Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.689
Filtrar
Más filtros











Intervalo de año de publicación
1.
Toxins (Basel) ; 16(9)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39330833

RESUMEN

Aflatoxins belong to a class of mycotoxins, among which aflatoxin B1 (AFB1) has detrimental effects on the health of both animals and humans. It is associated with long-term exposure-induced carcinogenicity, hepatotoxicity, renal toxicity, neurotoxicity, and immunosuppressive properties, resulting in a variety of diseases. The intestine is the first barrier for human exposure to AFB1, but limited investigations have been conducted to clarify the underlying mechanisms of intestinal cytotoxicity. The mechanism of AFB1-induced cytotoxicity was investigated in this study using an integrated approach combining transcriptome, proteome, and metabolome analysis along with molecular dynamics simulation. After exposing SW480 cells to 50 µM AFB1 for 72 h, the transcriptome, proteome, and metabolome exhibited significant enrichment in pathways associated with oxidative stress, fatty acid and lipid metabolism, and glutathione metabolism. The experimental results demonstrated that AFB1 significantly reduces SW480 cells viability, and induces oxidative stress, calcium overload, mitochondrial damage, and lipid metabolism disorders.


Asunto(s)
Aflatoxina B1 , Supervivencia Celular , Simulación de Dinámica Molecular , Estrés Oxidativo , Aflatoxina B1/toxicidad , Humanos , Línea Celular Tumoral , Estrés Oxidativo/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Proteoma/efectos de los fármacos , Metaboloma/efectos de los fármacos , Proteómica , Metabolismo de los Lípidos/efectos de los fármacos
2.
Wei Sheng Yan Jiu ; 53(5): 797-804, 2024 Sep.
Artículo en Chino | MEDLINE | ID: mdl-39308112

RESUMEN

OBJECTIVE: To understand the contents of aflatoxins(AFs) in foods sold in Shanghai, and to assess the exposure assessment of and its potential health risk among residents over 15 years old in Shanghai. METHODS: A total of 8114 samples from 8 categories of food were collected in Shanghai from 2018 to 2023. The samples were detected by GB 5009.24-2016 and GB 5009.22-2016. Combined with the food consumption data of "Shanghai Diet and Health Survey", the dietary exposure assessment of aflatoxin was conducted using the margin of exposure(MOE) and the risk of liver cancer. RESULTS: The detection rates of aflatoxin B_1(AFB_1), aflatoxin B_2(AFB_2), aflatoxin G_1(AFG_1), aflatoxin G_2(AFG_2), and aflatoxin M_(1 )(AFM_1) were 8.6%, 2.0%, 0.9%, 0.2% and 0.2%, respectively. The point assessment showed that the total exposure of AFB_1 in the diet of residents aged 15 and above in Shanghai was 0.783 ng/(kg·BW·d), with the contribution rates of dietary exposure to grains and their products, nuts and their products, and vegetable oils accounting for 60.6%, 25.0% and 8.5% of AFB_1's dietary exposure, respectively. The total exposure of total aflatoxins(the sum of AFB_1, AFB_2, AFG_1 and AFG_2)(AFT) was 7.363 ng/(kg·BW·d), and the dietary exposure of grains and their products, vegetable oils, nuts and their products contribute 77.1%, 8.4% and 7.2% to the dietary exposure of AFT, respectively. The probability assessment result indicated that the average dietary exposure of residents to AFB_1 and AFT were 0.734 and 7.220 ng/(kg·BW·d), respectively, and the P95 exposure of residents were 1.170 and 11.500 ng/(kg·BW·d). The AFB_1 exposure level of residents in suburban areas was higher than that in central urban areas and exurban areas(χ~2= 16.357, P<0.001), the AFT exposure of residents in the central urban area was lower than that in the exurban areas and suburban areas(χ~2= 40.996, P<0.001). According to the MOE method, the MOE values of AFB_1 and AFT average dietary exposure for residents aged 15 and above in Shanghai were 511 and 54. The risk of liver cancer caused by dietary exposure of AFB_1 and AFT among residents aged 15 and above in Shanghai were 0.024 cases/10~5 people and 0.227 cases/10~5 people. CONCLUSION: There is AFs contamination in food sold in Shanghai, and grains and their products, nuts and their products, and vegetable oils are the main sources of AFs exposure in the diet of residents aged 15 and above in Shanghai.


Asunto(s)
Aflatoxinas , Exposición Dietética , Contaminación de Alimentos , Aflatoxinas/análisis , China , Humanos , Contaminación de Alimentos/análisis , Exposición Dietética/análisis , Adolescente , Adulto , Dieta , Masculino , Adulto Joven , Aflatoxina B1/análisis , Femenino , Medición de Riesgo , Grano Comestible/química , Aflatoxina M1/análisis , Persona de Mediana Edad
3.
Poult Sci ; 103(10): 104080, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39106705

RESUMEN

Aflatoxin B1 (AFB1) is a mycotoxin which is responsible for severe damage to the immune system of humans and livestock. Licochalcone A (Lico A), a polyphenol derived from turmeric, has attracted great attention due to its wonderful antioxidant properties. Ferroptosis, an iron-dependent cell death related to oxidative stress, which plays a crucial role in the resistance of phytochemical to immune-associated injury. Nevertheless, effects of Lico A on the bursa of broilers exposed to AFB1 remain unclear. In this work, broilers were fed diets supplemented with 2 mg/kg of AFB1 and 50 mg/kg of Lico A. Meanwhile, various concentrations of Lico A and AFB1 (15 µM) were used to stimulate macrophages. These results revealed that AFB1 resulted in more severe bursa atrophy and relative weight reduction; the expression of pro-ferroptosis protein ACSL4 and the content of malondialdehyde (MDA) were significantly elevated, while the expression of anti-ferroptosis proteins GPX4, xCT, FSP1 and the content of Glutathione (GSH) was obviously reduced. However, Lico A treatment effectively reversed these effects in the bursa of broilers. Meanwhile, in bursa and macrophages, Lico A mitigated the expression of AFB1-induced apoptosis-associated protein (Caspase-3, Bax, Bcl-2) as well as antioxidant protein (Nrf2, GCLM, HO-1). Importantly, ferroptosis was also observed in macrophages induced by AFB1. Lico A efficaciously alleviated AFB1-induced mitochondrial membrane potential decrease and reactive oxygen species (ROS) production in macrophages; in contrast, Lico A evidently inhibited AFB1-triggered ROS generation and cytotoxicity, which was disabled by the addition of Erastin. Moreover, Liproxstatin-1 significantly inhibited ROS generation induced by AFB1. In summary, the present study elucidates that the main mechanism by which Lico A attenuates AFB1-induced immunotoxicity is through the suppression of ferroptosis, apoptosis, mitochondrial damage and oxidative stress, which is promising for the improvement of immunotoxic effects of AFB1.


Asunto(s)
Aflatoxina B1 , Pollos , Ferroptosis , Macrófagos , Animales , Aflatoxina B1/toxicidad , Macrófagos/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Bolsa de Fabricio/efectos de los fármacos , Alimentación Animal/análisis , Dieta/veterinaria , Inmunotoxinas , Estrés Oxidativo/efectos de los fármacos , Masculino , Chalconas
4.
Ecotoxicol Environ Saf ; 283: 116831, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39151374

RESUMEN

BACKGROUND: Aflatoxin B1, which can penetrate the blood-brain barrier and kill neural cells, can contaminate traditional herbal medicines, posing a significant risk to human health. The present study examined cellular, cognitive and behavioral consequences of aflatoxin B1 contamination of the anti-osteoporotic medicine Radix Dipsaci. METHODS: A mouse model of osteoporosis was created by treating the animals with all-trans-retinoic acid. Then the animals were treated intragastically with water decoctions of Radix Dipsaci that contained detectable aflatoxin B1 or not. The animals were compared in terms of mineral density and mineral salt content of bone, production of pro-inflammatory factors, neurogenesis and microglial activation in hippocampus, as well as behavior and cognitive function. RESULTS: Contamination of Radix Dipsaci with aflatoxin B1 significantly reduced the medicine's content of bioactive saponins. It destroyed the ability of the herbal decoction to improve mineral density and mineral salt content in the bones of diseased mice, and it induced the production of the oxidative stress marker malondialdehyde as well as the pro-inflammatory cytokines interleukin-1ß and tumor necrosis factor-α. Aflatoxin B1 contamination inhibited formation of new neurons and increased the proportion of activated microglia in the hippocampus. These neurological changes were associated with anhedonia, behavioral despair, and deficits in short-term memory and social memory. CONCLUSION: Contamination of Radix Dipsaci with aflatoxin B1 not only eliminates the herbal decoction's anti-osteoporotic effects, but it also induces neurotoxicity that can lead to cognitive decline and behavioral abnormalities. Such contamination should be avoided through tightly regulated production and quality control of medicinal herbs.


Asunto(s)
Aflatoxina B1 , Cognición , Modelos Animales de Enfermedad , Hipocampo , Neurogénesis , Osteoporosis , Animales , Hipocampo/efectos de los fármacos , Aflatoxina B1/toxicidad , Ratones , Osteoporosis/tratamiento farmacológico , Osteoporosis/inducido químicamente , Cognición/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Dipsacaceae/química , Masculino , Contaminación de Medicamentos , Medicamentos Herbarios Chinos/farmacología
5.
Toxins (Basel) ; 16(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39195739

RESUMEN

Food crops around the world are commonly contaminated with Aspergillus flavus, which can produce the carcinogenic mycotoxin aflatoxin B1 (AFB1). The objective of this study is to test an X-ray irradiation sterilization method for studying AFB1 in contaminated maize samples in the laboratory. Maize that had been naturally contaminated with 300 ppb AFB1 by the growth of aflatoxigenic A. flavus was ground and then irradiated at 0.0, 1.0, 1.5, 2.0, 2.5, and 3.0 kGy. A. flavus was quantified by dilution plating on potato dextrose agar (PDA) and modified Rose Bengal media (MDRB) for viability and qPCR for gene presence. AFB1 was quantified by HPLC and ELISA. A. flavus viability, but not gene copies, significantly decreased with increasing doses of radiation (PDA: p < 0.001; MDRB: p < 0.001; qPCR: p = 0.026). AFB1 concentration did not significantly change with increasing doses of radiation (HPLC: p = 0.153; ELISA: p = 0.567). Our results imply that X-ray irradiation is an effective means of reducing viable A. flavus without affecting AFB1 concentrations. Reducing the hazard of fungal spores and halting AFB1 production at the targeted dose are important steps to safely and reproducibly move forward research on the global mycotoxin challenge.


Asunto(s)
Aflatoxina B1 , Aspergillus flavus , Zea mays , Zea mays/microbiología , Zea mays/efectos de la radiación , Aflatoxina B1/efectos de la radiación , Aspergillus flavus/efectos de la radiación , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo , Aspergillus flavus/efectos de los fármacos , Rayos X , Contaminación de Alimentos/prevención & control , Irradiación de Alimentos/métodos , Viabilidad Microbiana/efectos de la radiación , Viabilidad Microbiana/efectos de los fármacos
6.
Ecotoxicol Environ Saf ; 284: 116854, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142113

RESUMEN

One of the ways Aflatoxin B1 damages the liver is through ferroptosis. Ferroptosis is characterized by the build-up of lipid peroxides and reactive oxygen species (ROS) due to an excess of iron. Dietary supplements have emerged as a promising strategy for treating ferroptosis in the liver. The flavonoid component hesperetin, which is mostly present in citrus fruits, has a number of pharmacological actions, such as those against liver fibrosis, cancer, and hyperglycemia. However, hesperetin's effects and mechanisms against hepatic ferroptosis are still unknown. In this study, 24 male C57BL/6 J mice were randomly assigned to CON, AFB1 (0.45 mg/kg/day), and AFB1+ hesperetin treatment groups (40 mg/kg/day). The results showed that hesperetin improved the structural damage of the mouse liver, down-regulated inflammatory factors (Cxcl1, Cxcl2, CD80, and F4/80), and alleviated liver fibrosis induced by aflatoxin B1. Hesperetin reduced hepatic lipid peroxidation induced by iron accumulation by up-regulating the levels of antioxidant enzymes (GPX4, GSH-Px, CAT, and T-AOC). It is worth noting that hesperetin not only improved lipid peroxidation but also maintained the dynamic balance of iron ions by reducing ferritin autophagy. Mechanistically, hesperetin's ability to regulate ferritin autophagy mostly depends on the PI3K/AKT/mTOR/ULK1 pathway. In AFB1-induced HepG2 cells, the addition of PI3K inhibitor (LY294002) and AKT inhibitor (Miransertib) confirmed that hesperetin regulated the PI3K/AKT/mTOR/ULK1 pathway to inhibit ferritin autophagy and reduced the degradation of ferritin in lysosomes. In summary, our results suggest that hesperetin not only regulates the antioxidant system but also inhibits AFB1-induced ferritin hyperautophagy, thereby reducing the accumulation of iron ions to mitigate lipid peroxidation. This work provides a fresh perspective on the mechanism behind hesperetin and AFB1-induced liver damage in mice.


Asunto(s)
Aflatoxina B1 , Autofagia , Ferritinas , Hesperidina , Peroxidación de Lípido , Ratones Endogámicos C57BL , Animales , Hesperidina/farmacología , Masculino , Aflatoxina B1/toxicidad , Autofagia/efectos de los fármacos , Ratones , Peroxidación de Lípido/efectos de los fármacos , Ferritinas/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Ferroptosis/efectos de los fármacos , Antioxidantes/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/patología
7.
Anal Chim Acta ; 1323: 343085, 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39182978

RESUMEN

BACKGROUND: Aflatoxin B1 (AFB1), is a potent hepatic carcinogen which causes cancer by inducing DNA changes in the liver cells. Variety of methods have been developed for detection of AFB1 which are based on single mode detection strategy. Fabrication of novel platform which are compatible for multimodal detection of AFB1 provide robust performance for reliable detection of AFB1. In this study, we aimed to develop a robust biosensing platform that combines electrochemical and fluorescence techniques for the sensitive and specific detection of Aflatoxin B1. RESULTS: The sensing platform includes the magnetic core-shell Fe3O4@AuNPs and zeolitic imidazolate framework-8 (ZIF-8). In electrochemical mode, the applied voltametric approach was used through functionalization of glassy carbon electrode and exhibited a linear range between 0.5 and 10000 pg mL-1 with LOD of 0.32 pg mL-1. Fluorescence analysis was based on the FRET on/off status of FAM-functionalized aptamer deposited on the same platform. The FAM emission recovered by the addition of AFB1 concentration in the range of 6-60 fg mL-1 with the LOD of 0.20 fg mL-1. The real sample analysis demonstrated satisfactory relative recoveries in the range of 92.81-105.32 % and 91.66-106.66 % using the electrochemical and fluorescence methods, respectively, and its reliability was confirmed by the HPLC technique. SIGNIFICANCE: The experimental results affirm that the proposed aptasensor serves as a sensitive, efficient, and precise platform for monitoring AFB1 in both electrochemical and fluorescence detection approaches. Proposed strategy showed efficient selectivity among different analytes and was reproducible. Furthermore, the applicability of biosensor was confirmed in food and biological samples.


Asunto(s)
Aflatoxina B1 , Técnicas Biosensibles , Técnicas Electroquímicas , Oro , Aflatoxina B1/análisis , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Oro/química , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , Límite de Detección , Espectrometría de Fluorescencia , Estructuras Metalorgánicas/química , Fluorescencia , Zeolitas/química
8.
Food Chem ; 460(Pt 1): 140362, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047485

RESUMEN

Aflatoxin B1 is highly mutagenic in humans, and long-term exposure can impair immunity and increase the risk of cancer. It is imperative to develop immunoassays with convenient operation and high sensitivity to detect aflatoxin B1. This study presents a polystyrene microcolumn-mediated magnetic relaxation switching immunosensor based on a tyramine signal amplification strategy for detecting aflatoxin B1. An environmentally friendly hand-held polystyrene microcolumn was designed as an effective immunoreaction carrier, remaining 91% efficiency after 12 repeated uses. And the microcolumn provides a user-friendly procedure for rapid separation and reagent switching within 3 s by simple stirring in solution. The combination of a strong anti-interference magnetic relaxation switching biosensing and an efficient tyramine signal amplification enables the quantitative detection of aflatoxin B1 in the range of 0.01-10 ng/mL, with a limit of detection of 0.006 ng/mL. This method has potential application in the rapid detection of trace food contaminants.


Asunto(s)
Aflatoxina B1 , Técnicas Biosensibles , Contaminación de Alimentos , Poliestirenos , Tiramina , Zea mays , Aflatoxina B1/análisis , Zea mays/química , Contaminación de Alimentos/análisis , Poliestirenos/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Tiramina/análisis , Tiramina/química , Inmunoensayo/instrumentación , Inmunoensayo/métodos , Límite de Detección
9.
J Agric Food Chem ; 72(28): 15841-15853, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38957116

RESUMEN

Aflatoxin B1 (AFB1), a mycotoxin and natural carcinogen, commonly contaminates cereals and animal feeds, posing serious health risks to human and animal. In this study, Bacillus amyloliquefaciens ZG08 isolated from kimchi could effectively remove 80.93% of AFB1 within 72 h at 37 °C and pH 7.0. Metabolome and transcriptome analysis showed that metabolic processes including glycerophospholipid metabolism and amino acid metabolism were most affected in B. amyloliquefaciens ZG08 exposed to AFB1. The adaptation mechanism likely involved activation of the thioredoxin system to restore intracellular redox equilibrium. The key genes, tpx and gldA, overexpressed in Escherichia coli BL21, achieved degradation rates of 60.15% and 47.16% for 100 µg/kg AFB1 under optimal conditions of 37 °C and pH 8.0 and 45 °C and pH 7.0, respectively. The degradation products, identified as AFD1, were less cytotoxic than AFB1 in HepG2 cells. These findings suggest potential strategies for utilizing probiotics and engineered enzymes in AFB1 detoxification.


Asunto(s)
Aflatoxina B1 , Bacillus amyloliquefaciens , Proteínas Bacterianas , Biodegradación Ambiental , Aflatoxina B1/metabolismo , Aflatoxina B1/química , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/enzimología , Bacillus amyloliquefaciens/química , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Células Hep G2 , Alimentos Fermentados/microbiología , Multiómica
10.
Sci Rep ; 14(1): 17357, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075202

RESUMEN

The environmental contamination by extremophile Aspergillus species, i.e., Aflatoxin B1, is hardly controllable in Southeast Asia and Sub-Saharan Africa, which lack handling resources and controlled storage facilities. Acute aflatoxicosis poisoning from aflatoxin-prone dietary staples could cause acute hepatic necrosis, acute liver failure, and death. Here, as the cheaper, more straightforward, and facile on-site diagnostic kit is needed, we report an ultraviolet-excitable optical aptasensor based on a fluorinated ethylene propylene film strip. Molecular dynamics on the aptamer.AFB1 complex revealed that the AFB1 to the aptamer increases the overall structural stability, suggesting that the aptamer design is suitable for the intended application. Under various influencing factors, the proposed label-free strategy offers a fast 20-min on-site fabrication simplicity and 19-day shelf-life. The one-pot incubation provides an alternative to catalytic detection and exhibited 4 times reusability. The recovery of crude brown sugar, processed peanuts, and long-grain rice were 102.74 ± 0.41 (n = 3), 86.90 ± 3.38 (n = 3), and 98.50 ± 0.42 (n = 3), comparable to High-Performance Liquid Chromatography-Photodiode Array Detector results. This study is novel owing to the peculiar UV-active spectrum fingerprint and the convenient use of hydrophobic film strips that could promote breakthrough innovations and new frontiers for on-site/forensic detection of environmental pollutants.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Rayos Ultravioleta , Aflatoxina B1/análisis , Aflatoxina B1/química , Etilenos/química , Humanos , Aspergillus , Envenenamiento por Aflatoxinas , Polímeros de Fluorocarbono
11.
Anal Chem ; 96(31): 12593-12597, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39041729

RESUMEN

In this Letter, a sensitive DNA sensing platform was developed using an indium-ion-coordinated 1,1,2,2-tetra(4-carboxylphenyl)ethylene (TPE) metal-organic gel (In-MOG) as an aggregation-induced electrochemiluminescence (AIECL) emitter and nanosurface energy transfer (NSET) as an efficient quenching strategy for detecting aflatoxin B1 (AFB1), the most dangerous food toxin. The coordination occurred in indium ions, and carboxyl groups restricted the internal rotation and vibration of TPE molecules, forcing them to release photons via radiative transitions. The quenchers of microfluidic-produced gold nanoparticles were embedded in a long-tailed triangular DNA structure, where the quenching phenomenon aligned with the theory of ECL-NSET under the overlap of spectra and appropriate donor-acceptor spacing. The proposed analytical method showed a sensitive ECL response to AFB1 in the wide concentration range of 0.50-200.00 ng/mL with a limit of detection of 0.17 ng/mL. Experimental results confirmed that constraining luminescent molecules using coordination and bonding to trigger the AIECL phenomenon was a promising method to prepare signal labels for the trace detection of food toxins.


Asunto(s)
Aflatoxina B1 , Técnicas Electroquímicas , Transferencia de Energía , Mediciones Luminiscentes , Aflatoxina B1/análisis , Oro/química , Nanopartículas del Metal/química , ADN/química , Geles/química , Límite de Detección
12.
Food Microbiol ; 123: 104588, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038893

RESUMEN

Aspergillus flavus infects important crops and produces carcinogenic aflatoxins, posing a serious threat to food safety and human health. Biochemical analysis and RNA-seq were performed to investigate the effects and mechanisms of piperitone on A. flavus growth and aflatoxin B1 biosynthesis. Piperitone significantly inhibited the growth of A. flavus, AFB1 production, and its pathogenicity on peanuts and corn flour. Differentially expressed genes (DEGs) associated with the synthesis of chitin, glucan, and ergosterol were markedly down-regulated, and the ergosterol content was reduced, resulting in a disruption in the integrity of the cell wall and cell membrane. Moreover, antioxidant genes were down-regulated, the correspondingly activities of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase were reduced, and levels of superoxide anion and hydrogen peroxide were increased, leading to a burst of reactive oxygen species (ROS). Accompanied by ROS accumulation, DNA fragmentation and cell autophagy were observed, and 16 aflatoxin cluster genes were down-regulated. Overall, piperitone disrupts the integrity of the cell wall and cell membrane, triggers the accumulation of ROS, causes DNA fragmentation and cell autophagy, ultimately leading to defective growth and impaired AFB1 biosynthesis.


Asunto(s)
Aflatoxina B1 , Antifúngicos , Aspergillus flavus , Especies Reactivas de Oxígeno , Zea mays , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/genética , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo , Zea mays/microbiología , Antifúngicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Arachis/microbiología , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo
13.
Biochem Biophys Res Commun ; 731: 150394, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39024978

RESUMEN

Aflatoxin B1 (AFB1) not only causes significant losses in livestock production but also poses a serious threat to human health. It is the most carcinogenic among known chemicals. Pigs are more susceptible to AFB1 and experience a higher incidence. However, the molecular mechanism of the toxic effect of AFB1 remains unclear. In this study, we used assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA-seq to uncover chromatin accessibility and gene expression dynamics in PK-15 cells during early exposure to AFB1. We observed that the toxic effects of AFB1 involve signaling pathways such as p53, PI3K-AKT, Hippo, MAPK, TLRs, apoptosis, autophagy, and cancer pathways. Basic leucine zipper (bZIP) transcription factors (TFs), including AP-1, Fos, JunB, and Fra2, play a crucial role in regulating the biological processes involved in AFB1 challenge. Several new TFs, such as BORIS, HNF1b, Atf1, and KNRNPH2, represent potential targets for the toxic mechanism of AFB1. In addition, it is crucial to focus on the concentration of intracellular zinc ions. These findings will contribute to a better understanding of the mechanisms underlying AFB1-induced nephrotoxicity and offer new molecular targets.


Asunto(s)
Aflatoxina B1 , Cromatina , Aflatoxina B1/toxicidad , Animales , Cromatina/metabolismo , Cromatina/efectos de los fármacos , Línea Celular , Porcinos , Transcripción Genética/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación de la Expresión Génica/efectos de los fármacos
14.
Food Chem ; 458: 140231, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959803

RESUMEN

Aflatoxin B1 (AFB1), a pernicious constituent of the aflatoxin family, predominantly contaminates cereals, oils, and their derivatives. Acknowledged as a Class I carcinogen by the World Health Organization (WHO), the expeditious and quantitative discernment of AFB1 remains imperative. This investigation delineates that aluminum ions can precipitate the coalescence of iodine-modified silver nanoparticles, thereby engendering hot spots conducive for label-free AFB1 identification via Surface-Enhanced Raman Spectroscopy (SERS). This methodology manifests a remarkable limit of detection (LOD) at 0.47 fg/mL, surpassing the sensitivity thresholds of conventional survey techniques. Moreover, this method has good anti-interference ability, with a relative error of less than 10% and a relative standard deviation of less than 6% in quantitative results. Collectively, these findings illuminate the substantial application potential and viability of this approach in the quantitative analysis of AFB1, underpinning a significant advancement in food safety diagnostics.


Asunto(s)
Aflatoxina B1 , Contaminación de Alimentos , Límite de Detección , Nanopartículas del Metal , Plata , Espectrometría Raman , Aflatoxina B1/análisis , Espectrometría Raman/métodos , Plata/química , Nanopartículas del Metal/química , Contaminación de Alimentos/análisis
15.
Food Chem ; 459: 140234, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38991449

RESUMEN

The coexistence of multiple contaminates in the environment and food is of growing concern due to their extremely hazard as a well-known class I carcinogen, like aflatoxin B1 (AFB1) and benzo(α)pyrene (BaP). AFB1 and BaP are susceptible to coexistence in environmental water and edible oil, posing a significant potential risk to environmental monitoring and food safety. The remaining challenges in detecting multiple contaminates include unsatisfied sensitivity, insufficient targets selectivity, and interferences in complex matrices. Here, we developed dual-template magnetic molecularly imprinted polymers (DMMIPs) for selective extraction of dual targets in complex matrices from the environment and food. The DMMIPs were fabricated by surface imprinting with vinyl-functionalized Fe3O4 as carrier, 5,7-dimethoxycoumarin and pyrene as dummy templates, and methacrylamide as functional monomer. The DMMIPs showed excellent adsorption ability (12.73-15.80 mg/g), imprinting factors (2.01-2.58), and reusability of three adsorption-desorption cycles for AFB1 and BaP. The adsorption mechanism including hydrogen bond, electrostatic interaction and van der Waals force was confirmed by physical characterization and DFT calculation. Applying DMMIPs in magnetic solid phase extraction (MSPE) followed by high-performance liquid chromatography (HPLC) analysis enabled detection limits of 0.134 µg/L for AFB1 and 0.107 µg/L for BaP. Recovery rates for water and edible oil samples were recorded as 86.2%-110.3% with RSDs of 4.1%-11.9%. This approach demonstrates potential for simultaneous identification and extraction of multiple contaminants in environmental and food.


Asunto(s)
Aflatoxina B1 , Benzo(a)pireno , Contaminación de Alimentos , Polímeros Impresos Molecularmente , Extracción en Fase Sólida , Aflatoxina B1/análisis , Aflatoxina B1/aislamiento & purificación , Aflatoxina B1/química , Contaminación de Alimentos/análisis , Polímeros Impresos Molecularmente/química , Extracción en Fase Sólida/métodos , Extracción en Fase Sólida/instrumentación , Benzo(a)pireno/análisis , Benzo(a)pireno/aislamiento & purificación , Adsorción , Aceites de Plantas/química , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Impresión Molecular , Polímeros/química
16.
Ecotoxicol Environ Saf ; 281: 116661, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38954907

RESUMEN

OBJECTIVE: Baicalin has antioxidative, antiviral, and anti-inflammatory properties. However, its ability to alleviate oxidative stress (OS) and DNA damage in liver cells exposed to aflatoxin B1 (AFB1), a highly hepatotoxic compound, remains uncertain. In this study, the protective effects of baicalin on AFB1-induced hepatocyte injury and the mechanisms underlying those effects were investigated. METHODS: Stable cell lines expressing CYP3A4 were established using lentiviral vectors to assess oxidative stress levels by conducting assays to determine the content of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Additionally, DNA damage was evaluated by 8-hydroxy-2-deoxyguanosine (8-OHdG) and comet assays. Transcriptome sequencing, molecular docking, and in vitro experiments were conducted to determine the mechanisms underlying the effects of baicalin on AFB1-induced hepatocyte injury. In vivo, a rat model of hepatocyte injury induced by AFB1 was used to evaluate the effects of baicalin. RESULTS: In vitro, baicalin significantly attenuated AFB1-induced injury caused due to OS, as determined by a decrease in ROS, MDA, and SOD levels. Baicalin also considerably decreased AFB1-induced DNA damage in hepatocytes. This protective effect of baicalin was found to be closely associated with the TP53-mediated ferroptosis pathway. To elaborate, baicalin physically interacts with P53, leading to the suppression of the expression of GPX4 and SLC7A11, which in turn inhibits ferroptosis. In vivo findings showed that baicalin decreased DNA damage and ferroptosis in AFB1-treated rat liver tissues, as determined by a decrease in the expression of γ-H2AX and an increase in GPX4 and SLC7A11 levels. Overexpression of TP53 weakened the protective effects of baicalin. CONCLUSIONS: Baicalin can alleviate AFB1-induced OS and DNA damage in liver cells via the TP53-mediated ferroptosis pathway. In this study, a theoretical foundation was established for the use of baicalin in protecting the liver from the toxic effects of AFB1.


Asunto(s)
Aflatoxina B1 , Ferroptosis , Flavonoides , Hepatocitos , Proteína p53 Supresora de Tumor , Flavonoides/farmacología , Aflatoxina B1/toxicidad , Ferroptosis/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Animales , Proteína p53 Supresora de Tumor/metabolismo , Ratas , Estrés Oxidativo/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Masculino , Sustancias Protectoras/farmacología , Ratas Sprague-Dawley , Humanos , Especies Reactivas de Oxígeno/metabolismo
17.
Toxins (Basel) ; 16(7)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-39057925

RESUMEN

Aspergillus flavus and its carcinogenic secondary metabolites, aflatoxins, not only cause serious losses in the agricultural economy, but also endanger human health. Rhein, a compound extracted from the Chinese herbal medicine Rheum palmatum L. (Dahuang), exhibits good anti-inflammatory, anti-tumor, and anti-oxidative effects. However, its effect and underlying mechanisms against Aspergillus flavus have not yet been fully illustrated. In this study, we characterized the inhibition effect of rhein on A. flavus mycelial growth, sporulation, and aflatoxin B1 (AFB1) biosynthesis and the potential mechanism using RNA-seq analysis. The results indicate that A. flavus mycelial growth and AFB1 biosynthesis were significantly inhibited by 50 µM rhein, with a 43.83% reduction in colony diameter and 87.2% reduction in AFB1 production. The RNA-seq findings demonstrated that the differentially expressed genes primarily participated in processes such as spore formation and development, the maintenance of cell wall and membrane integrity, management of oxidative stress, the regulation of the citric acid cycle, and the biosynthesis of aflatoxin. Biochemical verification experiments further confirmed that 50 µM rhein effectively disrupted cell wall and membrane integrity and caused mitochondrial dysfunction through disrupting energy metabolism pathways, leading to decreased ATP synthesis and ROS accumulation, resulting in impaired aflatoxin biosynthesis. In addition, a pathogenicity test showed that 50 µM rhein inhibited A. flavus spore growth in peanut and maize seeds by 34.1% and 90.4%, while AFB1 biosynthesis was inhibited by 60.52% and 99.43%, respectively. In conclusion, this research expands the knowledge regarding the antifungal activity of rhein and provides a new strategy to mitigate A. flavus contamination.


Asunto(s)
Aflatoxina B1 , Antraquinonas , Aspergillus flavus , Especies Reactivas de Oxígeno , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/metabolismo , Aspergillus flavus/crecimiento & desarrollo , Antraquinonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Aflatoxina B1/biosíntesis , Aflatoxina B1/toxicidad , Metabolismo Energético/efectos de los fármacos , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Antifúngicos/farmacología
18.
Sci Rep ; 14(1): 16258, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009623

RESUMEN

Aflatoxins are mycotoxins that contaminate staple foods globally and pose a significant health risk. To the best of our knowledge, information on the occurrence of aflatoxins in Bhutanese diets is scarce. This study aimed to estimate the aflatoxin levels in selected foodstuffs in Bhutan and determine the health risk associated with aflatoxin exposure. Ten different types of food commodities were randomly collected from farmers' markets, shelves of supermarkets, and wholesale and retail shops from 20 districts of the country. The samples were subjected to analysis by an enzyme-linked immunosorbent assay for both total aflatoxins (B1, B2, G1 and G2) and aflatoxin B1. Among the 315 samples included, 48.81% and 79.35% were positive for total aflatoxins and aflatoxin B1, respectively. The overall mean total aflatoxin concentration was 11.49 ± 12.83 µg/kg, and that for B1 was 17.62 ± 23.99 µg/kg. The most prevalent food commodity with the highest aflatoxin contamination was chili products. In addition, the estimated daily intake and margin of exposure to aflatoxin B1 via the consumption of chili products ranged from 0.98 to 5.34 ng kg-1 bw day-1 and from 74.90 to 408.10, indicating a risk for public health. The liver cancer risk was estimated to be 0.01 and 0.007 cancers per year per 100,000 population resulting from the consumption of chili products. The present findings revealed the presence of total aflatoxins and aflatoxin B1 in the selected samples. The margin of exposure values was exorbitant, demanding a stringent public health measure. Notably, these results suggest the need for routine monitoring of aflatoxin contamination in the region and stress rigorous safety management strategies to reduce exposure.


Asunto(s)
Aflatoxina B1 , Contaminación de Alimentos , Bután/epidemiología , Humanos , Aflatoxina B1/análisis , Contaminación de Alimentos/análisis , Medición de Riesgo , Aflatoxinas/análisis
19.
Environ Sci Pollut Res Int ; 31(35): 48758-48772, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39039370

RESUMEN

Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are mycotoxins widely found as cereal contaminants, and their co-consumption is associated with liver cancer. Both are immunotoxic, but their interactions have been little studied. This work was aimed to evaluate in mouse spleen mononuclear cells (SMC) the effects of the exposure to AFB1 (5-50 µM), FB1 (25-250 µM), and AFB1-FB1 mixtures (MIX) on the in vitro differentiation of regulatory T cells (Treg and Tr1-like) and Th17 cells, as well as elucidate the contribution of aryl hydrocarbon receptor (Ahr) in such effects. AFB1 and mainly MIX induced cytotoxicity in activated CD4 cells via Ahr signaling. AFB1 (5 µM) increased the Treg cell differentiation, but its combination with FB1 (25 µM) also reduced Th17 cell expansion by Ahr-dependent mechanisms. Therefore, this mixture could enhance the Treg/Th17 cell ratio and favor immunosuppression and escape from tumor immunosurveillance to a greater extent than individual mycotoxins. Whereas, AFB1-FB1 mixtures at medium-high doses inhibited the Tr1-like cell expansion induced by the individual mycotoxins and affected Treg and Th17 cell differentiation in Ahr-independent and dependent manners, respectively, which could alter anti-inflammatory and Th17 immune responses. Moreover, individual FB1 altered regulatory T and Th17 cell development independently of Ahr. In conclusion, AFB1 and FB1 interact by modifying Ahr signaling, which is involved in the immunotoxicity as well as in the alteration of the differentiation of Treg, Tr1-like, and Th17 cells induced by AFB1-FB1 mixtures. Therefore, Ahr is implicated in the regulation of the anti- and pro-inflammatory responses caused by the combination of AFB1 and FB1.


Asunto(s)
Aflatoxina B1 , Diferenciación Celular , Fumonisinas , Receptores de Hidrocarburo de Aril , Linfocitos T Reguladores , Células Th17 , Receptores de Hidrocarburo de Aril/metabolismo , Aflatoxina B1/toxicidad , Animales , Células Th17/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Fumonisinas/toxicidad , Ratones , Diferenciación Celular/efectos de los fármacos
20.
J Agric Food Chem ; 72(28): 15998-16009, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38949246

RESUMEN

Aflatoxin B1 is a notorious mycotoxin with mutagenicity and carcinogenicity, posing a serious hazard to human and animal health. In this study, an AFB1-degrading dipeptidyl-peptidase III mining from Aspergillus terreus HNGD-TM15 (ADPP III) with a molecular weight of 79 kDa was identified. ADPP III exhibited optimal activity toward AFB1 at 40 °C and pH 7.0, maintaining over 80% relative activity at 80 °C. The key amino acid residues that affected enzyme activity were identified as H450, E451, H455, and E509 via bioinformatic analysis and site-directed mutagenesis. The degradation product of ADPP III toward AFB1 was verified to be AFD1. The zebrafish hepatotoxicity assay verified the toxicity of the AFB1 degradation product was significantly weaker than that of AFB1. The result of this study proved that ADPP III presented a promising prospect for industrial application in food and feed detoxification.


Asunto(s)
Aflatoxina B1 , Aspergillus , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Proteínas Fúngicas , Pez Cebra , Aflatoxina B1/metabolismo , Aflatoxina B1/química , Aspergillus/enzimología , Aspergillus/genética , Aspergillus/química , Aspergillus/metabolismo , Animales , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Estabilidad de Enzimas , Cinética , Peso Molecular , Concentración de Iones de Hidrógeno , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA