Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Sci Rep ; 14(1): 21499, 2024 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277706

RESUMEN

Cadmium is a toxic heavy metal found in acid mine drainage. It hinders plant and animal growth and accumulates in human organs. In this study, through shake flask experiments, an iron-rich, sulphate-rich environment was simulated, and Acidithiobacillus ferrooxidans was used to mediate the formation of secondary high-iron minerals to explore the effect of calcium ions on the removal of Cd2+ from that environment. Four treatment systems were used: "Blank", "Ca2+-30 mg/L", "Fe/K = 3,Ca2+-30 mg/L", and "Fe/K = 3". The results showed that Cd2+ with an initial concentration of 20 mg/L was effectively removed in each treatment system. The removal efficiencies of Cd2+ in each treatment were 23.46%, 18.42%, 52.88%, and 45.76% respectively. The quantity and type of minerals determined the removal efficiency of Cd2+. The Fe/K = 3 treatment system can significantly increase the amount of mineral formation and improve the removal efficiency of Cd2+. In the Ca2+-30 mg/L, Fe/K = 3 treatment system, the biological oxidation ability was the strongest, and the removal effect of Cd2+ was the best under the combined action of K+ and Ca2+. Co-precipitation was the main way to remove Cd2+ during the formation of biogenic secondary iron minerals, and the removal amount was 5.64 to 14.83 times that of adsorption. Biogenetic secondary iron minerals showed high values in repairing heavy metal pollution. This study provides a theoretical basis for treating heavy metals in acid mine drainage.


Asunto(s)
Acidithiobacillus , Cadmio , Calcio , Hierro , Minerales , Cadmio/metabolismo , Calcio/metabolismo , Calcio/química , Hierro/metabolismo , Acidithiobacillus/metabolismo , Minerales/metabolismo , Minerales/química , Biodegradación Ambiental , Contaminantes Químicos del Agua/metabolismo , Oxidación-Reducción
2.
Sci Total Environ ; 927: 171919, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554963

RESUMEN

The catalytic role of Acidithiobacillus ferrooxidans (A. ferrooxidans) in iron biooxidation is pivotal in the formation of Acid Mine Drainage (AMD), which poses a significant threat to the environment. To control AMD generation, treatments with low-molecular-weight organic acids are being studied, yet their exact mechanisms are unclear. In this study, AMD materials, organic acids, and molecular methods were employed to gain a deeper understanding of the inhibitory effects of low-molecular-weight organic acids on the biooxidation of iron by A. ferrooxidans. The inhibition experiments of A. ferrooxidans on the oxidation of Fe2+ showed that to attain a 90 % inhibition efficacy within 72 h, the minimum concentrations required for formic acid, acetic acid, propionic acid, and lactic acid are 0.5, 6, 4, and 10 mmol/L, respectively. Bacterial imaging illustrated the detrimental effects of these organic acids on the cell envelope structure. This includes severe damage to the outer membrane, particularly from formic and acetic acids, which also caused cell wall damage. Coupled with alterations in the types and quantities of protein, carbohydrate, and nucleic acid content in extracellular polymeric substances (EPS), indicate the mechanisms underlying these inhibitory treatments. Transcriptomic analysis revealed interference of these organic acids with crucial metabolic pathways, particularly those related to energy metabolism. These findings establish a comprehensive theoretical basis for understanding the inhibition of A. ferrooxidans' biooxidation by low-molecular-weight organic acids, offering a novel opportunity to effectively mitigate the generation of AMD at its source.


Asunto(s)
Acidithiobacillus , Hierro , Oxidación-Reducción , Propionatos , Acidithiobacillus/metabolismo , Acidithiobacillus/efectos de los fármacos , Hierro/metabolismo , Minería , Formiatos/metabolismo , Ácido Acético/metabolismo
3.
Res Microbiol ; 175(1-2): 104110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37544391

RESUMEN

Bioleaching processes and acid mine drainage (AMD) generation are mainly driven by aerobic microbial iron(II) and inorganic sulfur/compound oxidation. Dissimilatory iron(III) reduction coupled to sulfur/compound oxidation (DIRSO) by acidophilic microorganisms has been described for anaerobic cultures, but iron reduction was observed under aerobic conditions as well. Aim of this study was to explore reaction rates and mechanisms of this process. Cell-specific iron(III) reduction rates for different Acidithiobacillus (At.) strains during batch culture growth or stationary phase with iron(III) (∼40 mM) as electron acceptor and elemental sulfur or tetrathionate as electron donor (1% or 5 mM, respectively) were determined. The rates were highest under anaerobic conditions for the At. ferrooxidans type strain with 6.8 × 106 and 1.1 × 107 reduced iron(III) ions per second per cell for growth on elemental sulfur and tetrathionate, respectively. The iron(III) reduction rates were somehow lower for the anaerobically sulfur grown archaeon Ferroplasma acidiphilum, and lowest for the sulfur grown At. caldus type strain under aerobic conditions (1.7 × 106 and 7.3 × 104 reduced iron(III) ions per second per cell, respectively). The rates for five strains of At. thiooxidans (aerobe) were in between those for At. ferrooxidans (anaerobe) and At. caldus (aerobe). There was no pronounced pH dependence of iron(III) reduction rates in the range of pH 1.0-1.9 for the type strains of all species but rates increased with increasing pH for four other At. thiooxidans strains. Thiosulfate as sulfur intermediate was found for At. ferrooxidans during anaerobic growths on tetrathionate and iron(III) but not during anaerobic growths on elemental sulfur and iron(III), and a small concentration was measured during aerobic growths on tetrathionate without iron(III). For the At. thiooxidans type strain thiosulfate was found with tetrathionate grown cells under aerobic conditions in presence and absence of iron(III), but not with sulfur grown cells. Evidence for hydrogen sulfide production at low pH was found for the At. ferrooxidans as well as the At. thiooxidans type strains during microaerophilic growth on elemental sulfur and for At. ferrooxidans during anaerobic growths on tetrathionate and iron(III). The occurrence of sulfur compound intermediates supports the hypothesis that chemical reduction of iron(III) ions takes place by sulfur compounds released by the microbial cells.


Asunto(s)
Acidithiobacillus , Hierro , Hierro/metabolismo , Tiosulfatos/metabolismo , Oxidación-Reducción , Acidithiobacillus/metabolismo , Azufre/metabolismo
4.
Bioresour Technol ; 394: 130193, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38081468

RESUMEN

The iron metabolism partners Leptospirillum ferriphilum and Acidiphilium sp. were screened from industrial bioheap site. An integrated multi-stage strategy was proposed to improve chalcolite column bioleaching coupling with synergistical utilization of cellulosic waste such as acid hydrolysate of aquatic plants. L. ferriphilum was used to accelerate the initial iron metabolism, and Acidithiobacillus caldus maintained a lower pH in the middle stage, while Acidiphilium sp. greatly inhibited jarosite passivation in the later stage. Meanwhile, L. ferriphilum (38.3 %) and Acidiphilium sp. (37.0 %) dominated the middle stage, while the abundance of Acidiphilium sp. reached 63.5 % in the later stage. The ferrous, sulfate ion and biomass were improved and the transcriptional levels of some biofilm and morphology related genes were significantly up-regulated. The final Cu2+ concentration reached 325.5 mg·L-1, improved by 43.8 %. Moreover, Canonical Correlation Analysis (CCA) analysis between bioleaching performance, iron/sulfur metabolism and community verified the important role of iron metabolism partners.


Asunto(s)
Acidiphilium , Acidithiobacillus , Bacterias , Acidiphilium/metabolismo , Cobre/metabolismo , Oxidación-Reducción , Hierro/metabolismo , Acidithiobacillus/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-36981642

RESUMEN

The catalytic oxidation of Fe2+ by Acidithiobacillus ferrooxidan (A. ferrooxidans) and the synthesis of iron sulfate-based secondary minerals is considered to be of great significance to the treatment of acid mine drainage (AMD). Along these lines, in this work, the shaker experiment was carried out to study the underlying mechanism of the inoculation amount of fulvic acid (FA) and A. ferrooxidans on the synthesis process of secondary minerals. From the acquired results, it was demonstrated that the oxidation rate of Fe2+ increased with the increase in the concentration of fulvic acid in the range of 0.1-0.2 g/L. On top of that, the concentration of fulvic acid in the range of 0.3-0.5 g/L inhibited the activity of A. ferrooxidans. However, A. ferrooxidans retained its activity, and the complete oxidation time of Fe2+ was delayed. When the concentration of fulvic acid was 0.3 g/L, the TFe (total iron) precipitation efficiency was 30.2%. Interestingly, when 0.2 g/L fulvic acid was added to different inoculum systems, the incorporation of a higher inoculum amount of A. ferrooxidans led to an increased oxidation rate. On the contrary, the lower inoculum amount yielded a more obvious effect of the fulvic acid. From the mineralogical characteristics, it was also revealed that a fulvic acid concentration of 0.2 g/L and different inoculation amounts of A. ferrooxidans did not change the mineral facies, whereas pure schwertmannite was obtained.


Asunto(s)
Acidithiobacillus , Hierro , Hierro/metabolismo , Minerales/metabolismo , Acidithiobacillus/metabolismo , Oxidación-Reducción
6.
Appl Environ Microbiol ; 89(1): e0126622, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36602357

RESUMEN

Acidithiobacillus caldus is a common bioleaching bacterium that is inevitably exposed to extreme copper stress in leachates. The ArsR/SmtB family of metalloregulatory repressors regulates homeostasis and resistance in bacteria by specifically responding to metals. Here, we characterized A. caldus Cu(I)-sensitive repressor (AcsR) and gained molecular insights into this new member of the ArsR/SmtB family. Transcriptional analysis indicated that the promoter (PIII) of acsR was highly active in Escherichia coli but inhibited upon AcsR binding to the PIII-acsR region. Size exclusion chromatography and circular dichroism spectra revealed that CuI-AcsR shared an identical assembly state with apo-AcsR, as a dimer with fewer α helices, more extended strands, and more ß turns. Mutation of the cysteine site in AcsR did not affect its assembly state. Copper(I) titrations revealed that apo-AcsR bound two Cu(I) molecules per monomer in vitro with an average dissociation constant (KD) for bicinchoninic acid competition of 2.55 × 10-9 M. Site-directed mutation of putative Cu(I)-binding ligands in AcsR showed that replacing Cys64 with Ala reduces copper binding ability from two Cu(I) molecules per monomer to one, with an average KD of 6.05 × 10-9 M. Electrophoretic mobility shift assays revealed that apo-AcsR has high affinity for the 12-2-12 imperfect inverted repeats P2245 and P2270 in the acsR gene cluster and that Cu-loaded AcsR had lower affinity for DNA fragments than apo-AcsR. We developed a hypothetical working model of AcsR to better understand Cu resistance mechanisms in A. caldus. IMPORTANCE Copper (Cu) resistance among various microorganisms is attracting interest. The chemolithoautotrophic bacterium A. caldus, which can tolerate extreme copper stress (≥10 g/L Cu ions), is typically used to bioleach chalcopyrite (CuFeS2). Understanding of Cu resistance in A. caldus is limited due to scant investigation and the absence of efficient gene manipulation tools. Here, we characterized a new member of the ArsR/SmtB family of prokaryotic metalloregulatory transcriptional proteins that repress operons linked to stress-inducing concentrations of heavy metal ions. This protein can bind two Cu(I) molecules per monomer and negatively regulate its gene cluster. Members of the ArsR/SmtB family have not been investigated in A. caldus until now. The discovery of this novel protein enriches understanding of Cu homeostasis in A. caldus.


Asunto(s)
Acidithiobacillus , Proteínas Bacterianas , Extremófilos , Transactivadores , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cobre/metabolismo , Extremófilos/genética , Extremófilos/metabolismo , Iones/metabolismo , Metales/metabolismo , Unión Proteica , Transactivadores/genética , Transactivadores/metabolismo
7.
Appl Environ Microbiol ; 87(20): e0151821, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34347521

RESUMEN

Acidithiobacillus ferrooxidans is a well-studied iron- and sulfur-oxidizing acidophilic chemolithoautotroph that is exploited for its ability to participate in the bioleaching of metal sulfides. Here, we overexpressed the endogenous glutamate-cysteine ligase and glutathione synthetase genes in separate strains and found that glutathione synthetase overexpression increased intracellular glutathione levels. We explored the impact of pH on the halotolerance of iron oxidation in wild-type and engineered cultures. The increase in glutathione allowed the modified cells to grow under salt concentrations and pH conditions that are fully inhibitory to wild-type cells. Furthermore, we found that improved iron oxidation ability in the presence of chloride also resulted in higher levels of intracellular reactive oxygen species (ROS) in the strain. These results indicate that glutathione overexpression can be used to increase halotolerance in A. ferrooxidans and would likely be a useful strategy on other acidophilic bacteria. IMPORTANCE The use of acidophilic bacteria in the hydrometallurgical processing of sulfide ores can enable many benefits, including the potential reduction of environmental impacts. The cells involved in bioleaching tend to have limited halotolerance, and increased halotolerance could enable several benefits, including a reduction in the need for the use of freshwater resources. We show that the genetic modification of A. ferrooxidans for the overproduction of glutathione is a promising strategy to enable cells to resist the oxidative stress that can occur during growth in the presence of salt.


Asunto(s)
Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Glutatión Sintasa/genética , Hierro/metabolismo , Tolerancia a la Sal/genética , Acidithiobacillus/efectos de los fármacos , Escherichia coli/genética , Glutatión/biosíntesis , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Cloruro de Sodio/farmacología
8.
Electron. j. biotechnol ; Electron. j. biotechnol;52: 45-51, July. 2021. ilus, tab, graf
Artículo en Inglés | LILACS | ID: biblio-1283499

RESUMEN

BACKGROUND: Acidithiobacillus ferrooxidans is a facultative anaerobe that depends on ferrous ion oxidation as well as reduced sulfur oxidation to obtain energy and is widely applied in metallurgy, environmental protection, and soil remediation. With the accumulation of experimental data, metabolic mechanisms, kinetic models, and several databases have been established. However, scattered data are not conducive to understanding A. ferrooxidans that necessitates updated information informed by systems biology. RESULTS: Here, we constructed a knowledgebase of iron metabolism of A. ferrooxidans (KIMAf) system by integrating public databases and reviewing the literature, including the database of bioleaching substrates (DBS), the database of bioleaching metallic ion-related proteins (MIRP), the A. ferrooxidans bioinformation database (Af-info), and the database for dynamics model of bioleaching (DDMB). The DBS and MIRP incorporate common bioleaching substrates and metal ion-related proteins. Af-info and DDMB integrate nucleotide, gene, protein, and kinetic model information. Statistical analysis was performed to elucidate the distribution of isolated A. ferrooxidans strains, evolutionary and metabolic advances, and the development of bioleaching models. CONCLUSIONS: This comprehensive system provides researchers with a platform of available iron metabolism-related resources of A. ferrooxidans and facilitates its application.


Asunto(s)
Acidithiobacillus/metabolismo , Hierro/metabolismo , Cinética , Bases del Conocimiento
9.
Res Microbiol ; 172(3): 103833, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33901608

RESUMEN

The oxidative stress response represents a sum of antioxidative mechanisms that are essential for determining the adaptation and abundance of microorganisms in the environment. Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans are chemolithotrophic bacteria that obtain their energy from the oxidation of ferrous ion. Both microorganisms are important for bioleaching of sulfidic ores and both are tolerant to high levels of heavy metals and other factors that can induce oxidative stress. In this work, we compared the tolerance and response of L. ferriphilum and At. ferrooxidans to Fe3+, H2O2, K2CrO4, and UV-C radiation. We evaluated growth, generation of reactive oxygen species (ROS), oxidative damage to lipid membranes and DNA, and the activity of antioxidative proteins in cells exposed to these stressors. L. ferriphilum had higher cell density, lower ROS content and less lipid and DNA damage than At. ferrooxidans. Consistent with this, the activity levels of thioredoxin and superoxide dismutase in L. ferriphilum were upregulated and higher than in At. ferrooxidans. This indicated that L. ferriphilum has a higher capacity to respond to oxidative stress and to manage redox homeostasis. This capacity could largely contribute to the high abundance of this species in natural and anthropogenic sites.


Asunto(s)
Acidithiobacillus/efectos de la radiación , Bacterias/efectos de la radiación , Hierro/metabolismo , Estrés Oxidativo , Acidithiobacillus/efectos de los fármacos , Acidithiobacillus/crecimiento & desarrollo , Acidithiobacillus/metabolismo , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Cromatos/farmacología , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Hierro/farmacología , Oxidación-Reducción , Compuestos de Potasio/farmacología
10.
PLoS One ; 16(3): e0243444, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33784303

RESUMEN

A novel isolated strain Acidithiobacillus ferrooxidans BMSNITK17 has been investigated for its bioleaching potential from lateritic soil and the results are presented. System conditions like pH, feed mineral particle size, pulp density, temperature, rotor speed influences bioleaching potential of Acidithiobcillus ferrooxidans BMSNITK17 in leaching out iron from laterite soil. Effect of sulfate addition on bioleaching efficiency is studied. The bioleached laterite iron (BLFe's) on evaluation for its catalytic role in Fenton's oxidation for the degradation of ametryn and dicamba exhibits 94.24% of ametryn degradation and 92.45% of dicamba degradation efficiency. Fenton's oxidation performed well with the acidic pH 3. The study confirms the role of Acidithiobacillus ferrooxidans in leaching iron from lateritic ore and the usage of bioleached lateritic iron as catalyst in the Fenton's Oxidation.


Asunto(s)
Acidithiobacillus/metabolismo , Herbicidas/química , Peróxido de Hidrógeno/química , Hierro/química , Suelo/química , Acidithiobacillus/química , Biodegradación Ambiental , Catálisis , Herbicidas/metabolismo , Concentración de Iones de Hidrógeno , Minerales/química , Oxidación-Reducción , Tamaño de la Partícula , Sulfatos/química , Temperatura
11.
Arch Microbiol ; 203(5): 2615-2623, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33704545

RESUMEN

Acidithiobacillus ferrooxidans (At. ferrooxidans) is a bacterium that has the ability to metabolize iron. It converts Fe2+ into Fe3+ during its metabolic cycle. Hence, the At. ferrooxidans spent medium is rich in Fe3+. The presence of Fe3+ contributes to a peroxidase-like activity. Therefore, in this study, an attempt has been made to explore the peroxidase-like activity of the At. ferrooxidans spent medium. It has been observed that the At. ferrooxidans spent medium oxidized 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). The effect of various process parameters on the peroxidase-like activity has been studied. Optimum peroxidase-like activity is achieved using 5 µl of the spent medium, 0.3 mM TMB concentration, 4 mM H2O2 concentration, 4.2 pH, and 40 °C temperature. The peroxidase-like activity of the At. ferrooxidans spent medium has been used to develop a colorimetric assay for detection of glutathione (GSH). GSH inhibits the peroxidase-like activity of the At. ferrooxidans spent medium in a concentration range of 0-1 mM. The limit of detection (LOD) of GSH, obtained using the calibration plot is 0.69 mM. The developed assay is selective toward GSH, as the presence of amino acids, metals, and sugars have shown a negligible effect on the GSH sensing ability.


Asunto(s)
Acidithiobacillus/metabolismo , Medios de Cultivo/química , Glutatión/análisis , Peroxidasas/metabolismo , Bencidinas/metabolismo , Colorimetría , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Metales/metabolismo , Oxidación-Reducción
12.
Biochem Biophys Res Commun ; 533(4): 1142-1147, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33046243

RESUMEN

Acidithiobacillus ferrooxidans ATCC23270 is a gram-negative and autotrophic bacillus acquiring energy via the oxidation of iron and sulfur. The pet II operon is involved in the sulfur metabolism of A. ferrooxidans. However, the mechanisms that control the expression of the pet II operon are poorly understood. We previously described that the AFE2726 protein is associated with the expression of the pet II operon. Here, we attempted to analyze the involvement of AFE2726 in the regulation of pet II operon expression. First, pEGF recombinant vectors driven by the promotor of the pet II operon, denoted pEGF-pet II, were constructed. Then, DH5α E. coli cultures containing the vector mentioned above were cultivated in Na2S2O3, as this medium substantially enhances the expression of green fluorescent proteins. To examine the regulatory effect of AFE2726 on the pet II operon, the C62/V and C72/V mutants for AFE2726 were constructed in pEGF-pet II vectors using the site-directed deletion method. Compared to pEFG-pet II and pEFG-pet II-Δ-C62/V, pEFG-pet II-Δ-C72/V reduced the expression of green fluorescent proteins dramatically when transformed into DH5α E.coli in Na2S2O3 medium. This suggested that the 72nd cysteine was a crucial residue of the AFE2726 protein, affecting the response of the pet II operon to sodium thiosulfate. Furthermore, the binding site of AFE2726 on the promotor of the pet II operon was identified using the electrophoretic mobility shift assay (EMSA), and it was found to be a 34bp inverted repeat sequence (named IR4), which ranged from -65 to -32. In summary, our results indicated that the AFE2726 protein regulates the pet II operon by binding to the IR4 sequence in its promotor region, whose function is likely affected by Na2S2O3 binding to its Cys72 residue counterpart.


Asunto(s)
Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Vectores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Operón , Tiosulfatos/farmacología
13.
Biotechnol Bioeng ; 117(11): 3475-3485, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32687219

RESUMEN

Acidithiobacillus ferrooxidans cells can oxidize iron and sulfur and are key members of the microbial biomining communities that are exploited in the large-scale bioleaching of metal sulfide ores. Some minerals are recalcitrant to bioleaching due to the presence of other inhibitory materials in the ore bodies. Additives are intentionally included in processed metals to reduce environmental impacts and microbially influenced corrosion. We have previously reported a new aerobic corrosion mechanism where A. ferrooxidans cells combined with pyrite and chloride can oxidize low-grade stainless steel (SS304) with a thiosulfate-mediated mechanism. Here we explore process conditions and genetic engineering of the cells that enable corrosion of a higher grade steel (SS316). The addition of elemental sulfur and an increase in the cell loading resulted in a 74% increase in the corrosion of SS316 as compared to the initial sulfur- and cell-free control experiments containing only pyrite. The overexpression of the endogenous rus gene, which is involved in the cellular iron oxidation pathway, led to a further 85% increase in the corrosion of the steel in addition to the improvements made by changes to the process conditions. Thus, the modification of the culturing conditions and the use of rus-overexpressing cells led to a more than threefold increase in the corrosion of SS316 stainless steel, such that 15% of the metal coupons was dissolved in just 2 weeks. This study demonstrates how the engineering of cells and the optimization of their cultivation conditions can be used to discover conditions that lead to the corrosion of a complex metal target.


Asunto(s)
Acidithiobacillus , Azurina , Acero Inoxidable , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Azurina/genética , Azurina/metabolismo , Corrosión , Hierro/metabolismo , Oxidación-Reducción , Sulfuros/metabolismo
14.
J Ind Microbiol Biotechnol ; 47(1): 21-33, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31758413

RESUMEN

Bioleaching, an alternative environmental smelting technology, typically uses high concentrations of heavy metal ions, especially in the subsequent phase, due to metal ion accumulation from the mineral. In this study, we analyzed the overall response of the bioleaching microorganism Acidithiobacillus caldus to copper stress through physiological and transcriptomic analyses. Scanning electron microscopy results showed higher extracellular polymeric substances secretion and cell aggregation under copper stress. Intracellular levels of glutamic acid, glycine and cysteine increased, favoring the synthesis of glutathione for maintenance of the oxidation-reduction state. GSH, during copper stress conditions, the activity of GSH-PX and CAT increased, resulting in reduced oxidative damage while maintaining stable intracellular pH. Higher unsaturated and cyclopropane fatty acid levels resulted in increased membrane fluidity and compactness and decreased ATP levels to support the energy requirements for stress resistance. Initially, H+-ATPase activity increased to provide energy for proton output and decreased later at higher copper ion stress. From transcriptome analysis, 140 genes were differentially expressed under low copper stress (1 g/L), while 250 genes exhibited altered transcriptional levels at higher copper stress (3 g/L). These differentially expressed genes were involved primarily in metabolic pathways such as energy metabolism, two-component systems, amino acid metabolism, and signal transduction. The Sox family cluster gene cluster involved in the conversion of thiosulfate to sulfate was upregulated in the sulfur metabolism pathway. In the oxidative phosphorylation pathway, genes participating in the synthesis of NADH oxidoreductase and cytochrome c oxidase, nuoL, cyoABD (cyoA, cyoB and cyoD) and cydAB (cydA and cydB), were downregulated. The TCS element ompR, closely associated with the osmotic pressure, exhibited active response, while Cu2+ efflux system gene cusRS was upregulated. In the amino acid metabolism, the glnA involved in nitrogen fixation was upregulated and promoted the synthesis of glutamine synthetase for reducing excessive oxidative stress. This study provides new insights into the mechanism underlying A. caldus response to heavy-metal ion stress under harsh bioleaching conditions.


Asunto(s)
Acidithiobacillus/metabolismo , Cobre/metabolismo , Acidithiobacillus/efectos de los fármacos , Cobre/farmacología , Cisteína/metabolismo , Perfilación de la Expresión Génica , Redes y Vías Metabólicas , Oxidación-Reducción , Sulfatos/metabolismo
15.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31444204

RESUMEN

Microbially influenced corrosion (MIC) results in significant damage to metallic materials in many industries. Anaerobic sulfate-reducing bacteria (SRB) have been well studied for their involvement in these processes. Highly corrosive environments are also found in pulp and paper processing, where chloride and thiosulfate lead to the corrosion of stainless steels. Acidithiobacillus ferrooxidans is a critically important chemolithotrophic acidophile exploited in metal biomining operations, and there is interest in using A. ferrooxidans cells for emerging processes such as electronic waste recycling. We explored conditions under which A. ferrooxidans could enable the corrosion of stainless steel. Acidic medium with iron, chloride, low sulfate, and pyrite supplementation created an environment where unstable thiosulfate was continuously generated. When combined with the chloride, acid, and iron, the thiosulfate enabled substantial corrosion of stainless steel (SS304) coupons (mass loss, 5.4 ± 1.1 mg/cm2 over 13 days), which is an order of magnitude higher than what has been reported for SRB. There results were verified in an abiotic flow reactor, and the importance of mixing was also demonstrated. Overall, these results indicate that A. ferrooxidans and related pyrite-oxidizing bacteria could produce aggressive MIC conditions in certain environmental milieus.IMPORTANCE MIC of industrial equipment, gas pipelines, and military material leads to billions of dollars in damage annually. Thus, there is a clear need to better understand MIC processes and chemistries as efforts are made to ameliorate these effects. Additionally, A. ferrooxidans is a valuable acidophile with high metal tolerance which can continuously generate ferric iron, making it critical to copper and other biomining operations as well as a potential biocatalyst for electronic waste recycling. New MIC mechanisms may expand the utility of these cells in future metal resource recovery operations.


Asunto(s)
Acidithiobacillus/metabolismo , Hierro/química , Acero Inoxidable/química , Sulfatos/química , Tiosulfatos/química , Aleaciones , Crecimiento Quimioautotrófico , Cobre , Corrosión , Electrones , Microbiología Industrial , Minería , Oxidantes , Oxidación-Reducción , Sulfuros , Propiedades de Superficie
16.
J Biosci Bioeng ; 128(3): 344-354, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31014562

RESUMEN

Benefiting from lower operational costs and energy requirements than do hydrometallurgical and pyrometallurgical processes in metal recovery, the bioleaching of LiCoO2 through the use of sulfur-oxidizing and iron-oxidizing bacteria has drawn increasing attention. However, the bioleaching mechanism of LiCoO2 has not been clearly elaborated. In the present study, the effects of the energy source of bacteria, such as Fe2+, pyrite and S0, and the products of bacterial oxidation, such as Fe3+ and sulfuric acid, on the chemical leaching of LiCoO2 were studied. The results indicated that lithium was dissolved by acid, and cobalt was released by the reduction of Fe2+ and acid dissolution. The recovery of Li+ and Co2+ could be significantly improved by pH adjustment. Finally, optimal recoveries of Li+ and Co2+ were observed in the pyrite group, reaching 91.4% and 94.2%, respectively. By using pyrite as the energy source, the role of bacteria in bioleaching of LiCoO2 was investigated. The results showed that bacteria could produce sulfuric acid by oxidizing pyrite to promote the mobilization of Li+ and Co2+. The recovery of lithium and cobalt could be increased to 100.0% and 99.3% by bacteria. Moreover, extracellular polymeric substances secreted by bacteria were found to be a factor for the improvement of Li+ and Co2+ recovery.


Asunto(s)
Bacterias/metabolismo , Cobalto/farmacocinética , Hierro/metabolismo , Metalurgia , Óxidos/farmacocinética , Azufre/metabolismo , Acidithiobacillus/metabolismo , Acidithiobacillus thiooxidans/metabolismo , Bacillus/metabolismo , Biodegradación Ambiental , Cobalto/química , Suministros de Energía Eléctrica , Equipo Reutilizado , Concentración de Iones de Hidrógeno , Litio/farmacocinética , Metalurgia/métodos , Oxidación-Reducción , Óxidos/química , Sulfuros/metabolismo , Azufre/química , Ácidos Sulfúricos/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/farmacocinética
17.
World J Microbiol Biotechnol ; 35(4): 60, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30919119

RESUMEN

Acidithiobacillus ferrooxidans is a gram-negative, autotrophic and rod-shaped bacterium. It can gain energy through the oxidation of Fe(II) and reduced inorganic sulfur compounds for bacterial growth when oxygen is sufficient. It can be used for bio-leaching and bio-oxidation and contributes to the geobiochemical circulation of metal elements and nutrients in acid mine drainage environments. The iron and sulfur oxidation pathways of A. ferrooxidans play key roles in bacterial growth and survival under extreme circumstances. Here, the electrons transported through the thermodynamically favourable pathway for the reduction to H2O (downhill pathway) and against the redox potential gradient reduce to NAD(P)(H) (uphill pathway) during the oxidation of Fe(II) were reviewed, mainly including the electron transport carrier, relevant operon and regulation of its expression. Similar to the electron transfer pathway, the sulfur oxidation pathway of A. ferrooxidans, related genes and operons, sulfur oxidation mechanism and sulfur oxidase system are systematically discussed.


Asunto(s)
Acidithiobacillus/enzimología , Acidithiobacillus/metabolismo , Hierro/metabolismo , Azufre/metabolismo , Acidithiobacillus/genética , Acidithiobacillus/crecimiento & desarrollo , Azurina/metabolismo , Transporte Biológico Activo , Citocromos c/metabolismo , Dioxigenasas/metabolismo , Transporte de Electrón/genética , Complejo IV de Transporte de Electrones/metabolismo , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Hidrolasas/metabolismo , Redes y Vías Metabólicas/genética , Operón/genética , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Oxígeno/metabolismo , Compuestos de Azufre/metabolismo
18.
Electron. j. biotechnol ; Electron. j. biotechnol;38: 49-57, Mar. 2019. tab, graf, ilus
Artículo en Inglés | LILACS | ID: biblio-1051388

RESUMEN

BACKGROUND: This paper presents micro- and nano-fabrication techniques for leachable realgar using the extremophilic bacterium Acidithiobacillus ferrooxidans (A. ferrooxidans) DLC-5. RESULTS: Realgar nanoparticles of size ranging from 120 nm to 200 nm were successfully prepared using the highenergy ball mill instrument. A. ferrooxidans DLC-5 was then used to bioleach the particles. The arsenic concentration in the bioleaching system was found to be increased significantly when compared with that in the sterile control. Furthermore, in the comparison with the bioleaching of raw realgar, nanoparticles could achieve the same effect with only one fifth of the consumption. CONCLUSION: Emphasis was placed on improving the dissolvability of arsenic because of the great potential of leachable realgar drug delivery in both laboratory and industrial settings


Asunto(s)
Arsénico/metabolismo , Sulfuros/metabolismo , Acidithiobacillus/metabolismo , Minería/métodos , Arsénico/química , Solubilidad , Sulfuros/química , Temperatura , Nanotecnología , Nanopartículas/química , Extremófilos
19.
Ecotoxicol Environ Saf ; 173: 118-130, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-30771655

RESUMEN

Hexavalent chromium (Cr(VI)) is an environmental concern due to the carcinogenic and mutagenic effect on living organisms. Sulfide minerals based Cr(VI) reduction is an economical and efficient strategy for Cr(VI) remediation. In this study, Cr(VI) reduction through the synergistic effect between chemoautotrophic bacteria and sulfide mineral is systematically investigated. Sulfide minerals dissolution and Cr(VI) reduction performance highly depends on mineral acid soluble property. Cr(VI) reduction capacity of pyrrhotite, pyrite, marcasite and sphalerite was 50, 104, 104 and 44 mg/g (Cr(VI)/mineral) respectively in the biotic system. Acidithiobacillus ferrooxidans (A. ferrooxidans) significantly enhanced pyrite and marcasite based Cr(VI) reduction kinetic and capacity. Proton consumption, iron coprecipitation and the biological activity deficiency in the abiotic system significantly inhibited Cr(VI) reduction. Elemental sulfur and secondary iron mineral as the main composition of the passivation layer inhibited sustainable Cr(VI) reduction. A. ferrooxidans facilitated acid nonsoluble mineral dissolution and surface passivation layer removal, and promoted Cr(VI) reduction. Acid nonsoluble sulfide mineral disulfide bond rapture, S°/Sn2- oxidization, and Fe(III)/Cr(III) dissolution were accelerated by A. ferrooxidans, which facilitated Cr(VI) reduction reactive sites regeneration. Our study demonstrated that chemoautotrophic bacterial accelerated Cr(VI) reduction reaction through promoting acid nonsoluble sulfide mineral dissolution. This research is of environmental and practical significance to remediate redox sensitive contaminant based on the synergistic effect between sulfide minerals and chemoautotrophic A. ferrooxidans.


Asunto(s)
Acidithiobacillus/metabolismo , Carcinógenos Ambientales/química , Cromo/química , Minerales/química , Sulfuros/química , Biodegradación Ambiental , Compuestos Férricos/química , Oxidación-Reducción , Solubilidad
20.
J Proteomics ; 198: 132-144, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30553947

RESUMEN

Cadmium is a heavy metal present in contaminated soils. It has no biological role but when entering cells generates DNA damage, overexpression of stress response proteins and misfolded proteins, amongst other deleterious effects. Acidithiobacillus ferrooxidans is an acidophilic bacterium resisting high concentrations of heavy metals such as cadmium. This is important for industrial bioleaching processes where Cd+2 concentrations can be 5-100 mM. Cadmium resistance mechanisms in these microorganisms have not been fully characterized. A. ferrooxidans ATCC 53993 contains genes coding for possible metal resistance determinants such as efflux systems: P-type ATPases, RND transporters and cation diffusion facilitators. In addition, it has extra copies of these genes in its exclusive genomic island (GI). Several of these putative genes were characterized in the present report by determining their transcriptional expression profiles and functionality. Moreover, an iTRAQ proteomic analysis was carried out to explore new cadmium resistance determinants in this bacterium. Changes in iron oxidation components, upregulation of transport proteins and variations in ribosomal protein levels were seen. Finally, increased concentrations of exclusive putative cadmium ATPases present in strain ATCC 53993 GI and other non-identified proteins such as Lferr_0210, forming part of a possible operon, could explain its extreme cadmium resistance. SIGNIFICANCE: Cadmium is a very toxic heavy metal present in mining operations and contaminated environments, it can affect all living organisms, including humans. Therefore, it is important to know the resistance mechanisms of bacteria highly resistant to this metal. These microorganisms in turn, can be used to bioremediate more efficiently environments highly polluted with metals. The results obtained suggest A. ferrooxidans strain ATCC 53993 can be an efficient bacterium to remove cadmium, copper and other metals from contaminated sites.


Asunto(s)
Acidithiobacillus/metabolismo , Proteínas Bacterianas/biosíntesis , Cadmio/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteómica , Contaminantes del Suelo/farmacología , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA