Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.119
Filtrar
1.
Bull Exp Biol Med ; 177(2): 212-216, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39093471

RESUMEN

The effect of a promising NO donor, a binuclear nitrosyl iron complex (NIC) with 3,4-dichlorothiophenolyls [Fe2(SC6H3Cl2)2(NO)4], on the adenylate cyclase and soluble guanylate cyclase enzymatic systems was studied. In in vitro experiments, this complex increased the concentration of important secondary messengers, such as cAMP and cGMP. An increase of their level by 2.4 and 4.5 times, respectively, was detected at NIC concentration of 0.1 mM. The ligand of the complex, 3,4-dichlorothiophenol, produced a less pronounced effect on adenylate cyclase. It was shown that the effect of this complex on the activity of soluble guanylate cyclase was comparable to the effect of anionic nitrosyl complex with thiosulfate ligands that exhibits vasodilating and cardioprotective properties.


Asunto(s)
AMP Cíclico , GMP Cíclico , GMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Animales , Hierro/metabolismo , Hierro/química , Adenilil Ciclasas/metabolismo , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/química , Guanilil Ciclasa Soluble/metabolismo , Óxidos de Nitrógeno/farmacología , Óxidos de Nitrógeno/metabolismo , Óxidos de Nitrógeno/química , Ratas
2.
PLoS Biol ; 22(7): e3002716, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39008526

RESUMEN

Heterologous sensitization of adenylyl cyclase (AC) results in elevated cAMP signaling transduction that contributes to drug dependence. Inhibiting cullin3-RING ligases by blocking the neddylation of cullin3 abolishes heterologous sensitization, however, the modulating mechanism remains uncharted. Here, we report an essential role of the potassium channel tetramerization domain (KCTD) protein 2, 5, and 17, especially the dominant isoform KCTD5 in regulating heterologous sensitization of AC1 and morphine dependence via working with cullin3 and the cullin-associated and neddylation-dissociated 1 (CAND1) protein. In cellular models, we observed enhanced association of KCTD5 with Gß and cullin3, along with elevated dissociation of Gß from AC1 as well as of CAND1 from cullin3 in heterologous sensitization of AC1. Given binding of CAND1 inhibits the neddylation of cullin3, we further elucidated that the enhanced interaction of KCTD5 with both Gß and cullin3 promoted the dissociation of CAND1 from cullin3, attenuated the inhibitory effect of CAND1 on cullin3 neddylation, ultimately resulted in heterologous sensitization of AC1. The paraventricular thalamic nucleus (PVT) plays an important role in mediating morphine dependence. Through pharmacological and biochemical approaches, we then demonstrated that KCTD5/cullin3 regulates morphine dependence via modulating heterologous sensitization of AC, likely AC1 in PVT in mice. In summary, the present study revealed the underlying mechanism of heterologous sensitization of AC1 mediated by cullin3 and discovered the role of KCTD proteins in regulating morphine dependence in mice.


Asunto(s)
Adenilil Ciclasas , Proteínas Cullin , Dependencia de Morfina , Animales , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/genética , Proteínas Cullin/metabolismo , Ratones , Dependencia de Morfina/metabolismo , Células HEK293 , Humanos , Canales de Potasio/metabolismo , Canales de Potasio/genética , Ratones Endogámicos C57BL , Masculino , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/genética , Morfina/farmacología , Ratones Noqueados , Transducción de Señal , AMP Cíclico/metabolismo
3.
Eur J Pharmacol ; 978: 176770, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38925286

RESUMEN

Hypertrophic cardiomyopathy (HCM) arises from a pathogenic variant in the gene responsible for encoding the myocardium-associated protein. Forskolin (FSK), a labdane diterpene isolated from Sphingomonas capillaris, exhibits diverse pharmacological effects, including bronchospasm relief, intraocular pressure reduction, and glaucoma treatment. However, whether FSK could regulate HCM and its associated mechanism remains unclear. Here, we discovered that FSK could mitigate cardiac hypertrophy in two HCM mouse models (Myh6R404Q and Tnnt2R109Q) in vivo. Additionally, FSK could prevent norepinephrine (NE)-induced cardiomyocyte hypertrophy in vitro. It reversed cardiac dysfunction, reduced enlarged cell size, and downregulated the expression of hypertrophy-related genes. We further demonstrated that FSK's mechanism in alleviating HCM relied on the activation of ADCY6. In conclusion, our findings demonstrate that FSK alleviates hypertrophic cardiomyopathy by modulating the ADCY6/cAMP/PKA pathway, suggesting that FSK holds promise as a therapeutic agent for HCM.


Asunto(s)
Adenilil Ciclasas , Cardiomiopatía Hipertrófica , Colforsina , Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Transducción de Señal , Animales , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/genética , AMP Cíclico/metabolismo , Colforsina/farmacología , Colforsina/uso terapéutico , Adenilil Ciclasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Humanos
4.
Int J Mol Sci ; 25(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891880

RESUMEN

Cordycepin, or 3'-deoxyadenosine, is an adenosine analog with a broad spectrum of biological activity. The key structural difference between cordycepin and adenosine lies in the absence of a hydroxyl group at the 3' position of the ribose ring. Upon administration, cordycepin can undergo an enzymatic transformation in specific tissues, forming cordycepin triphosphate. In this study, we conducted a comprehensive analysis of the structural features of cordycepin and its derivatives, contrasting them with endogenous purine-based metabolites using chemoinformatics and bioinformatics tools in addition to molecular dynamics simulations. We tested the hypothesis that cordycepin triphosphate could bind to the active site of the adenylate cyclase enzyme. The outcomes of our molecular dynamics simulations revealed scores that are comparable to, and superior to, those of adenosine triphosphate (ATP), the endogenous ligand. This interaction could reduce the production of cyclic adenosine monophosphate (cAMP) by acting as a pseudo-ATP that lacks a hydroxyl group at the 3' position, essential to carry out nucleotide cyclization. We discuss the implications in the context of the plasticity of cancer and other cells within the tumor microenvironment, such as cancer-associated fibroblast, endothelial, and immune cells. This interaction could awaken antitumor immunity by preventing phenotypic changes in the immune cells driven by sustained cAMP signaling. The last could be an unreported molecular mechanism that helps to explain more details about cordycepin's mechanism of action.


Asunto(s)
AMP Cíclico , Desoxiadenosinas , Simulación de Dinámica Molecular , Neoplasias , Desoxiadenosinas/metabolismo , Desoxiadenosinas/farmacología , Desoxiadenosinas/química , Humanos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , AMP Cíclico/metabolismo , Adenosina Trifosfato/metabolismo , Transducción de Señal/efectos de los fármacos , Simulación por Computador , Adenilil Ciclasas/metabolismo
5.
Nutrients ; 16(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892725

RESUMEN

Xanthohumol (Xn) is an antioxidant flavonoid mainly extracted from hops (Humulus lupulus), one of the main ingredients of beer. As with other bioactive compounds, their therapeutic potential against different diseases has been tested, one of which is Alzheimer's disease (AD). Adenosine is a neuromodulatory nucleoside that acts through four different G protein-coupled receptors: A1 and A3, which inhibit the adenylyl cyclases (AC) pathway, and A2A and A2B, which stimulate this activity, causing either a decrease or an increase, respectively, in the release of excitatory neurotransmitters such as glutamate. This adenosinergic pathway, which is altered in AD, could be involved in the excitotoxicity process. Therefore, the aim of this work is to describe the effect of Xn on the adenosinergic pathway using cell lines. For this purpose, two different cellular models, rat glioma C6 and human neuroblastoma SH-SY5Y, were exposed to a non-cytotoxic 10 µM Xn concentration. Adenosine A1 and A2A, receptor levels, and activities related to the adenosine pathway, such as adenylate cyclase, protein kinase A, and 5'-nucleotidase, were analyzed. The adenosine A1 receptor was significantly increased after Xn exposure, while no changes in A2A receptor membrane levels or AC activity were reported. Regarding 5'-nucleotidases, modulation of their activity by Xn was noted since CD73, the extracellular membrane attached to 5'-nucleotidase, was significantly decreased in the C6 cell line. In conclusion, here we describe a novel pathway in which the bioactive flavonoid Xn could have potentially beneficial effects on AD as it increases membrane A1 receptors while modulating enzymes related to the adenosine pathway in cell cultures.


Asunto(s)
Adenosina , Flavonoides , Glioma , Humulus , Neuroblastoma , Propiofenonas , Receptor de Adenosina A1 , Humanos , Flavonoides/farmacología , Ratas , Propiofenonas/farmacología , Animales , Adenosina/metabolismo , Adenosina/farmacología , Línea Celular Tumoral , Humulus/química , Neuroblastoma/metabolismo , Neuroblastoma/tratamiento farmacológico , Glioma/metabolismo , Glioma/tratamiento farmacológico , Receptor de Adenosina A1/metabolismo , Transducción de Señal/efectos de los fármacos , Adenilil Ciclasas/metabolismo , Receptor de Adenosina A2A/metabolismo
6.
Mol Pain ; 20: 17448069241258110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38744422

RESUMEN

Recent studies using different experimental approaches demonstrate that silent synapses may exist in the adult cortex including the sensory cortex and anterior cingulate cortex (ACC). The postsynaptic form of long-term potentiation (LTP) in the ACC recruits some of these silent synapses and the activity of calcium-stimulated adenylyl cyclases (ACs) is required for such recruitment. It is unknown if the chemical activation of ACs may recruit silent synapses. In this study, we found that activation of ACs contributed to synaptic potentiation in the ACC of adult mice. Forskolin, a selective activator of ACs, recruited silent responses in the ACC of adult mice. The recruitment was long-lasting. Interestingly, the effect of forskolin was not universal, some silent synapses did not undergo potentiation or recruitment. These findings suggest that these adult cortical synapses are not homogenous. The application of a selective calcium-permeable AMPA receptor inhibitor 1-naphthyl acetyl spermine (NASPM) reversed the potentiation and the recruitment of silent responses, indicating that the AMPA receptor is required. Our results strongly suggest that the AC-dependent postsynaptic AMPA receptor contributes to the recruitment of silent responses at cortical LTP.


Asunto(s)
Adenilil Ciclasas , Colforsina , Giro del Cíngulo , Potenciación a Largo Plazo , Animales , Ratones , Giro del Cíngulo/efectos de los fármacos , Giro del Cíngulo/metabolismo , Colforsina/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Adenilil Ciclasas/metabolismo , Masculino , Receptores AMPA/metabolismo , Ratones Endogámicos C57BL , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Calcio/metabolismo
7.
Cell Mol Life Sci ; 81(1): 241, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38806811

RESUMEN

Aspergillus ochraceus is the traditional ochratoxin A (OTA)-producing fungus with density-dependent behaviors, which is known as quorum sensing (QS) that is mediated by signaling molecules. Individual cells trend to adapt environmental changes in a "whole" flora through communications, allowing fungus to occupy an important ecological niche. Signals perception, transmission, and feedback are all rely on a signal network that constituted by membrane receptors and intracellular effectors. However, the interference of density information in signal transduction, which regulates most life activities of Aspergillus, have yet to be elucidated. Here we show that the G protein-coupled receptor (GPCR) to cAMP pathway is responsible for transmitting density information, and regulates the key point in life cycle of A. ochraceus. Firstly, the quorum sensing phenomenon of A. ochraceus is confirmed, and identified the density threshold is 103 spores/mL, which represents the low density that produces the most OTA in a series quorum density. Moreover, the GprC that classified as sugar sensor, and intracellular adenylate cyclase (AcyA)-cAMP-PKA pathway that in response to ligands glucose and HODEs are verified. Furthermore, GprC and AcyA regulate the primary metabolism as well as secondary metabolism, and further affects the growth of A. ochraceus during the entire life cycle. These studies highlight a crucial G protein signaling pathway for cell communication that is mediated by carbohydrate and oxylipins, and clarified a comprehensive effect of fungal development, which include the direct gene regulation and indirect substrate or energy supply. Our work revealed more signal molecules that mediated density information and connected effects on important adaptive behaviors of Aspergillus ochraceus, hoping to achieve comprehensive prevention and control of mycotoxin pollution from interrupting cell communication.


Asunto(s)
Aspergillus ochraceus , AMP Cíclico , Glucosa , Percepción de Quorum , Transducción de Señal , Aspergillus ochraceus/metabolismo , Aspergillus ochraceus/genética , Glucosa/metabolismo , AMP Cíclico/metabolismo , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ocratoxinas/metabolismo
8.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731872

RESUMEN

Numerous studies suggest the involvement of adenosine-5'-triphosphate (ATP) and similar nucleotides in the pathophysiology of asthma. Androgens, such as testosterone (TES), are proposed to alleviate asthma symptoms in young men. ATP and uridine-5'-triphosphate (UTP) relax the airway smooth muscle (ASM) via purinergic P2Y2 and P2Y4 receptors and K+ channel opening. We previously demonstrated that TES increased the expression of voltage-dependent K+ (KV) channels in ASM. This study investigates how TES may potentiate ASM relaxation induced by ATP and UTP. Tracheal tissues treated with or without TES (control group) from young male guinea pigs were used. In organ baths, tracheas exposed to TES (40 nM for 48 h) showed enhanced ATP- and UTP-evoked relaxation. Tetraethylammonium, a K+ channel blocker, annulled this effect. Patch-clamp experiments in tracheal myocytes showed that TES also increased ATP- and UTP-induced K+ currents, and this effect was abolished with flutamide (an androgen receptor antagonist). KV channels were involved in this phenomenon, which was demonstrated by inhibition with 4-aminopyridine. RB2 (an antagonist of almost all P2Y receptors except for P2Y2), as well as N-ethylmaleimide and SQ 22,536 (inhibitors of G proteins and adenylyl cyclase, respectively), attenuated the enhancement of the K+ currents induced by TES. Immunofluorescence and immunohistochemistry studies revealed that TES did not modify the expression of P2Y4 receptors or COX-1 and COX-2, while we have demonstrated that this androgen augmented the expression of KV1.2 and KV1.5 channels in ASM. Thus, TES leads to the upregulation of P2Y4 signaling and KV channels in guinea pig ASM, enhancing ATP and UTP relaxation responses, which likely limits the severity of bronchospasm in young males.


Asunto(s)
Adenosina Trifosfato , Adenilil Ciclasas , Relajación Muscular , Músculo Liso , Testosterona , Tráquea , Uridina Trifosfato , Animales , Uridina Trifosfato/farmacología , Uridina Trifosfato/metabolismo , Cobayas , Relajación Muscular/efectos de los fármacos , Masculino , Adenosina Trifosfato/metabolismo , Tráquea/metabolismo , Tráquea/efectos de los fármacos , Testosterona/farmacología , Testosterona/metabolismo , Adenilil Ciclasas/metabolismo , Músculo Liso/metabolismo , Músculo Liso/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje/metabolismo , Transducción de Señal/efectos de los fármacos , Receptores Purinérgicos P2/metabolismo
9.
Nat Metab ; 6(6): 1053-1075, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38684889

RESUMEN

Promoting brown adipose tissue (BAT) activity innovatively targets obesity and metabolic disease. While thermogenic activation of BAT is well understood, the rheostatic regulation of BAT to avoid excessive energy dissipation remains ill-defined. Here, we demonstrate that adenylyl cyclase 3 (AC3) is key for BAT function. We identified a cold-inducible promoter that generates a 5' truncated AC3 mRNA isoform (Adcy3-at), whose expression is driven by a cold-induced, truncated isoform of PPARGC1A (PPARGC1A-AT). Male mice lacking Adcy3-at display increased energy expenditure and are resistant to obesity and ensuing metabolic imbalances. Mouse and human AC3-AT are retained in the endoplasmic reticulum, unable to translocate to the plasma membrane and lack enzymatic activity. AC3-AT interacts with AC3 and sequesters it in the endoplasmic reticulum, reducing the pool of adenylyl cyclases available for G-protein-mediated cAMP synthesis. Thus, AC3-AT acts as a cold-induced rheostat in BAT, limiting adverse consequences of cAMP activity during chronic BAT activation.


Asunto(s)
Adenilil Ciclasas , Tejido Adiposo Pardo , Frío , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/genética , Tejido Adiposo Pardo/metabolismo , Animales , Ratones , Masculino , Humanos , Termogénesis/genética , Metabolismo Energético , AMP Cíclico/metabolismo , Ratones Noqueados
10.
Eur Biophys J ; 53(4): 239-247, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38625405

RESUMEN

In this study, fluorescence recovery after photobleaching (FRAP) experiments were performed on RBC labeled by lipophilic fluorescent dye CM-DiI to evaluate the role of adenylyl cyclase cascade activation in changes of lateral diffusion of erythrocytes membrane lipids. Stimulation of adrenergic receptors with epinephrine (adrenaline) or metaproterenol led to the significant acceleration of the FRAP recovery, thus indicating an elevated membrane fluidity. The effect of the stimulation of protein kinase A with membrane-permeable analog of cAMP followed the same trend but was less significant. The observed effects are assumed to be driven by increased mobility of phospholipids resulting from the weakened interaction between the intermembrane proteins and RBC cytoskeleton due to activation of adenylyl cyclase signaling cascade.


Asunto(s)
Adenilil Ciclasas , Membrana Eritrocítica , Recuperación de Fluorescencia tras Fotoblanqueo , Fluidez de la Membrana , Adenilil Ciclasas/metabolismo , Fluidez de la Membrana/efectos de los fármacos , Humanos , Membrana Eritrocítica/metabolismo , Activación Enzimática , Transducción de Señal/efectos de los fármacos , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Epinefrina/farmacología , Epinefrina/metabolismo
11.
Pflugers Arch ; 476(4): 457-465, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581526

RESUMEN

Soluble adenylyl cyclase (sAC) differs from transmembrane adenylyl cyclases (tmAC) in many aspects. In particular, the activity of sAC is not regulated by G-proteins but by the prevailing bicarbonate concentrations inside cells. Therefore, sAC serves as an exquisite intracellular pH sensor, with the capacity to translate pH changes into the regulation of localization and/or activity of cellular proteins involved in pH homeostasis. In this review, we provide an overview of literature describing the regulation of sAC activity by bicarbonate, pinpointing the importance of compartmentalization of intracellular cAMP signaling cascades. In addition, examples of processes involving proton and bicarbonate transport in different cell types, in which sAC plays an important regulatory role, were described in detail.


Asunto(s)
Adenilil Ciclasas , AMP Cíclico , Adenilil Ciclasas/metabolismo , AMP Cíclico/metabolismo , Bicarbonatos/metabolismo , Transducción de Señal/fisiología , Concentración de Iones de Hidrógeno
12.
Proc Natl Acad Sci U S A ; 121(16): e2322211121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38593080

RESUMEN

Adenosine 3',5'-cyclic monophosphate (cAMP) is a universal signaling molecule that acts as a second messenger in various organisms. It is well established that cAMP plays essential roles across the tree of life, although the function of cAMP in land plants has long been debated. We previously identified the enzyme with both adenylyl cyclase (AC) and cAMP phosphodiesterase (PDE) activity as the cAMP-synthesis/hydrolysis enzyme COMBINED AC with PDE (CAPE) in the liverwort Marchantia polymorpha. CAPE is conserved in streptophytes that reproduce with motile sperm; however, the precise function of CAPE is not yet known. In this study, we demonstrate that the loss of function of CAPE in M. polymorpha led to male infertility due to impaired sperm flagellar motility. We also found that two genes encoding the regulatory subunits of cAMP-dependent protein kinase (PKA-R) were also involved in sperm motility. Based on these findings, it is evident that CAPE and PKA-Rs act as a cAMP signaling module that regulates sperm motility in M. polymorpha. Therefore, our results have shed light on the function of cAMP signaling and sperm motility regulators in land plants. This study suggests that cAMP signaling plays a common role in plant and animal sperm motility.


Asunto(s)
Marchantia , Masculino , Animales , Marchantia/genética , AMP Cíclico/metabolismo , Motilidad Espermática/genética , Semillas/metabolismo , Adenilil Ciclasas/metabolismo , Espermatozoides/metabolismo
13.
Kidney360 ; 5(3): 471-480, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38433340

RESUMEN

Pictured, described, and speculated on, for close to 400 years, the function of the rectal gland of elasmobranchs remained unknown. In the late 1950s, Burger discovered that the rectal gland of Squalus acanthias secreted an almost pure solution of sodium chloride, isosmotic with blood, which could be stimulated by volume expansion of the fish. Twenty five years later, Stoff discovered that the secretion of the gland was mediated by adenyl cyclase. Studies since then have shown that vasoactive intestinal peptide (VIP) is the neurotransmitter responsible for activating adenyl cyclase; however, the amount of circulating VIP does not change in response to volume expansion. The humoral factor involved in activating the secretion of the gland is C-type natriuretic peptide, secreted from the heart in response to volume expansion. C-type natriuretic peptide circulates to the gland where it stimulates the release of VIP from nerves within the gland, but it also has a direct effect, independent of VIP. Sodium, potassium, and chloride are required for the gland to secrete, and the secretion of the gland is inhibited by ouabain or furosemide. The current model for the secretion of chloride was developed from this information. Basolateral NaKATPase maintains a low intracellular concentration of sodium, which establishes the large electrochemical gradient for sodium directed into the cell. Sodium moves from the blood into the cell (together with potassium and chloride) down this electrochemical gradient, through a coupled sodium, potassium, and two chloride cotransporter (NKCC1). On activation, chloride moves from the cell into the gland lumen, down its electrical gradient through apical cystic fibrosis transmembrane regulator. The fall in intracellular chloride leads to the phosphorylation and activation of NKCC1 that allows more chloride into the cell. Transepithelial sodium secretion into the lumen is driven by an electrical gradient through a paracellular pathway. The aim of this review was to examine the history of the origin of this model for the transport of chloride and suggest that it is applicable to many epithelia that transport chloride, both in resorptive and secretory directions.


Asunto(s)
Tiburones , Animales , Tiburones/metabolismo , Glándula de Sal/metabolismo , Cloruros/metabolismo , Cloruros/farmacología , Cazón/metabolismo , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/farmacología , Péptido Natriurético Tipo-C/metabolismo , Péptido Natriurético Tipo-C/farmacología , Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Sodio/metabolismo , Sodio/farmacología , Potasio/metabolismo , Potasio/farmacología
14.
Cell Rep Methods ; 4(4): 100740, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38521059

RESUMEN

Intracellular signaling plays essential roles in various cell types. In the central nervous system, signaling cascades are strictly regulated in a spatiotemporally specific manner to govern brain function; for example, presynaptic cyclic adenosine monophosphate (cAMP) can enhance the probability of neurotransmitter release. In the last decade, channelrhodopsin-2 has been engineered for subcellular targeting using localization tags, but optogenetic tools for intracellular signaling are not well developed. Therefore, we engineered a selective presynaptic fusion tag for photoactivated adenylyl cyclase (bPAC-Syn1a) and found its high localization at presynaptic terminals. Furthermore, an all-optical electrophysiological method revealed rapid and robust short-term potentiation by bPAC-Syn1a at brain stem-amygdala synapses in acute brain slices. Additionally, bPAC-Syn1a modulated mouse immobility behavior. These results indicate that bPAC-Syn1a can manipulate presynaptic cAMP signaling in vitro and in vivo. The all-optical manipulation technique developed in this study can help further elucidate the dynamic regulation of various cellular functions.


Asunto(s)
Adenilil Ciclasas , AMP Cíclico , Plasticidad Neuronal , Terminales Presinápticos , Animales , Masculino , Ratones , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/genética , AMP Cíclico/metabolismo , Células HEK293 , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Optogenética/métodos , Terminales Presinápticos/metabolismo , Ratas
15.
J Vis Exp ; (203)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38345221

RESUMEN

Our goal was to accurately track the cellular distribution of an optogenetic protein and evaluate its functionality within a specific cytoplasmic location. To achieve this, we co-transfected cells with nuclear-targeted cAMP sensors and our laboratory-developed optogenetic protein, bacterial photoactivatable adenylyl cyclase-nanoluciferase (bPAC-nLuc). bPAC-nLuc, when stimulated with 445 nm light or luciferase substrates, generates adenosine 3',5'-cyclic monophosphate (cAMP). We employed a solid-state laser illuminator connected to a point scanning system that allowed us to create a grid/matrix pattern of small illuminated spots (~1 µm2) throughout the cytoplasm of HC-1 cells. By doing so, we were able to effectively track the distribution of nuclear-targeted bPAC-nLuc and generate a comprehensive cAMP response map. This map accurately represented the cellular distribution of bPAC-nLuc, and its response to light stimulation varied according to the amount of protein in the illuminated spot. This innovative approach contributes to the expanding toolkit of techniques available for investigating cellular optogenetic proteins. The ability to map its distribution and response with high precision has far-reaching potential and could advance various fields of research.


Asunto(s)
AMP Cíclico , Luz , AMP Cíclico/metabolismo , Optogenética/métodos , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo
16.
Commun Biol ; 7(1): 147, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307988

RESUMEN

Structural insights into the photoactivated adenylate cyclases can be used to develop new ways of controlling cellular cyclic adenosine monophosphate (cAMP) levels for optogenetic and other applications. In this work, we use an integrative approach that combines biophysical and structural biology methods to provide insight on the interaction of adenosine triphosphate (ATP) with the dark-adapted state of the photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata (OaPAC). A moderate affinity of the nucleotide for the enzyme was calculated and the thermodynamic parameters of the interaction have been obtained. Stopped-flow fluorescence spectroscopy and small-angle solution scattering have revealed significant conformational changes in the enzyme, presumably in the adenylate cyclase (AC) domain during the allosteric mechanism of ATP binding to OaPAC with small and large-scale movements observed to the best of our knowledge for the first time in the enzyme in solution upon ATP binding. These results are in line with previously reported drastic conformational changes taking place in several class III AC domains upon nucleotide binding.


Asunto(s)
Adenosina Trifosfato , Adenilil Ciclasas , Adenilil Ciclasas/genética , Adenilil Ciclasas/química , Adenilil Ciclasas/metabolismo , Adenosina Trifosfato/metabolismo , Espectrometría de Fluorescencia , Rayos X , Conformación Molecular
17.
Sci Rep ; 14(1): 4440, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396287

RESUMEN

3',5'-Cyclic adenosine monophosphate (cAMP), the first identified second messenger, is implicated in diverse cellular processes involving cellular metabolism, cell proliferation and differentiation, apoptosis, and gene expression. cAMP is synthesized by adenylyl cyclase (AC), which converts ATP to cAMP upon activation of Gαs-protein coupled receptors (GPCRs) in most cases and hydrolyzed by cyclic nucleotide phosphodiesterases (PDEs) to 5'-AMP. Dysregulation of cAMP signaling is implicated in a wide range of pathophysiological conditions such as cardiovascular diseases, neurodegenerative and behavioral disorders, cancers, diabetes, obesity, cataracts, and others. Therefore, cAMP targeted therapies have been and are still undergoing intense investigation for the treatment of these and other diseases. This highlights the need for developing assays to detect and monitor cAMP levels. In this study, we show cAMP Lumit assay as a highly specific homogeneous bioluminescent assay suitable for high throughput screenings with a large assay window and a wide dynamic range for cAMP detection. We believe that this assay will aid and simplify drug discovery screening efforts for cAMP signaling targeted therapies.


Asunto(s)
AMP Cíclico , Transducción de Señal , AMP Cíclico/metabolismo , Adenilil Ciclasas/metabolismo , Diferenciación Celular , Descubrimiento de Drogas
18.
Neurobiol Dis ; 191: 106403, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182074

RESUMEN

Loss-of-function mutations in the GNAL gene are responsible for DYT-GNAL dystonia. However, how GNAL mutations contribute to synaptic dysfunction is still unclear. The GNAL gene encodes the Gαolf protein, an isoform of stimulatory Gαs enriched in the striatum, with a key role in the regulation of cAMP signaling. Here, we used a combined biochemical and electrophysiological approach to study GPCR-mediated AC-cAMP cascade in the striatum of the heterozygous GNAL (GNAL+/-) rat model. We first analyzed adenosine type 2 (A2AR), and dopamine type 1 (D1R) receptors, which are directly coupled to Gαolf, and observed that the total levels of A2AR were increased, whereas D1R level was unaltered in GNAL+/- rats. In addition, the striatal isoform of adenylyl cyclase (AC5) was reduced, despite unaltered basal cAMP levels. Notably, the protein expression level of dopamine type 2 receptor (D2R), that inhibits the AC5-cAMP signaling pathway, was also reduced, similar to what observed in different DYT-TOR1A dystonia models. Accordingly, in the GNAL+/- rat striatum we found altered levels of the D2R regulatory proteins, RGS9-2, spinophilin, Gß5 and ß-arrestin2, suggesting a downregulation of D2R signaling cascade. Additionally, by analyzing the responses of striatal cholinergic interneurons to D2R activation, we found that the receptor-mediated inhibitory effect is significantly attenuated in GNAL+/- interneurons. Altogether, our findings demonstrate a profound alteration in the A2AR/D2R-AC-cAMP cascade in the striatum of the rat DYT-GNAL dystonia model, and provide a plausible explanation for our previous findings on the loss of dopamine D2R-dependent corticostriatal long-term depression.


Asunto(s)
Distonía , Trastornos Distónicos , Ratas , Animales , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Dopamina/metabolismo , AMP Cíclico/metabolismo , Distonía/genética , Transducción de Señal/fisiología , Cuerpo Estriado/metabolismo , Receptores Dopaminérgicos/metabolismo , Isoformas de Proteínas/metabolismo
19.
Mol Ther ; 32(3): 646-662, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38291755

RESUMEN

The upregulation of Orai1 and subsequent store-operated Ca2+ entry (SOCE) has been associated with adverse cardiac remodeling and heart failure (HF). However, the mechanism underlying Orai1 upregulation and its role in myocardial infarction remains unclear. Our study investigated the role of Orai1 in activating adenylyl cyclase 8 (AC8) and cyclic AMP (cAMP) response element-binding protein (CREB), as well as its contribution to cardiac dysfunction induced by ischemia and reperfusion (I/R). We found that I/R evoked an increase in the expression of Orai1 and AC8 in rats' hearts, resulting in a substantial rise in diastolic Ca2+ concentration ([Ca2+]i), and reduced ventricular contractions. The expression of Orai1 and AC8 was also increased in ventricular biopsies of post-ischemic HF patients. Mechanistically, we demonstrate that I/R activation of Orai1 stimulated AC8, which produced cAMP and phosphorylated CREB. Subsequently, p-CREB activated the ORAI1 promoter, resulting in Orai1 upregulation and SOCE exacerbation. Intramyocardial administration of AAV9 carrying AC8 short hairpin RNA decreased the expression of AC8, Orai1 and CREB, which restored diastolic [Ca2+]i and improved cardiac contraction. Therefore, our data suggests that the axis composed by Orai1/AC8/CREB plays a critical role in I/R-induced cardiac dysfunction, representing a potential new therapeutic target to limit the progression of the disease toward HF.


Asunto(s)
Adenilil Ciclasas , Infarto del Miocardio , Humanos , Ratas , Animales , Regulación hacia Arriba , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , AMP Cíclico/metabolismo , Señalización del Calcio , Infarto del Miocardio/genética , Calcio/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo
20.
Purinergic Signal ; 20(2): 181-192, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37458955

RESUMEN

L-Glutamate (L-Glu) is an amino acid present in the diet that plays a fundamental role in the central nervous system, as the main excitatory neurotransmitter participating in learning and memory processes. In addition, the nucleoside adenosine has a crucial role in L-Glu metabolism, by regulating the liberation of this neurotransmitter through four different receptors: A1, A2A, A2B and A3, which activate (A2A and A2B) or inhibit (A1 and A3) adenylate cyclase pathway. L-Glu at high concentrations can act as a neurotoxin and induce oxidative stress. The study of the oxidative stress correlated with an excess of L-Glu consumption during maternity is key to understand its effects on foetuses and neonates. Previous studies have shown that there is a change in the receptor levels in the brain of pregnant rats and their foetuses when mothers are administered L-Glu during gestation; however, its effect on the cerebellum is unknown. Cerebellum is known to be responsible for motor, cognitive and emotional functions, so its possible involvement after L-Glu consumption is an important issue to study. Therefore, the aim of the present work was to study the effect of L-Glu exposure during gestation and lactation on oxidative stress biomarkers and neurotransmitter receptors from the cerebellum of foetuses and neonates. After maternal L-Glu intake during gestation, oxidative stress was increased, as the ionotropic L-Glu receptors, and GluR1 AMPA subunit levels were altered in foetuses. A1 adenosine receptor suffered changes after L-Glu treatment during gestation, lactation or both, in lactating neonate cerebellum, while adenylate cyclase activity remain unaltered. Further studies will be necessary to elucidate the importance of L-Glu intake and its possible excitotoxicity in the cerebellum of Wistar rats during the pregnancy period and their involvement in long-term neurodegeneration.


Asunto(s)
Ácido Glutámico , Efectos Tardíos de la Exposición Prenatal , Humanos , Animales , Ratas , Femenino , Embarazo , Ácido Glutámico/metabolismo , Lactancia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Ratas Wistar , Adenosina/metabolismo , Receptores AMPA , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/farmacología , Cerebelo/metabolismo , Feto/metabolismo , Estrés Oxidativo , Neurotransmisores/metabolismo , Neurotransmisores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA