation of biotin in the biotin carboxylase (BC) domain with pyruvate carboxylation in the carboxyl transferase (CT) domain. Initial velocity plots of free Mg(2+) vs pyruvate were nonlinear at low concentrations of Mg(2+) and a nearly complete loss of coupling between the BC and CT domain reactions was observed in the absence of acetyl-CoA. Increasing concentrations of free Mg(2+) also resulted in a decrease in the K(a) for acetyl-CoA. Acetyl phosphate was determined to be a suitable phosphoryl donor for the catalytic phosphorylation of MgADP, while phosphonoacetate inhibited both the phosphorylation of MgADP by carbamoyl phosphate (K(i) = 0.026 mM) and pyruvate carboxylation (K(i) = 2.5 mM). In conjunction with crystal structures of T882A R. etli PC mutant cocrystallized with phosphonoacetate and MgADP, computational docking studies suggest that phosphonoacetate could coordinate to one of two Mg(2+) metal centers in the BC domain active site. Based on the pH profiles, inhibition studies, and initial velocity patterns, possible mechanisms for the activation, regulation, and coordination of catalysis between the two spatially distinct active sites in pyruvate carboxylase from R. etli by acetyl-CoA and Mg(2+) are described.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Piruvato Carboxilasa/antagonistas & inhibidores , Piruvato Carboxilasa/metabolismo , Rhizobium etli/enzimología , Acetilcoenzima A/metabolismo , Acetilcoenzima A/farmacología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Concentración de Iones de Hidrógeno , Cinética , Magnesio/metabolismo , Magnesio/farmacología , Mutagénesis Sitio-Dirigida , Ácido Oxaloacético/metabolismo , Ácido Fosfonoacético/farmacología , Fosforilación , Estructura Terciaria de Proteína , Piruvato Carboxilasa/química , Piruvato Carboxilasa/genética , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhizobium etli/genética
12.
FEBS Lett ; 584(15): 3366-9, 2010 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-20591428

RESUMEN

Human arylamine N-acetyltransferase 1 (NAT1) is a xenobiotic-metabolizing enzyme that biotransforms aromatic amine chemicals. We show here that biologically-relevant concentrations of inorganic (Hg2+) and organic (CH3Hg+) mercury inhibit the biotransformation functions of NAT1. Both compounds react irreversibly with the active-site cysteine of NAT1 (half-maximal inhibitory concentration (IC50)=250 nM and kinact=1.4x10(4) M(-1) s(-1) for Hg2+ and IC50=1.4 microM and kinact=2x10(2) M(-1) s(-1) for CH3Hg+). Exposure of lung epithelial cells led to the inhibition of cellular NAT1 (IC50=3 and 20 microM for Hg2+ and CH3Hg+, respectively). Our data suggest that exposure to mercury may affect the biotransformation of aromatic amines by NAT1.


Asunto(s)
Arilamina N-Acetiltransferasa/antagonistas & inhibidores , Isoenzimas/antagonistas & inhibidores , Mercurio/farmacología , Compuestos de Metilmercurio/farmacología , Xenobióticos/metabolismo , Acetilcoenzima A/farmacología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Glutatión/farmacología , Humanos , Cinética , Pulmón/citología
13.
Cancer Sci ; 101(4): 869-75, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20132223

RESUMEN

Peroxisome proliferators (PPs), non-genotoxic rodent carcinogens, cause the induction of the peroxisomal fatty acid beta-oxidation system, including bifunctional enzyme (BE) and 3-ketoacyl-CoA thiolase (TH), in the liver. GST M1 gene is polymorphic in Sprague-Dawley rats, NC- and KS-type. The KS-type rats showed enhanced susceptibility to ethyl-alpha-chlorophenoxyisobutyrate (clofibrate, CF), one of the PPs. The degree of BE induction was higher in the KS-type and preneoplastic foci developed after 6-8 weeks of treatment, whereas no foci developed in the NC-type. In the preset study, factors involved in different BE inducibility were investigated. There were no differences in hepatic peroxisome proliferator-activated receptor (PPAR) alpha levels between them. Among various coactivators for PPARalpha, only steroid receptor coactivator (SRC)-3 level was higher in the KS-type. To investigate the association between PPARalpha and SRC-3 or other proteins, nuclear extracts from CF-treated livers were applied to a PPARalpha column. In the KS-type, 110, 72, and 42 kDa proteins were bound and these were identified as SRC-3, BE, and TH, respectively. EMSA supported the binding of these proteins to PPARalpha associated to the BE enhancer in CF-treated KS-type, but not in the NC-type. Histone H3 acetylation was increased 11-fold in the KS-type by CF treatment but not in the NC-type. As BE and TH are responsible for acetyl-CoA production and SRC-3 possesses a histone acetyltransferase activity, these results suggest that enhanced BE induction in the KS-type livers is due to acetylation-mediated transcriptional activation and epigenetic mechanisms might be involved in CF-induced rat hepatocarcinogenesis.


Asunto(s)
Acetil-CoA C-Acetiltransferasa/metabolismo , Histonas/metabolismo , Neoplasias Hepáticas Experimentales/metabolismo , Hígado/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Acetilcoenzima A/farmacología , Acetil-CoA C-Acetiltransferasa/genética , Acetilación , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Clofibrato , Inducción Enzimática , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Histonas/genética , Histonas/farmacología , Hígado/efectos de los fármacos , Hígado/enzimología , Neoplasias Hepáticas Experimentales/inducido químicamente , Masculino , Coactivador 3 de Receptor Nuclear/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR alfa/farmacología , Proliferadores de Peroxisomas/metabolismo , Proliferadores de Peroxisomas/farmacología , Polimorfismo Genético , Ratas , Ratas Sprague-Dawley , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
14.
Proc Natl Acad Sci U S A ; 105(23): 7959-63, 2008 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-18523016

RESUMEN

The human T cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T cell leukemia/lymphoma. The multifunctional virally encoded oncoprotein Tax is responsible for malignant transformation and potent activation of HTLV-1 transcription. Tax, in complex with phosphorylated cAMP response element binding protein (pCREB), strongly recruits the cellular coactivators CREB binding protein (CBP)/p300 to the viral promoter concomitant with transcriptional activation. Although the mechanism of activator/coactivator-mediated transcriptional activation is poorly understood, the recruitment of CBP/p300 by regulatory factors appears to function, in part, by promoting changes in chromatin architecture that are permissive to transcriptional activation. Here, we show that CBP/p300 recruitment promotes histone acetylation and eviction of the histone octamer from the chromatin-assembled HTLV-1 promoter template in vitro. Nucleosome disassembly is strictly acetyl-CoA dependent and is not linked to ATP utilization. We find that the histone chaperone, nucleosome assembly protein 1 (NAP1), cooperates with CBP/p300 in eviction of the acetylated histones from the chromatin template. These findings reveal a unique mechanism in which the DNA-bound Tax/pCREB complex recruits CBP/p300, and together with NAP1, the coactivators cooperate to dramatically reduce nucleosome occupancy at the viral promoter in an acetylation-dependent and transcription-independent fashion.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Virus Linfotrópico T Tipo 1 Humano/genética , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Regiones Promotoras Genéticas/genética , Transcripción Genética , Factores de Transcripción p300-CBP/metabolismo , Acetilcoenzima A/farmacología , Acetilación/efectos de los fármacos , Animales , Línea Celular , Proteínas de Drosophila , Drosophila melanogaster/metabolismo , Productos del Gen tax/metabolismo , Humanos , Modelos Genéticos , Chaperonas Moleculares/metabolismo , Proteína 1 de Ensamblaje de Nucleosomas , Fosfoproteínas/metabolismo , Transcripción Genética/efectos de los fármacos
15.
Biochem J ; 398(1): 107-12, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16686602

RESUMEN

Mitochondrial dysfunction during acute metabolic crises is considered an important pathomechanism in inherited disorders of propionate metabolism, i.e. propionic and methylmalonic acidurias. Biochemically, these disorders are characterized by accumulation of propionyl-CoA and metabolites of alternative propionate oxidation. In the present study, we demonstrate uncompetitive inhibition of PDHc (pyruvate dehydrogenase complex) by propionyl-CoA in purified porcine enzyme and in submitochondrial particles from bovine heart being in the same range as the inhibition induced by acetyl-CoA, the physiological product and known inhibitor of PDHc. Evaluation of similar monocarboxylic CoA esters showed a chain-length specificity for PDHc inhibition. In contrast with CoA esters, non-esterified fatty acids did not inhibit PDHc activity. In addition to PDHc inhibition, analysis of respiratory chain and tricarboxylic acid cycle enzymes also revealed an inhibition by propionyl-CoA on respiratory chain complex III and alpha-ketoglutarate dehydrogenase complex. To test whether impairment of mitochondrial energy metabolism is involved in the pathogenesis of propionic aciduria, we performed a thorough bioenergetic analysis in muscle biopsy specimens of two patients. In line with the in vitro results, oxidative phosphorylation was severely compromised in both patients. Furthermore, expression of respiratory chain complexes I-IV and the amount of mitochondrial DNA were strongly decreased, and ultrastructural mitochondrial abnormalities were found, highlighting severe mitochondrial dysfunction. In conclusion, our results favour the hypothesis that toxic metabolites, in particular propionyl-CoA, are involved in the pathogenesis of inherited disorders of propionate metabolism, sharing mechanistic similarities with propionate toxicity in micro-organisms.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Enfermedades Mitocondriales/etiología , Enfermedades Mitocondriales/fisiopatología , Propionatos/metabolismo , Toxinas Biológicas/metabolismo , Acetilcoenzima A/farmacología , Acilcoenzima A/farmacología , Animales , Bovinos , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos/farmacología , Femenino , Fibroblastos/enzimología , Humanos , Recién Nacido , Masculino , Enfermedades Mitocondriales/metabolismo , Fosforilación Oxidativa , Propionatos/toxicidad , Complejo Piruvato Deshidrogenasa/antagonistas & inhibidores , Músculo Cuádriceps/ultraestructura , Piel/enzimología , Porcinos , Toxinas Biológicas/toxicidad
16.
J Biol Chem ; 280(21): 20185-8, 2005 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-15795230

RESUMEN

Pantothenate kinase (PanK) catalyzes the first step in the biosynthesis of the essential and ubiquitous cofactor coenzyme A (CoA) in all organisms. Two well characterized isoforms of the enzyme are known: a prokaryotic PanK that predominates in eubacteria and a eukaryotic isoform that has primarily been characterized from mammalian and plant sources. Curiously, the genomes of certain pathogenic bacteria, including Helicobacter pylori and Pseudomonas aeruginosa, do not contain a PanK similar to either isoform, although these organisms possess all the other biosynthetic machinery required for CoA production. In this study we cloned, overexpressed and characterized an enzyme from Bacillus subtilis and its homologue from H. pylori and show that they catalyze the ATP-dependent phosphorylation of pantothenate. These enzymes do not share sequence homology with any known PanK, and unlike the bacterial and eukaryotic PanK isoforms their activity is not regulated by either CoA or acetyl-CoA. They also do not accept the pantothenic acid antimetabolite N-pentylpantothenamide as a substrate or are inhibited by it. Taken together, these results point to the identification of a third distinct isoform of PanK that accounts for the only known activity of the enzyme in pathogens such as H. pylori and P. aeruginosa.


Asunto(s)
Helicobacter pylori/enzimología , Isoenzimas/genética , Ácido Pantoténico/análogos & derivados , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Acetilcoenzima A/farmacología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/farmacología , Secuencia de Aminoácidos , Bacillus subtilis/enzimología , Clonación Molecular , Coenzima A/biosíntesis , Coenzima A/farmacología , Inhibidores Enzimáticos/farmacología , Expresión Génica , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Datos de Secuencia Molecular , Familia de Multigenes , NAD/metabolismo , Oxidación-Reducción , Ácido Pantoténico/metabolismo , Ácido Pantoténico/farmacología , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Pliegue de Proteína , Alineación de Secuencia
17.
Biochem J ; 388(Pt 3): 895-903, 2005 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15715522

RESUMEN

C75, a synthetic inhibitor of FAS (fatty acid synthase), has both anti-tumour and anti-obesity properties. In this study we provide a detailed kinetic characterization of the mechanism of in vitro inhibition of rat liver FAS. At room temperature, C75 is a competitive irreversible inhibitor of the overall reaction with regard to all three substrates, i.e. acetyl-CoA, malonyl-CoA and NADPH, exhibiting pseudo-first-order kinetics of the complexing type, i.e. a weak non-covalent enzyme-inhibitor complex is formed before irreversible enzyme modification. C75 is a relatively inefficient inactivator of FAS, with a maximal rate of inactivation of 1 min(-1) and an extrapolated K(I) (dissociation constant for the initial complex) of approx. 16 mM. The apparent second-order rate constants calculated from these values are 0.06 mM(-1).min(-1) at room temperature and 0.21 mM(-1).min(-1) at 37 degrees C. We also provide experimental evidence that C75 inactivates the beta-ketoacyl synthase (3-oxoacyl synthase) partial activity of FAS. Unexpectedly, C75 also inactivates the enoyl reductase and thioesterase partial activities of FAS with about the same rates as for inactivation of the beta-ketoacyl synthase. In contrast with the overall reaction, the beta-ketoacyl synthase activity and the enoyl reductase activity, substrates do not protect the thioesterase activity of rat liver FAS from inactivation by C75. These results differentiate inactivation by C75 from that by cerulenin, which only inactivates the beta-ketoacyl synthase activity of FAS, by forming an adduct with an active-site cysteine. Interference by dithiothreitol and protection by the substrates, acetyl-CoA, malonyl-CoA and NADPH, further distinguish the mechanism of C75-mediated inactivation from that of cerulenin. The most likely explanation for the multiple effects observed with C75 on rat liver FAS and its partial reactions is that there are multiple sites of interaction between C75 and FAS.


Asunto(s)
4-Butirolactona/análogos & derivados , Ácido Graso Sintasas/antagonistas & inhibidores , Ácido Graso Sintasas/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Reductasa , 4-Butirolactona/farmacología , Acetilcoenzima A/metabolismo , Acetilcoenzima A/farmacología , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/metabolismo , Animales , Unión Competitiva , Ditiotreitol/farmacología , Activación Enzimática/efectos de los fármacos , Cinética , Hígado/enzimología , Malonil Coenzima A/metabolismo , NADP/metabolismo , Ratas , Especificidad por Sustrato , Temperatura
18.
Biochemistry ; 43(25): 8234-46, 2004 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-15209520

RESUMEN

Arylamine N-acetyltransferases (NATs) catalyze an acetyl group transfer from acetyl coenzyme A (AcCoA) to arylamines, hydrazines, and their N-hydroxylated arylamine metabolites. The recently determined three-dimensional structures of prokaryotic NATs have revealed a cysteine protease-like Cys-His-Asp catalytic triad, which resides in a deep and hydrophobic pocket. This catalytic triad is strictly conserved across all known NATs, including hamster NAT2 (Cys-68, His-107, and Asp-122). Treatment of NAT2 with either iodoacetamide (IAM) or bromoacetamide (BAM) at neutral pH rapidly inactivated the enzyme with second-order rate constants of 802.7 +/- 4.0 and 426.9 +/- 21.0 M(-1) s(-1), respectively. MALDI-TOF and ESI mass spectral analysis established that Cys-68 is the only site of alkylation by IAM. Unlike the case for cysteine proteases, no significant inactivation was observed with either iodoacetic acid (IAA) or bromoacetic acid (BAA). Pre-steady state and steady state kinetic analysis with p-nitrophenyl acetate (PNPA) and NAT2 revealed a single-exponential curve for the acetylation step with a second-order rate constant of (1.4 +/- 0.05) x 10(5) M(-1) s(-1), followed by a slow linear rate of (7.85 +/- 0.65) x 10(-3) s(-1) for the deacetylation step. Studies of the pH dependence of the rate of inactivation with IAM and the rate of acetylation with PNPA revealed similar pK(a)(1) values of 5.23 +/- 0.09 and 5.16 +/- 0.04, respectively, and pK(a)(2) values of 6.95 +/- 0.27 and 6.79 +/- 0.25, respectively. Both rates reached their maximum values at pH 6.4 and decreased by only 30% at pH 9.0. Kinetic studies in the presence of D(2)O revealed a large inverse solvent isotope effect on both inactivation and acetylation of NAT2 [k(H)(inact)/k(D)(inact) = 0.65 +/- 0.02 and (k(2)/K(m)(acetyl))(H)/(k(2)/K(m)(acetyl))(D) = 0.60 +/- 0.03], which were found to be identical to the fractionation factors (Phi) derived from proton inventory studies of the rate of acetylation at pL 6.4 and 8.0. Substitution of the catalytic triad Asp-122 with either alanine or asparagine resulted in the complete loss of protein structural integrity and catalytic activity. From these results, it can be concluded that the catalytic mechanism of NAT2 depends on the formation of a thiolate-imidazolium ion pair (Cys-S(-)-His-ImH(+)). However, in contrast to the case with cysteine proteases, a pH-dependent protein conformational change is likely responsible for the second pK(a), and not deprotonation of the thiolate-imidazolium ion. In addition, substitutions of the triad aspartate are not tolerated. The enzyme appears, therefore, to be engineered to rapidly form a stable acetylated species poised to react with an arylamine substrate.


Asunto(s)
Arilamina N-Acetiltransferasa/antagonistas & inhibidores , Arilamina N-Acetiltransferasa/genética , Acetamidas/farmacología , Acetilcoenzima A/farmacología , Acetilación , Alquilantes/farmacología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Arilamina N-Acetiltransferasa/química , Arilamina N-Acetiltransferasa/metabolismo , Sitios de Unión , Cricetinae , Cisteína/genética , Cisteína/metabolismo , Deuterio , Inhibidores Enzimáticos/farmacología , Concentración de Iones de Hidrógeno , Yodoacetamida/farmacología , Isoenzimas , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Nitrofenoles/metabolismo , Papaína/antagonistas & inhibidores , Papaína/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Arch Biochem Biophys ; 401(1): 63-72, 2002 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-12054488

RESUMEN

The specific activity of chicken liver pyruvate carboxylase has been shown to decrease with decreasing enzyme concentration, even at 100 microM, which is close to the estimated physiological concentration. The kinetics of the loss of enzyme specific activity following dilution were biphasic. Incubation of dilution-inactivated enzyme with ATP, acetyl CoA, Mg2+ + ATP or, to a lesser degree, with Mg2+ alone resulted in a high degree of reactivation, while no reactivation occurred in the presence of pyruvate. The association state of the enzyme before, during, and after dilution inactivation has been assessed by gel filtration chromatography. These studies indicate that on dilution, there is dissociation of the catalytically active tetrameric enzyme species into inactive dimers. Reactivation of the enzyme resulted in reassociation of enzymic dimers into tetramers. The enzyme was shown to form high molecular weight aggregates at high enzyme concentrations.


Asunto(s)
Piruvato Carboxilasa/química , Piruvato Carboxilasa/metabolismo , Acetilcoenzima A/farmacología , Adenosina Trifosfato/farmacología , Animales , Pollos , Reactivadores Enzimáticos/farmacología , Técnicas In Vitro , Cinética , Magnesio/farmacología , Concentración Osmolar , Estructura Cuaternaria de Proteína , Piruvato Carboxilasa/antagonistas & inhibidores
20.
Biochim Biophys Acta ; 1359(3): 241-9, 1997 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-9434130

RESUMEN

The human immature K562 erythroid cell line was studied for its capacity to produce and to metabolize the phospholipid molecule platelet-activating factor (PAF). K562 cells produced PAF under calcium ionophore stimulation. Lyso PAF and acetyl-CoA (the acetate donor molecule for the acetylation of lyso PAF into PAF) had no effect on the amounts of PAF produced by ionophore-stimulated cells. The metabolism of PAF and lyso PAF by K562 cells was compared to that of freshly-isolated human bone marrow erythroblasts and blood erythrocytes. K562 cells rapidly metabolized [3H]PAF and [3H]lyso PAF with 1-alkyl analogue of phosphatidylcholine as the major metabolic product. In contrast, blood erythrocytes did not. PAF acetylhydrolase activity levels in K562 cells and bone marrow erythroblasts were similar and higher than in blood erythrocytes. PAF (1-100 nM) stimulated [3H]thymidine incorporation in K562 cells grown in low serum concentration, a non-metabolizable PAF agonist being more potent than PAF to stimulate thymidine incorporation. PAF receptor mRNA was detected in K562 cells by polymerase chain reaction on reverse transcripts. The present study demonstrates that K562 cells produce and metabolize PAF and underlines the putative role of erythroid precursors in the modulation of bone marrow PAF concentrations. The effect of PAF on the growth of K562 cells might be mediated through PAF receptors suggesting a potential role of PAF on the proliferation and functions of human erythroid marrow precursors.


Asunto(s)
Eritrocitos/metabolismo , Factor de Activación Plaquetaria/metabolismo , Factor de Activación Plaquetaria/farmacología , Receptores de Superficie Celular , Receptores Acoplados a Proteínas G , 1-Alquil-2-acetilglicerofosfocolina Esterasa , Acetilcoenzima A/farmacología , Calcimicina/farmacología , División Celular , Células Cultivadas , Eritroblastos , Eritrocitos/citología , Eritrocitos/enzimología , Humanos , Ionóforos/farmacología , Leucemia Eritroblástica Aguda , Fosfolipasas A/metabolismo , Factor de Activación Plaquetaria/análogos & derivados , Factor de Activación Plaquetaria/biosíntesis , Glicoproteínas de Membrana Plaquetaria/genética , ARN Mensajero/análisis , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA