Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.774
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732202

RESUMEN

Acquiring resistance against antiviral drugs is a significant problem in antimicrobial therapy. In order to identify novel antiviral compounds, the antiviral activity of eight plants indigenous to the southern region of Hungary against herpes simplex virus-2 (HSV-2) was investigated. The plant extracts and the plant compound carnosic acid were tested for their effectiveness on both the extracellular and intracellular forms of HSV-2 on Vero and HeLa cells. HSV-2 replication was measured by a direct quantitative PCR (qPCR). Among the tested plant extracts, Salvia rosmarinus (S. rosmarinus) exhibited a 90.46% reduction in HSV-2 replication at the 0.47 µg/mL concentration. Carnosic acid, a major antimicrobial compound found in rosemary, also demonstrated a significant dose-dependent inhibition of both extracellular and intracellular forms of HSV-2. The 90% inhibitory concentration (IC90) of carnosic acid was between 25 and 6.25 µg/mL. Proteomics and high-resolution respirometry showed that carnosic acid suppressed key ATP synthesis pathways such as glycolysis, citrate cycle, and oxidative phosphorylation. Inhibition of oxidative phosphorylation also suppressed HSV-2 replication up to 39.94-fold. These results indicate that the antiviral action of carnosic acid includes the inhibition of ATP generation by suppressing key energy production pathways. Carnosic acid holds promise as a potential novel antiviral agent against HSV-2.


Asunto(s)
Abietanos , Adenosina Trifosfato , Antivirales , Herpesvirus Humano 2 , Extractos Vegetales , Replicación Viral , Abietanos/farmacología , Replicación Viral/efectos de los fármacos , Chlorocebus aethiops , Células Vero , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/biosíntesis , Humanos , Animales , Herpesvirus Humano 2/efectos de los fármacos , Herpesvirus Humano 2/fisiología , Antivirales/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Células HeLa
2.
J Histochem Cytochem ; 72(5): 329-352, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38733294

RESUMEN

Lactate and ATP formation by aerobic glycolysis, the Warburg effect, is considered a hallmark of cancer. During angiogenesis in non-cancerous tissue, proliferating stalk endothelial cells (ECs) also produce lactate and ATP by aerobic glycolysis. In fact, all proliferating cells, both non-cancer and cancer cells, need lactate for the biosynthesis of building blocks for cell growth and tissue expansion. Moreover, both non-proliferating cancer stem cells in tumors and leader tip ECs during angiogenesis rely on glycolysis for pyruvate production, which is used for ATP synthesis in mitochondria through oxidative phosphorylation (OXPHOS). Therefore, aerobic glycolysis is not a specific hallmark of cancer but rather a hallmark of proliferating cells and limits its utility in cancer therapy. However, local treatment of angiogenic eye conditions with inhibitors of glycolysis may be a safe therapeutic option that warrants experimental investigation. Most types of cells in the eye such as photoreceptors and pericytes use OXPHOS for ATP production, whereas proliferating angiogenic stalk ECs rely on glycolysis for lactate and ATP production. (J Histochem Cytochem XX.XXX-XXX, XXXX).


Asunto(s)
Adenosina Trifosfato , Neoplasias , Neovascularización Patológica , Humanos , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/biosíntesis , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Animales , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Glucólisis , Oftalmopatías/metabolismo , Oftalmopatías/patología , Fosforilación Oxidativa
3.
New Phytol ; 242(6): 2635-2651, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38634187

RESUMEN

Endosperm is the main storage organ in cereal grain and determines grain yield and quality. The molecular mechanisms of heat shock proteins in regulating starch biosynthesis and endosperm development remain obscure. Here, we report a rice floury endosperm mutant flo24 that develops abnormal starch grains in the central starchy endosperm cells. Map-based cloning and complementation test showed that FLO24 encodes a heat shock protein HSP101, which is localized in plastids. The mutated protein FLO24T296I dramatically lost its ability to hydrolyze ATP and to rescue the thermotolerance defects of the yeast hsp104 mutant. The flo24 mutant develops more severe floury endosperm when grown under high-temperature conditions than normal conditions. And the FLO24 protein was dramatically induced at high temperature. FLO24 physically interacts with several key enzymes required for starch biosynthesis, including AGPL1, AGPL3 and PHO1. Combined biochemical and genetic evidence suggests that FLO24 acts cooperatively with HSP70cp-2 to regulate starch biosynthesis and endosperm development in rice. Our results reveal that FLO24 acts as an important regulator of endosperm development, which might function in maintaining the activities of enzymes involved in starch biosynthesis in rice.


Asunto(s)
Endospermo , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza , Proteínas de Plantas , Almidón , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Endospermo/metabolismo , Endospermo/crecimiento & desarrollo , Almidón/metabolismo , Almidón/biosíntesis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mutación/genética , Unión Proteica , Plastidios/metabolismo , Prueba de Complementación Genética , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/biosíntesis , Termotolerancia , Factores de Transcripción
4.
J Radiat Res ; 65(3): 263-271, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38461549

RESUMEN

Ionizing radiation (IR)-induced double-strand breaks (DSBs) are primarily repaired by non-homologous end joining or homologous recombination (HR) in human cells. DSB repair requires adenosine-5'-triphosphate (ATP) for protein kinase activities in the multiple steps of DSB repair, such as DNA ligation, chromatin remodeling, and DNA damage signaling via protein kinase and ATPase activities. To investigate whether low ATP culture conditions affect the recruitment of repair proteins at DSB sites, IR-induced foci were examined in the presence of ATP synthesis inhibitors. We found that p53 binding protein 1 foci formation was modestly reduced under low ATP conditions after IR, although phosphorylated histone H2AX and mediator of DNA damage checkpoint 1 foci formation were not impaired. Next, we examined the foci formation of breast cancer susceptibility gene I (BRCA1), replication protein A (RPA) and radiation 51 (RAD51), which are HR factors, in G2 phase cells following IR. Interestingly, BRCA1 and RPA foci in the G2 phase were significantly reduced under low ATP conditions compared to that under normal culture conditions. Notably, RAD51 foci were drastically impaired under low ATP conditions. These results suggest that HR does not effectively progress under low ATP conditions; in particular, ATP shortages impair downstream steps in HR, such as RAD51 loading. Taken together, these results suggest that the maintenance of cellular ATP levels is critical for DNA damage response and HR progression after IR.


Asunto(s)
Adenosina Trifosfato , Proteína BRCA1 , Recombinación Homóloga , Recombinasa Rad51 , Radiación Ionizante , Humanos , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/biosíntesis , Recombinación Homóloga/efectos de la radiación , Recombinasa Rad51/metabolismo , Proteína BRCA1/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Proteína de Replicación A/metabolismo , Línea Celular Tumoral , Espacio Intracelular/metabolismo , Espacio Intracelular/efectos de la radiación , Reparación del ADN , Histonas/metabolismo
5.
J Biol Chem ; 300(3): 105690, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280428

RESUMEN

The hydrolytic activity of the ATP synthase in bovine mitochondria is inhibited by a protein called IF1, but bovine IF1 has no effect on the synthetic activity of the bovine enzyme in mitochondrial vesicles in the presence of a proton motive force. In contrast, it has been suggested based on indirect observations that human IFI inhibits both the hydrolytic and synthetic activities of the human ATP synthase and that the activity of human IF1 is regulated by the phosphorylation of Ser-14 of mature IF1. Here, we have made both human and bovine IF1 which are 81 and 84 amino acids long, respectively, and identical in 71.4% of their amino acids and have investigated their inhibitory effects on the hydrolytic and synthetic activities of ATP synthase in bovine submitochondrial particles. Over a wide range of conditions, including physiological conditions, both human and bovine IF1 are potent inhibitors of ATP hydrolysis, with no effect on ATP synthesis. Also, substitution of Ser-14 with phosphomimetic aspartic and glutamic acids had no effect on inhibitory properties, and Ser-14 is not conserved throughout mammals. Therefore, it is unlikely that the inhibitory activity of mammalian IF1 is regulated by phosphorylation of this residue.


Asunto(s)
Adenosina Trifosfato , Mitocondrias , Proteínas Mitocondriales , ATPasas de Translocación de Protón Mitocondriales , Animales , Bovinos , Humanos , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/metabolismo , Aminoácidos/metabolismo , Hidrólisis , Mitocondrias/enzimología , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Serina/metabolismo , Fosforilación
6.
J Biol Chem ; 299(9): 105103, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507013

RESUMEN

The hydrolysis of ATP is the primary source of metabolic energy for eukaryotic cells. Under physiological conditions, cells generally produce more than sufficient levels of ATP to fuel the active biological processes necessary to maintain homeostasis. However, mechanisms underpinning the distribution of ATP to subcellular microenvironments with high local demand remain poorly understood. Intracellular distribution of ATP in normal physiological conditions has been proposed to rely on passive diffusion across concentration gradients generated by ATP producing systems such as the mitochondria and the glycolytic pathway. However, subcellular microenvironments can develop with ATP deficiency due to increases in local ATP consumption. Alternatively, ATP production can be reduced during bioenergetic stress during hypoxia. Mammalian cells therefore need to have the capacity to alter their metabolism and energy distribution strategies to compensate for local ATP deficits while also controlling ATP production. It is highly likely that satisfying the bioenergetic requirements of the cell involves the regulated distribution of ATP producing systems to areas of high ATP demand within the cell. Recently, the distribution (both spatially and temporally) of ATP-producing systems has become an area of intense investigation. Here, we review what is known (and unknown) about intracellular energy production and distribution and explore potential mechanisms through which this targeted distribution can be altered in hypoxia, with the aim of stimulating investigation in this important, yet poorly understood field of research.


Asunto(s)
Hipoxia de la Célula , Metabolismo Energético , Animales , Humanos , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/metabolismo , Mitocondrias/metabolismo , Hipoxia de la Célula/fisiología , Adaptación Fisiológica
7.
Technol Cancer Res Treat ; 22: 15330338231161141, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960492

RESUMEN

Introduction: Nuclear respiratory factor 1 (NRF1) is an important regulator involved in mitochondrial biogenesis and energy metabolism. However, the specific mechanism of NRF1 in anoikis and epithelial-mesenchymal transition (EMT) remains unclear. Methods: We examined the effect of NRF1 on mitochondria and identified the specific mechanism through transcriptome sequencing, and explored the relationships among NRF1, anoikis, and EMT. Results: We found that upregulated NRF1 expression led to increased mitochondrial oxidative phosphorylation (OXPHOS) and ATP generation. Simultaneously, a significant amount of ROS is generated during OXPHOS. Alternatively, NRF1 upregulates the expression of ROS-scavenging enzymes, allowing tumor cells to maintain low ROS levels and promoting anoikis resistance and EMT. We also found that exogenous ROS was maintained at a low level by NRF1 in breast cancer cells. Conclusion: our study provides mechanistic insight into the function of NRF1 in breast cancer, indicating that NRF1 may serve as a therapeutic target for breast cancer treatment.


Asunto(s)
Anoicis , Neoplasias de la Mama , Transición Epitelial-Mesenquimal , Factor Nuclear 1 de Respiración , Humanos , Femenino , Línea Celular Tumoral , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal/genética , Factor Nuclear 1 de Respiración/genética , Factor Nuclear 1 de Respiración/metabolismo , Fosforilación Oxidativa , Homeostasis , Anoicis/genética , Adenosina Trifosfato/biosíntesis , Mitocondrias/metabolismo , Potencial de la Membrana Mitocondrial , Especies Reactivas de Oxígeno/metabolismo
8.
Nature ; 614(7947): 349-357, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725930

RESUMEN

Tissues derive ATP from two pathways-glycolysis and the tricarboxylic acid (TCA) cycle coupled to the electron transport chain. Most energy in mammals is produced via TCA metabolism1. In tumours, however, the absolute rates of these pathways remain unclear. Here we optimize tracer infusion approaches to measure the rates of glycolysis and the TCA cycle in healthy mouse tissues, Kras-mutant solid tumours, metastases and leukaemia. Then, given the rates of these two pathways, we calculate total ATP synthesis rates. We find that TCA cycle flux is suppressed in all five primary solid tumour models examined and is increased in lung metastases of breast cancer relative to primary orthotopic tumours. As expected, glycolysis flux is increased in tumours compared with healthy tissues (the Warburg effect2,3), but this increase is insufficient to compensate for low TCA flux in terms of ATP production. Thus, instead of being hypermetabolic, as commonly assumed, solid tumours generally produce ATP at a slower than normal rate. In mouse pancreatic cancer, this is accommodated by the downregulation of protein synthesis, one of this tissue's major energy costs. We propose that, as solid tumours develop, cancer cells shed energetically expensive tissue-specific functions, enabling uncontrolled growth despite a limited ability to produce ATP.


Asunto(s)
Adenosina Trifosfato , Neoplasias de la Mama , Ciclo del Ácido Cítrico , Desaceleración , Neoplasias Pulmonares , Metástasis de la Neoplasia , Neoplasias Pancreáticas , Animales , Ratones , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Ciclo del Ácido Cítrico/fisiología , Metabolismo Energético , Glucólisis , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Especificidad de Órganos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Biosíntesis de Proteínas
9.
J Cell Biol ; 221(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36102863

RESUMEN

Mitochondrial damage represents a dramatic change in cellular homeostasis. One rapid response is perimitochondrial actin polymerization, termed acute damage-induced actin (ADA). The consequences of ADA are not understood. In this study, we show evidence suggesting that ADA is linked to rapid glycolytic activation upon mitochondrial damage in multiple cells, including mouse embryonic fibroblasts and effector CD8+ T lymphocytes. ADA-inducing treatments include CCCP, antimycin, rotenone, oligomycin, and hypoxia. The Arp2/3 complex inhibitor CK666 or the mitochondrial sodium-calcium exchanger (NCLX) inhibitor CGP37157 inhibits both ADA and the glycolytic increase within 5 min, supporting ADA's role in glycolytic stimulation. Two situations causing chronic reductions in mitochondrial ATP production, mitochondrial DNA depletion and mutation to the NDUFS4 subunit of complex 1 of the electron transport chain, cause persistent perimitochondrial actin filaments similar to ADA. CK666 treatment causes rapid mitochondrial actin loss and a drop in ATP in NDUFS4 knock-out cells. We propose that ADA is necessary for rapid glycolytic activation upon mitochondrial impairment, to re-establish ATP production.


Asunto(s)
Actinas , Adenosina Trifosfato , Mitocondrias , Actinas/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Linfocitos T CD8-positivos , Células Cultivadas , Complejo I de Transporte de Electrón/metabolismo , Fibroblastos , Glucólisis , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Polimerizacion
10.
Mol Biol (Mosk) ; 56(5): 795-807, 2022.
Artículo en Ruso | MEDLINE | ID: mdl-36165018

RESUMEN

Changes in metabolic pathways are often associated with the development of a wide range of pathologies. Increased glycolysis under conditions of sufficient tissue oxygen supply and its dissociation from the Krebs cycle, known as aerobic glycolysis or the Warburg effect, is a hallmark of many malignant neoplasms. Identification of specific metabolic shifts can characterize the metabolic programming of individual types of tumor cells, the stage of their transformation, and predict their metastatic potential. Viral infection can also alter the metabolism of cells to support the process of viral replication. Infection with human immunodeficiency virus type 1 (HIV-1) is associated with an increased incidence of various cancers, and for some viral proteins a direct oncogenic effect was demonstrated. In particular, we showed that the expression of HIV-1 reverse transcriptase (RT) in 4T1 breast adenocarcinoma cells increases the tumorigenic and metastatic potential of cells in vitro and in vivo by a mechanism associated with the ability of RT to induce reactive oxygen species in cells (ROS). The aim of this work was to study the molecular mechanism of this process, namely the effect of HIV-1 RT on the key metabolic pathways associated with tumor progression: glycolysis and mitochondrial respiration. Expression of HIV-1 RT had no effect on the glycolysis process. At the same time, it led to an increase in mitochondrial respiration and the level of ATP synthesis in the cell, while not affecting the availability of the substrates, carbon donors for the Krebs cycle, which excludes the effect of RT on the metabolic enzymes of cells. Increased mitochondrial respiration was associated with restoration of the mitochondrial network despite the RT-induced reduction in mitochondrial mass. Increased mitochondrial respiration may increase cell motility, which explains their increased tumorigenicity and metastatic potential. These data are important for understanding the pathogenesis of HIV-1 infection, including the stimulation of the formation and spread of HIV-1 associated malignancies.


Asunto(s)
Neoplasias de la Mama , Carcinogénesis , Transcriptasa Inversa del VIH , VIH-1 , Mitocondrias , Adenosina Trifosfato/biosíntesis , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/virología , Carbono/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Respiración de la Célula , Ciclo del Ácido Cítrico , Femenino , Transcriptasa Inversa del VIH/genética , VIH-1/genética , VIH-1/metabolismo , Ratones , Mitocondrias/metabolismo , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo
11.
J Med Chem ; 65(4): 3404-3419, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35167303

RESUMEN

Targeting oxidative phosphorylation (OXPHOS) complexes is an emerging strategy to disrupt the metabolism of select cancer subtypes and to overcome resistance to targeted therapies. Here, we describe our lead optimization campaign on a series of benzene-1,4-disulfonamides as novel OXPHOS complex I inhibitors. This effort led to the discovery of compound 23 (DX3-213B) as one of the most potent complex I inhibitors reported to date. DX3-213B disrupts adenosine triphosphate (ATP) generation, inhibits complex I function, and results in the growth inhibition of pancreatic cancer cells in the low nanomolar range. Importantly, the oral administration of DX3-213B resulted in significant in vivo efficacy in a pancreatic cancer syngeneic model without obvious toxicity. Our data clearly demonstrate that OXPHOS inhibition can be a safe and efficacious strategy to treat pancreatic cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Fosforilación Oxidativa/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Adenosina Trifosfato/biosíntesis , Animales , Antineoplásicos/síntesis química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , NAD/metabolismo , Sulfonamidas/síntesis química , Sulfonamidas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Anticancer Drugs ; 33(2): 132-141, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34845165

RESUMEN

Tubulin alpha 1c (TUBA1C) as a member of α-tubulin was identified to take part in the occurrence and development of hepatocellular carcinoma and pancreatic cancer. Using the bioinformatics, we noticed that TUBA1C level was also increased in breast cancer was also demonstrated. Here, we explored TUBA1 role in modulation of breast cancer cell aerobic glycolysis, growth and migration and explored whether yes association protein (YAP) was involved. Fifty-five matched breast cancer tissues and the para-carcinoma normal tissues were included in this study and used to verify TUBA1C expression using quantitative reverse transcription-PCR and western blotting. ATP level, lactate secretion and glucose consumption were used to assess aerobic glycolysis. Cell growth, invasion, migration and tumorigenesis were detected using cell count kit-8, transwell, wound healing and animal assays. TUBA1 was upregulated in breast cancer, which associated with advanced primary tumor, lymph node, metastasis stage and tumor size. Silencing of TUBA1C with sh-TUBA1C infection led to significant inhibitions in ATP level, lactate secretion, glucose consumption, cell growth, migration, invasion and tumorigenesis, as well as declined YAP expression, while TUBA1C overexpression induced a opposite result. And, the above tendencies induced by TUBA1C downregulation were reversed by YAP overexpression. This study revealed that TUBA1C was overexpressed in breast cancer and promoted aerobic glycolysis and cell growth through upregulation of YAP expression.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Glucólisis/efectos de los fármacos , Tubulina (Proteína)/farmacología , Regulación hacia Arriba/efectos de los fármacos , Proteínas Señalizadoras YAP/biosíntesis , Adenosina Trifosfato/biosíntesis , Adulto , Anciano , Animales , Neoplasias de la Mama/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Ácido Láctico/biosíntesis , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad
13.
Biochem Biophys Res Commun ; 590: 27-33, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-34968781

RESUMEN

Breast cancer susceptibility gene 2 (BRCA2) mediates genome maintenance during the S phase of the cell cycle, with important roles in replication stress, centrosome replication, and cytokinesis. In this study, we showed that a small heat shock protein, HSP27, interacted with and participated in the degradation of BRCA2 in estrogen-treated MCF-7 cells. BRCA2 degradation reportedly requires ubiquitination of the C-terminal region; thus, fragments of amino acid (aa) residues 2241-2940 were produced and assayed for their degradation following cycloheximide (CHX) treatment. The results showed that aa 2491-2580 affected the degradation of BRCA2, especially lysine (Lys) 2497. Furthermore, the K2497 A/R mutation increased ATP production and the proliferation of DLD-1 (BRCA2 knockout) cells compared to the cells expressing wild-type BRCA2-FLAG. Notably, a single residue, Lys2497, affected BRCA2 degradation, and K2497R is reportedly a missense mutation in hereditary breast cancer.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Proteína BRCA2/genética , Mutación Missense/genética , Proteolisis , Secuencia de Aminoácidos , Proteína BRCA2/química , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Células HEK293 , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Lisina/genética , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Ubiquitina/metabolismo , Ubiquitinación
14.
Cells ; 10(12)2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34944107

RESUMEN

Mitochondria move along the microtubule network and produce bioenergy in the cell. However, there is no report of a relationship between bioenergetic activity of mitochondria and microtubule stability in mammalian cells. This study aimed to investigate this relationship. We treated HEK293 cells with microtubule stabilizers (Taxol and Epothilone D) or a microtubule disturber (vinorelbine), and performed live-cell imaging to determine whether mitochondrial morphology and bioenergetic activity depend on the microtubule status. Treatment with microtubule stabilizers enhanced the staining intensity of microtubules, significantly increased ATP production and the spare respiratory capacity, dramatically increased mitochondrial fusion, and promoted dynamic movement of mitochondria. By contrast, bioenergetic activity of mitochondria was significantly decreased in cells treated with the microtubule disturber. Our data suggest that microtubule stability promotes mitochondrial functional activity. In conclusion, a microtubule stabilizer can possibly recover mitochondrial functional activity in cells with unstable microtubules.


Asunto(s)
Microtúbulos/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/biosíntesis , Proliferación Celular , Respiración de la Célula , Forma de la Célula , Supervivencia Celular , Regulación de la Expresión Génica , Células HEK293 , Humanos , Potencial de la Membrana Mitocondrial , Consumo de Oxígeno , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
15.
PLoS Genet ; 17(12): e1009971, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34965247

RESUMEN

Rothmund-Thomson syndrome (RTS) is an autosomal recessive genetic disorder characterized by poikiloderma, small stature, skeletal anomalies, sparse brows/lashes, cataracts, and predisposition to cancer. Type 2 RTS patients with biallelic RECQL4 pathogenic variants have multiple skeletal anomalies and a significantly increased incidence of osteosarcoma. Here, we generated RTS patient-derived induced pluripotent stem cells (iPSCs) to dissect the pathological signaling leading to RTS patient-associated osteosarcoma. RTS iPSC-derived osteoblasts showed defective osteogenic differentiation and gain of in vitro tumorigenic ability. Transcriptome analysis of RTS osteoblasts validated decreased bone morphogenesis while revealing aberrantly upregulated mitochondrial respiratory complex I gene expression. RTS osteoblast metabolic assays demonstrated elevated mitochondrial respiratory complex I function, increased oxidative phosphorylation (OXPHOS), and increased ATP production. Inhibition of mitochondrial respiratory complex I activity by IACS-010759 selectively suppressed cellular respiration and cell proliferation of RTS osteoblasts. Furthermore, systems analysis of IACS-010759-induced changes in RTS osteoblasts revealed that chemical inhibition of mitochondrial respiratory complex I impaired cell proliferation, induced senescence, and decreased MAPK signaling and cell cycle associated genes, but increased H19 and ribosomal protein genes. In summary, our study suggests that mitochondrial respiratory complex I is a potential therapeutic target for RTS-associated osteosarcoma and provides future insights for clinical treatment strategies.


Asunto(s)
Complejo I de Transporte de Electrón/genética , Osteosarcoma/genética , ARN Largo no Codificante/genética , RecQ Helicasas/genética , Síndrome Rothmund-Thomson/genética , Adenosina Trifosfato/biosíntesis , Proliferación Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Senescencia Celular/genética , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Mutación/genética , Osteoblastos/efectos de los fármacos , Osteogénesis/genética , Osteosarcoma/complicaciones , Osteosarcoma/patología , Oxadiazoles/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Piperidinas/farmacología , Síndrome Rothmund-Thomson/complicaciones , Síndrome Rothmund-Thomson/patología
16.
Sci Rep ; 11(1): 23549, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876614

RESUMEN

Mitochondrial oxidative phosphorylation (OXPHOS) has become an attractive target in anti-cancer studies in recent years. In this study, we found that a small molecule phenylbutenoid dimer NMac1 (Nm23-H1 activator 1), (±)-trans-3-(3,4-dimethoxyphenyl)-4-[(E)-3,4-dimethoxystyryl]cyclohex-1-ene, a previously identified anti-metastatic agent, has novel anti-proliferative effect only under glucose starvation in metastatic breast cancer cells. NMac1 causes significant activation of AMPK by decreasing ATP synthesis, lowers mitochondrial membrane potential (MMP, ΔΨm), and inhibits oxygen consumption rate (OCR) under glucose starvation. These effects of NMac1 are provoked by a consequence of OXPHOS complex I inhibition. Through the structure-activity relationship (SAR) study of NMac1 derivatives, NMac24 was identified as the most effective compound in anti-proliferation. NMac1 and NMac24 effectively suppress cancer cell proliferation in 3D-spheroid in vivo-like models only under glucose starvation. These results suggest that NMac1 and NMac24 have the potential as anti-cancer agents having cytotoxic effects selectively in glucose restricted cells.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Ciclohexenos/farmacología , Nucleósido Difosfato Quinasas NM23/efectos de los fármacos , Estirenos/farmacología , Adenosina Trifosfato/biosíntesis , Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclohexenos/química , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Activadores de Enzimas/química , Activadores de Enzimas/farmacología , Femenino , Redes Reguladoras de Genes/efectos de los fármacos , Glucosa/metabolismo , Humanos , Células MCF-7 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Metaboloma/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nucleósido Difosfato Quinasas NM23/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Estirenos/química
17.
PLoS Comput Biol ; 17(12): e1009643, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34860834

RESUMEN

Non-equilibrium thermodynamics has long been an area of substantial interest to ecologists because most fundamental biological processes, such as protein synthesis and respiration, are inherently energy-consuming. However, most of this interest has focused on developing coarse ecosystem-level maximisation principles, providing little insight into underlying mechanisms that lead to such emergent constraints. Microbial communities are a natural system to decipher this mechanistic basis because their interactions in the form of substrate consumption, metabolite production, and cross-feeding can be described explicitly in thermodynamic terms. Previous work has considered how thermodynamic constraints impact competition between pairs of species, but restrained from analysing how this manifests in complex dynamical systems. To address this gap, we develop a thermodynamic microbial community model with fully reversible reaction kinetics, which allows direct consideration of free-energy dissipation. This also allows species to interact via products rather than just substrates, increasing the dynamical complexity, and allowing a more nuanced classification of interaction types to emerge. Using this model, we find that community diversity increases with substrate lability, because greater free-energy availability allows for faster generation of niches. Thus, more niches are generated in the time frame of community establishment, leading to higher final species diversity. We also find that allowing species to make use of near-to-equilibrium reactions increases diversity in a low free-energy regime. In such a regime, two new thermodynamic interaction types that we identify here reach comparable strengths to the conventional (competition and facilitation) types, emphasising the key role that thermodynamics plays in community dynamics. Our results suggest that accounting for realistic thermodynamic constraints is vital for understanding the dynamics of real-world microbial communities.


Asunto(s)
Microbiota/fisiología , Modelos Biológicos , Adenosina Trifosfato/biosíntesis , Biodiversidad , Biología Computacional , Simulación por Computador , Ecosistema , Metabolismo Energético , Cinética , Proteoma/metabolismo , Termodinámica
18.
Nat Commun ; 12(1): 7056, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862379

RESUMEN

Mitochondrial defects are implicated in multiple diseases and aging. Exercise training is an accessible, inexpensive therapeutic intervention that can improve mitochondrial bioenergetics and quality of life. By combining multiple omics techniques with biochemical and in silico normalisation, we removed the bias arising from the training-induced increase in mitochondrial content to unearth an intricate and previously undemonstrated network of differentially prioritised mitochondrial adaptations. We show that changes in hundreds of transcripts, proteins, and lipids are not stoichiometrically linked to the overall increase in mitochondrial content. Our findings suggest enhancing electron flow to oxidative phosphorylation (OXPHOS) is more important to improve ATP generation than increasing the abundance of the OXPHOS machinery, and do not support the hypothesis that training-induced supercomplex formation enhances mitochondrial bioenergetics. Our study provides an analytical approach allowing unbiased and in-depth investigations of training-induced mitochondrial adaptations, challenging our current understanding, and calling for careful reinterpretation of previous findings.


Asunto(s)
Adaptación Fisiológica , Metabolismo Energético/fisiología , Entrenamiento de Intervalos de Alta Intensidad , Mitocondrias/metabolismo , Músculo Esquelético/fisiología , Adenosina Trifosfato/biosíntesis , Adolescente , Adulto , Biopsia , Transporte de Electrón/fisiología , Voluntarios Sanos , Humanos , Masculino , Músculo Esquelético/citología , Fosforilación Oxidativa , Proteoma , Calidad de Vida , Adulto Joven
19.
Molecules ; 26(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34770916

RESUMEN

The aim of our study was to investigate the effect of three lignans (schisandrol A, schisandrol B, and schisandrin C) on insulin secretion in rat INS-1 pancreatic ß-cells and glucose uptake in mouse C2C12 skeletal muscle cells. Schisandrol A and schisandrin C enhanced insulin secretion in response to high glucose levels with no toxic effects on INS-1 cells. The effect of schisandrin C was superior to that of gliclazide (positive control), a drug commonly used to treat type 2 diabetes (T2D). In addition, western blot analysis showed that the expression of associated proteins, including peroxisome proliferator-activated receptor γ (PPARγ), pancreatic and duodenal homeobox 1 (PDX-1), phosphatidylinositol 3-kinase (PI3K), Akt, and insulin receptor substrate-2 (IRS-2), was increased in INS-1 cells after treatment with schisandrin C. In addition, insulin secretion effect of schisandrin C were enhanced by the Bay K 8644 (L-type Ca2+ channel agonist) and glibenclamide (K+ channel blocker), were abolished by the nifedipine (L-type Ca2+ channel blocker) and diazoxide (K+ channel activator). Moreover, schisandrin C enhanced glucose uptake with no toxic effects on C2C12 cells. Western blot analysis showed that the expression of associated proteins, including insulin receptor substrate-1 (IRS-1), AMP-activated protein kinase (AMPK), PI3K, Akt, glucose transporter type 4 (GLUT-4), was increased in C2C12 cells after treatment with schisandrin C. Schisandrin C may improve hyperglycemia by enhancing insulin secretion in pancreatic ß-cells and improving glucose uptake into skeletal muscle cells. Our findings may provide evidence that schisandrin C may be beneficial in devising novel anti-T2D strategies.


Asunto(s)
Glucosa/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Insulina/biosíntesis , Lignanos/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Compuestos Policíclicos/farmacología , Adenosina Trifosfato/biosíntesis , Biomarcadores , Canales de Calcio/genética , Canales de Calcio/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Línea Celular , Ciclooctanos/química , Ciclooctanos/farmacología , Expresión Génica , Lignanos/química , Compuestos Policíclicos/química , Canales de Potasio/genética , Canales de Potasio/metabolismo
20.
Front Immunol ; 12: 694865, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745086

RESUMEN

Individuals with calcium oxalate (CaOx) kidney stones can have secondarily infected calculi which may play a role in the development of recurrent urinary tract infection (UTI). Uropathogenic Escherichia coli (UPEC) is the most common causative pathogen of UTIs. Macrophages play a critical role in host immune defense against bacterial infections. Our previous study demonstrated that oxalate, an important component of the most common type of kidney stone, impairs monocyte cellular bioenergetics and redox homeostasis. The objective of this study was to investigate whether oxalate compromises macrophage metabolism, redox status, anti-bacterial response, and immune response. Monocytes (THP-1, a human monocytic cell line) were exposed to sodium oxalate (soluble oxalate; 50 µM) for 48 hours prior to being differentiated into macrophages. Macrophages were subsequently exposed to calcium oxalate crystals (50 µM) for 48 hours followed by UPEC (MOI 1:2 or 1:5) for 2 hours. Peritoneal macrophages and bone marrow-derived macrophages (BMDM) from C57BL/6 mice were also exposed to oxalate. THP-1 macrophages treated with oxalate had decreased cellular bioenergetics, mitochondrial complex I and IV activity, and ATP levels compared to control cells. In addition, these cells had a significant increase in mitochondrial and total reactive oxygen species levels, mitochondrial gene expression, and pro-inflammatory cytokine (i.e. Interleukin-1ß, IL-1ß and Interleukin-6, IL-6) mRNA levels and secretion. In contrast, oxalate significantly decreased the mRNA levels and secretion of the anti-inflammatory cytokine, Interleukin-10 (IL-10). Further, oxalate increased the bacterial burden of primary macrophages. Our findings demonstrate that oxalate compromises macrophage metabolism, redox homeostasis, and cytokine signaling leading to a reduction in anti-bacterial response and increased infection. These data highlight a novel role of oxalate on macrophage function.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Homeostasis/efectos de los fármacos , Macrófagos/efectos de los fármacos , Oxalatos/farmacología , Adenosina Trifosfato/biosíntesis , Animales , Infecciones Bacterianas/inmunología , Citocinas/biosíntesis , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Células THP-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA