Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.103
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Chem Phys ; 161(5)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39087548

RESUMEN

In this study, peptides designed using fragments of an antifreeze protein (AFP) from the freeze-tolerant insect Tenebrio molitor, TmAFP, were evaluated as inhibitors of clathrate hydrate formation. It was found that these peptides exhibit inhibitory effects by both direct and indirect mechanisms. The direct mechanism involves the displacement of methane molecules by hydrophobic methyl groups from threonine residues, preventing their diffusion to the hydrate surface. The indirect mechanism is characterized by the formation of cylindrical gas bubbles, the morphology of which reduces the pressure difference at the bubble interface, thereby slowing methane transport. The transfer of methane to the hydrate interface is primarily dominated by gas bubbles in the presence of antifreeze peptides. Spherical bubbles facilitate methane migration and potentially accelerate hydrate formation; conversely, the promotion of a cylindrical bubble morphology by two of the designed systems was found to mitigate this effect, leading to slower methane transport and reduced hydrate growth. These findings provide valuable guidance for the design of effective peptide-based inhibitors of natural-gas hydrate formation with potential applications in the energy and environmental sectors.


Asunto(s)
Proteínas Anticongelantes , Metano , Tenebrio , Agua , Proteínas Anticongelantes/química , Cinética , Metano/química , Metano/análogos & derivados , Agua/química , Tenebrio/química , Animales , Gases/química , Péptidos/química , Péptidos/farmacología
2.
Ultrason Sonochem ; 108: 106978, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971086

RESUMEN

Drying, as a critical step in the production of air-dried beef, has a direct impact on the quality of the final product. Innovatively, a composite system incorporating contact ultrasound (CU) and infrared radiation (IR) as auxiliary measures within a hot air drying (HAD) framework was built in this research, and the effects of these techniques on the drying kinetics, protein denaturation, and moisture transformation of air-dried beef were investigated. In comparison to HAD treatment, the integrated CU and IR (CU-IRD) system displayed marked enhancements in heat and moisture transport efficiency, thereby saving 36.84% of time expenditure and contributing favorably to the improved moisture distribution of the end-product. This was mainly ascribed to the denaturation of myosin induced by IR thermal effect and the micro-channel produced by CU sponge effect, thus increasing T2 relaxation time and the proportion of free water. In conclusion, the composite system solved the problem of surface hardening and reduces hardness and chewiness of air-dried beef by 40.42% and 45.25% respectively, but inevitably increased the energy burden by 41.60%.


Asunto(s)
Aire , Desecación , Rayos Infrarrojos , Agua , Agua/química , Cinética , Desecación/métodos , Bovinos , Animales , Ondas Ultrasónicas , Calor , Carne Roja , Fenómenos Físicos
3.
AAPS J ; 26(4): 78, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981948

RESUMEN

A soft-core oil-in-water (o/w) nanoemulsion (NE) is composed of nanometer (nm) sized oil droplets, stabilized by a surfactant layer and dispersed in a continuous bulky water phase. Characterization of the o/w NE molecule arrangements non-invasively, particularly the drug phase distribution (DPD) and its correlation to oil globule size (OGS), remains a challenge. Here we demonstrated the analytical methods of intact 19F Nuclear Magnetic Resonance (NMR) and 1H diffusion ordered spectroscopy (DOSY) NMR for their specificity in measuring DPD and OGS, respectively, on three NE formulations containing the active ingredient difluprednate (DFPN) at the same concentration. The results illustrated synchronized molecular rearrangement reflected in the DPD and OGS upon alterations in formulation. Addition of surfactant resulted in a higher DPD in the surfactant layer, and concomitantly smaller OGS. Mechanic perturbation converted most of the NE globules to the smaller thermodynamically stable microemulsion (ME) globules, changing both DPD and OGS to ME phase. These microstructure changes were not observed using 1D 1H NMR; and dynamic light scattering (DLS) was only sensitive to OGS of ME globule in mechanically perturbed formulation. Collectively, the study illustrated the specificity and essential role of intact NMR methods in measuring the critical microstructure attributes of soft-core NE systems quickly, accurately, and non-invasively. Therefore, the selected NMR approach can be a unique diagnostic tool of molecular microstructure or Q3 property in o/w NE formulation development, and quality assurance after manufacture process or excipient component changes.


Asunto(s)
Emulsiones , Espectroscopía de Resonancia Magnética , Aceites , Agua , Espectroscopía de Resonancia Magnética/métodos , Agua/química , Aceites/química , Tensoactivos/química , Fluprednisolona/química , Fluprednisolona/análogos & derivados , Tamaño de la Partícula , Composición de Medicamentos/métodos , Nanopartículas/química , Química Farmacéutica/métodos
4.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999001

RESUMEN

The root of Adenophora tetraphylla (Thunb.) Fisch. is a common Chinese materia medica and the polysaccharides which have been isolated from the plant are important active components for medicinal purposes. The objective of the current study was to optimize the extraction parameters and evaluate the glucose consumption activity for Adenophorae root polysaccharides (ARPs). The optimization of ARP extraction was evaluated with preliminary experiments and using response surface methodology (RSM). The conditions investigated were 35-45 °C extraction temperature, 20-30 (v/w) water-to-solid ratio, and 3-5 h extraction time. The antidiabetic effects of ARPs for the glucose consumption activity were evaluated in HepG2 cells. The statistical analyses of the experiments indicated that temperature, water-to-solid ratio, and extraction time significantly affected ARP yield (p < 0.01). The correlation analysis revealed that the experimental data were well-aligned with a quadratic polynomial model, as evidenced by the mathematical regression model's fit. The optimal conditions for maximum ARP yield were 45 °C extraction temperature and 28.47:1 (mL/g) water-to-solid ratio with a 4.60 h extraction time. Extracts from these conditions showed significant activity of promoting cell proliferation from 11.26% (p < 0.001) to 32.47% (p < 0.001) at a dose of 50 µg/mL to 800 µg/mL and increasing glucose consumption to 75.86% (p < 0.001) at 250 µg/mL on HepG2 cells. This study provides a sustainable alternative for the industry since it allowed simplified handling and a specific quantity of ARPs. Furthermore, ARPs might directly stimulate the glucose consumption in the liver and showed no cytotoxicity; therefore, ARPs probably could be taken as a potential natural source of antidiabetic materials.


Asunto(s)
Glucosa , Raíces de Plantas , Polisacáridos , Agua , Humanos , Células Hep G2 , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Glucosa/metabolismo , Raíces de Plantas/química , Agua/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Solubilidad , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación
5.
Molecules ; 29(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999032

RESUMEN

Most research on saffron has focused on its composition and beneficial effects, while the culinary perspective to enhance its gastronomic potential remains unexplored. This study aims to define the transfer of the main compounds responsible for color, flavor, and aromatic properties, evaluating three critical variables: temperature (60 °C, 80 °C and 100 °C), infusion time (ranging from 10 to 30 min), and the composition of the medium (water, oil, and water/oil). Samples were analyzed using the LC-QTOF MS/MS and ISO 3632-1:2011 methods. The major compounds were crocins, including trans-crocin and picrocrocin. Among the flavonoids, kaempferol 3-O-sophoroside stands out. Regarding extraction conditions, crocins, glycoside flavonoids, and picrocrocin were enhanced in water, the former in 100% water and at low temperatures, while picrocrocin proved to be the most stable compound with extraction favored at high temperatures. The variable with the greatest incidence of picrocrocin isolation seemed to be the concentration of water since water/oil compositions reported higher concentrations. Safranal and kaempferol were enriched in the oil phase and at lower temperatures. This study provides a chemical interpretation for the appropriate gastronomic use of saffron according to its versatility. Finally, the determination of safranal using the ISO method did not correlate with that obtained using chromatography.


Asunto(s)
Carotenoides , Crocus , Extractos Vegetales , Temperatura , Agua , Crocus/química , Agua/química , Carotenoides/análisis , Carotenoides/química , Extractos Vegetales/química , Glucósidos/análisis , Glucósidos/química , Espectrometría de Masas en Tándem/métodos , Terpenos/análisis , Terpenos/química , Flavonoides/análisis , Flavonoides/química , Ciclohexenos/análisis , Fitoquímicos/química , Fitoquímicos/análisis , Quempferoles/análisis , Quempferoles/química , Cromatografía Liquida/métodos
6.
Pharm Res ; 41(7): 1521-1531, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38955998

RESUMEN

PURPOSE: Employing polymer additives is an effective strategy to realize the manipulation of polymorphic transformation. However, the manipulation mechanism is still not clear, which limit the precise selection of polymeric excipients and the development of pharmaceutical formulations. METHODS: The solubility of cimetidine (CIM) in acetonitrile/water mixtures were measured. And the polymorphic transformation from CIM form A to form B with the addition of different polymers was monitored by Raman spectroscopy. Furthermore, the manipulation effect of polymers was determined based on the results of experiments and molecular simulations. RESULTS: The solubility of form A is consistently higher than that of form B, which indicate that form B is the thermodynamically stable form within the examined temperature range. The presence of polyvinylpyrrolidone (PVP) of a shorter chain length could have a stronger inhibitory effect on the phase transformation process of metastable form, whereas polyethylene glycol (PEG) had almost no impact. The nucleation kinetics experiments and molecular dynamic simulation results showed that only PVP molecules could significantly decrease the nucleation rate of CIM, due to the ability of reducing solute molecular diffusion and solute-solute molecular interaction. A combination of crystal growth rate measurements and calculations of the interaction energies between PVP and the crystal faces of CIM indicate that smaller molecular weight PVP can suppress crystal growth more effectively. CONCLUSION: PVP K16-18 has more impact on the stabilization of CIM form A and inhibition of the phase transformation process. The manipulation mechanism of polymer additives in the polymorphic transformation of CIM was proposed.


Asunto(s)
Cimetidina , Simulación de Dinámica Molecular , Povidona , Solubilidad , Cimetidina/química , Povidona/química , Polietilenglicoles/química , Polímeros/química , Cristalización , Excipientes/química , Espectrometría Raman , Termodinámica , Cinética , Agua/química
7.
Sci Adv ; 10(28): eadl3591, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38985863

RESUMEN

The hydrogen isotopic composition (δ2H) of plant compounds is increasingly used as a hydroclimatic proxy; however, the interpretation of δ2H values is hampered by potential coeffecting biochemical and biophysical processes. Here, we studied δ2H values of water and carbohydrates in leaves and roots, and of leaf n-alkanes, in two distinct tobacco (Nicotiana sylvestris) experiments. Large differences in plant performance and biochemistry resulted from (a) soil fertilization with varying nitrogen (N) species ratios and (b) knockout-induced starch deficiency. We observed a strong 2H-enrichment in sugars and starch with a decreasing performance induced by increasing NO3-/NH4+ ratios and starch deficiency, as well as from leaves to roots. However, δ2H values of cellulose and n-alkanes were less affected. We show that relative concentrations of sugars and starch, interlinked with leaf gas exchange, shape δ2H values of carbohydrates. We thus provide insights into drivers of hydrogen isotopic composition of plant compounds and into the mechanistic modeling of plant cellulose δ2H values.


Asunto(s)
Carbohidratos , Hidrógeno , Hojas de la Planta , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Hidrógeno/análisis , Carbohidratos/química , Carbohidratos/análisis , Almidón/química , Nicotiana/química , Lípidos/análisis , Lípidos/química , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Metabolismo de los Hidratos de Carbono , Deuterio/química , Alcanos/análisis , Alcanos/química , Agua/química
8.
ACS Appl Mater Interfaces ; 16(27): 34510-34523, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38946393

RESUMEN

Photoluminescence (PL) metal nanoclusters (NCs) have attracted extensive attention due to their excellent physicochemical properties, good biocompatibility, and broad application prospects. However, developing water-soluble PL metal NCs with a high quantum yield (QY) and high stability for visual drug delivery remains a great challenge. Herein, we have synthesized ultrabright l-Arg-ATT-Au/Ag NCs (Au/Ag NCs) with a PL QY as high as 73% and excellent photostability by heteroatom doping and surface rigidization in aqueous solution. The as-prepared Au/Ag NCs can maintain a high QY of over 61% in a wide pH range and various ionic environments as well as a respectable resistance to photobleaching. The results from structure characterization and steady-state and time-resolved spectroscopic analysis reveal that Ag doping into Au NCs not only effectively modifies the electronic structure and photostability but also significantly regulates the interfacial dynamics of the excited states and enhances the PL QY of Au/Ag NCs. Studies in vitro indicate Au/Ag NCs have a high loading capacity and pH-triggered release ability of doxorubicin (DOX) that can be visualized from the quenching and recovery of PL intensity and lifetime. Imaging-guided experiments in cancer cells show that DOX of Au/Ag NCs-DOX agents can be efficiently delivered and released in the nucleus with preferential accumulation in the nucleolus, facilitating deep insight into the drug action sites and pharmacological mechanisms. Moreover, the evaluation of anticancer activity in vivo reveals an outstanding suppression rate of 90.2% for mice tumors. These findings demonstrate Au/Ag NCs to be a superior platform for bioimaging and visual drug delivery in biomedical applications.


Asunto(s)
Doxorrubicina , Oro , Nanopartículas del Metal , Plata , Agua , Oro/química , Plata/química , Plata/farmacología , Humanos , Animales , Doxorrubicina/química , Doxorrubicina/farmacología , Nanopartículas del Metal/química , Ratones , Agua/química , Sistemas de Liberación de Medicamentos , Células HeLa , Portadores de Fármacos/química , Solubilidad , Liberación de Fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Luminiscencia
9.
PLoS One ; 19(7): e0307109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39024367

RESUMEN

The prevention and control of natural gas hydrates is an important link in ensuring winter production. Traditional thermodynamic inhibitors, like methanol, are commonly utilized due to their low unit costs and pricing, but they come with considerable safety issues when used on-site due to their high toxicity, flammability, and explosive potential. A cost-effective and eco-friendly hydrate inhibitor was created by combining light polyol amine with other ingredients to solve this problem. At a concentration of 30%, the product has a flash point greater than 80°C and a solidification point of -45°C. With success rates of 99% and 100%, respectively, it was used for winter casing pre-injection anti-freezing operations and balancing tank defoamer anti-freezing operations. Experiments have demonstrated the effectiveness of this inhibitor in preventing the formation of natural gas hydrates. In wintertime on-site anti-freezing activities, the projected cost can be substituted for methanol, as it is essentially equivalent to methanol.


Asunto(s)
Gas Natural , Agua/química , Estaciones del Año , Termodinámica
10.
Biochemistry ; 63(14): 1752-1760, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38967549

RESUMEN

The wildtype H-Ras protein functions as a molecular switch in a variety of cell signaling pathways, and mutations to key residues result in a constitutively active oncoprotein. However, there is some debate regarding the mechanism of the intrinsic GTPase activity of H-Ras. It has been hypothesized that ordered water molecules are coordinated at the active site by Q61, a highly transforming amino acid site, and Y32, a position that has not previously been investigated. Here, we examine the electrostatic contribution of the Y32 position to GTP hydrolysis by comparing the rate of GTP hydrolysis of Y32X mutants to the vibrational energy shift of each mutation measured by a nearby thiocyanate vibrational probe to estimate changes in the electrostatic environment caused by changes at the Y32 position. We further compared vibrational energy shifts for each mutation to the hydration potential of the respective side chain and demonstrated that Y32 is less critical for recruiting water molecules into the active site to promote hydrolysis than Q61. Our results show a clear interplay between a steric contribution from Y32 and an electrostatic contribution from Q61 that are both critical for intrinsic GTP hydrolysis.


Asunto(s)
Guanosina Trifosfato , Electricidad Estática , Tiocianatos , Hidrólisis , Tiocianatos/química , Tiocianatos/metabolismo , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Tirosina/química , Tirosina/metabolismo , Tirosina/genética , Mutación , Dominio Catalítico , Agua/química , Agua/metabolismo , Modelos Moleculares
11.
J Med Chem ; 67(13): 11138-11151, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38951717

RESUMEN

Using a multigram-scalable synthesis, we obtained nine dinuclear complexes based on nonendogenous iron(I) centers and featuring variable aminocarbyne and P-ligands. One compound from the series (FEACYP) emerged for its strong cytotoxicity in vitro against four human cancer cell lines, surpassing the activity of cisplatin by 3-6 times in three cell lines, with an average selectivity index of 6.2 compared to noncancerous HEK293 cells. FEACYP demonstrated outstanding water solubility (15 g/L) and stability in physiological-like solutions. It confirmed its superior antiproliferative activity when tested in 3D spheroids of human pancreatic cancer cells and showed a capacity to inhibit thioredoxin reductase (TrxR) similar to auranofin. In vivo treatment of murine LLC carcinoma with FEACYP (8 mg kg-1 dose) led to excellent tumor growth suppression (88%) on day 15, with no signs of systemic toxicity and only limited body weight loss.


Asunto(s)
Adamantano , Antineoplásicos , Solubilidad , Humanos , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ratones , Adamantano/farmacología , Adamantano/análogos & derivados , Adamantano/química , Adamantano/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Hierro/química , Hierro/metabolismo , Agua/química , Ensayos de Selección de Medicamentos Antitumorales , Fosfinas/química , Fosfinas/farmacología , Estabilidad de Medicamentos , Células HEK293 , Compuestos Organofosforados
12.
PLoS One ; 19(7): e0306418, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39042616

RESUMEN

The polycyclic aromatic hydrocarbon content of water (four surface water, six underground water (borehole water), seven sachet water), barbecued food and their fresh equivalents (barbecued beef, fish, plantain, pork, yam, chicken, chevon, potato, corn), oil (three palm oil, nine vegetable oil), and fresh vegetable samples (water leaf, bitter leaf, cabbage, carrot, cucumber, pumpkin, garlic, ginger, green leaf, Gnetum Africana, onion, pepper) were determined by GC-MS analysis. The current study also determined the estimated lifetime cancer risk from ingesting polycyclic aromatic hydrocarbon-contaminated food. The polycyclic aromatic hydrocarbon content of water, oil, vegetable, and food samples were within the United States Environmental Protection Agency/World Health Organization safe limits. The naphthalene, benzo(b)fluoranthene, and benzo(k)fluoranthene levels in surface water were significantly higher than in borehole samples (P = 0.000, 0.047, 0.047). Vegetable oils had higher anthracene and chrysene compared to palm oil (P = 0.023 and 0.032). Significant variations were observed in levels of naphthalene, acenaphthylene, phenanthrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and dibenzo(a,h)anthracene among the barbecued and fresh food samples (P <0.05). Barbecued pork, potato, and corn had significantly higher naphthalene compared to their fresh equivalents (P = 0.002, 0.017, and <0.001). Consumption of barbecued food and surface water may be associated with higher exposure risk to polycyclic aromatic hydrocarbons which may predispose to increased cancer health risk. The current work explores in depth the concentration of polycyclic aromatic hydrocarbons in different dietary categories that pose direct risk to humans via direct consumption. These findings add knowledge to support future considerations for human health.


Asunto(s)
Neoplasias , Hidrocarburos Policíclicos Aromáticos , Verduras , Nigeria , Hidrocarburos Policíclicos Aromáticos/análisis , Verduras/química , Humanos , Medición de Riesgo , Neoplasias/epidemiología , Neoplasias/etiología , Contaminación de Alimentos/análisis , Agua/química , Agua/análisis , Cromatografía de Gases y Espectrometría de Masas , Crisenos/análisis , Fenantrenos/análisis , Análisis de los Alimentos , Contaminantes Químicos del Agua/análisis , Animales , Antracenos , Naftalenos
13.
Environ Sci Pollut Res Int ; 31(33): 45761-45775, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38976190

RESUMEN

In this study, the goal was to develop a method for detecting and classifying organophosphorus pesticides (OPPs) in bodies of water. Sixty-five samples with different concentrations were prepared for each of the organophosphorus pesticides, namely chlorpyrifos, acephate, parathion-methyl, trichlorphon, dichlorvos, profenofos, malathion, dimethoate, fenthion, and phoxim, respectively. Firstly, the spectral data of all the samples was obtained using a UV-visible spectrometer. Secondly, five preprocessing methods, six manifold learning methods, and five machine learning algorithms were utilized to build detection models for identifying OPPs in water bodies. The findings indicate that the accuracy of machine learning models trained on data preprocessed using convolutional smoothing + first-order derivatives (SG + FD) outperforms that of models trained on data preprocessed using other methods. The backpropagation neural network (BPNN) model exhibited the highest accuracy rate at 99.95%, followed by the support vector machine (SVM) and convolutional neural network (CNN) models, both at 99.92%. The extreme learning machine (ELM) and K-nearest neighbors (KNN) models demonstrated accuracy rates of 99.84% and 99.81%, respectively. Following the application of a manifold learning algorithm to the full-wavelength data set for the purpose of dimensionality reduction, the data was then visualized in the first three dimensions. The results demonstrate that the t-distributed domain embedding (t-SNE) algorithm is superior, exhibiting dense clustering of similar clusters and clear classification of dissimilar ones. SG + FD-t-SNE-SVM ranks highest among the feature extraction models in terms of performance. The feature extraction dimension was set to 4, and the average classification accuracy was 99.98%, which slightly improved the prediction performance over the full-wavelength model. As shown in this study, the ultraviolet-visible (UV-visible) spectroscopy system combined with the t-SNE and SVM algorithms can effectively identify and classify OPPs in waterbodies.


Asunto(s)
Redes Neurales de la Computación , Compuestos Organofosforados , Plaguicidas , Contaminantes Químicos del Agua , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Aprendizaje Automático , Máquina de Vectores de Soporte , Monitoreo del Ambiente/métodos , Algoritmos , Agua/química
14.
Int J Mol Sci ; 25(14)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39062966

RESUMEN

Membrane-based pervaporation (PV) for organic solvent dehydration is of great significance in the chemical and petrochemical industries. In this work, high-aluminum ZSM-5 zeolite membranes were synthesized by a fluoride-assisted secondary growth on α-alumina tubular supports using mordenite framework inverted (MFI) nanoseeds (~110 nm) and a template-free synthesis solution with a low Si/Al ratio of 10. Characterization by XRD, EDX, and SEM revealed that the prepared membrane was a pure-phase ZSM-5 zeolite membrane with a Si/Al ratio of 3.8 and a thickness of 2.8 µm. Subsequently, two categories of PV performance parameters (i.e., flux versus separation factor and permeance versus selectivity) were used to systematically examine the effects of operating conditions on the PV dehydration performance of different organic solvents (methanol, ethanol, n-propanol, and isopropanol), and their PV mechanisms were explored. Employing permeance and selectivity effectively disentangles the influence of operating conditions on PV performance, thereby elucidating the inherent contribution of membranes to separation performance. The results show that the mass transfer during PV dehydration of organic solvents was mainly dominated by the adsorption-diffusion mechanism. Furthermore, the diffusion of highly polar water and methanol molecules within membrane pores had a strong mutual slowing-down effect, resulting in significantly lower permeance than other binary systems. However, the mass transfer process for water/low-polar organic solvent (ethanol, n-propanol, and isopropanol) mixtures was mainly controlled by competitive adsorption caused by affinity differences. In addition, the high-aluminum ZSM-5 zeolite membrane exhibited superior PV dehydration performance for water/isopropanol mixtures.


Asunto(s)
Membranas Artificiales , Solventes , Zeolitas , Zeolitas/química , Solventes/química , Agua/química , 2-Propanol/química , Aluminio/química , Etanol/química
15.
Anal Chim Acta ; 1316: 342861, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969410

RESUMEN

BACKGROUND: The high toxicity of hexavalent chromium [Cr (VI)] could not only cause harmful effects on humans, including carcinogenicity, respiratory issues, genetic damage, and skin irritation, but also contaminate drinking water sources, aquatic ecosystems, and soil, impairing the reproductive capacity, growth, and survival of organisms. Due to these harmful effects, detecting toxic Cr (VI) is of great significance. However, the rapid, simple, and efficient detection at a low Cr (VI) concentration is extremely challenging, especially in an acidic condition (existing as HCrO4-) due to its low adsorption free energy. RESULTS: A diketopyrrolopyrrole-based small molecule (DPPT-PhSMe) is designed and characterized to act as a chemosensor, which allows a high selectivity to Cr (VI) at an acidic condition with a low limit of detection to 10-8 M that is two orders of magnitude lower than the cut of limit (1 µM) recommended by World Health Organization (WHO). Mechanism study indicates that the rich sulfur atoms enhance the affinity to HCrO4-. Combining with favorable features of diketopyrrolopyrrole, DPPT-PhSMe not only allows dual-mode detection (colorimetric and spectroscopic) to Cr (VI), but also enables disposable paper-based sensor for naked-eye detection to Cr (VI) from fully aqueous media. The investigation of DPPT-PhSMe chemosensor for the quantification of Cr (VI) in real life samples demonstrates a high reliability and accuracy with an average percentage recovery of 102.1 % ± 4 (n = 3). SIGNIFICANCE: DPPT-PhSMe represents the first diketopyrrolopyrrole-derived chemosensor for efficient detection to toxic Cr (VI), not only providing a targeted solution to the bottleneck of Cr (VI) detection in acidic conditions (existing as HCrO4-) caused by its low adsorption free energy, but also opening a new scenario for simple, selective, and efficient Cr (VI) detection with conjugated dye molecules.


Asunto(s)
Cromo , Límite de Detección , Pirroles , Contaminantes Químicos del Agua , Cromo/análisis , Pirroles/química , Contaminantes Químicos del Agua/análisis , Cetonas/química , Cetonas/análisis , Agua/química
16.
Int J Pharm ; 661: 124467, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004293

RESUMEN

Tablet disintegration is crucial for drug release and subsequent systemic absorption. Although factors affecting the disintegrant's functionality have been extensively studied, the impact of wet granulation on the performance of disintegrants in a poorly water-soluble matrix has received much less attention. In this study, the disintegrants, crospovidone (XPVP), croscarmellose sodium (CCS) and sodium starch glycolate (SSG), were wet-granulated with dibasic calcium phosphate dihydrate as the poorly water-soluble matrix and polyvinylpyrrolidone as the binder. The effect of wet granulation was studied by evaluating tablet tensile strength and disintegratability. Comparison between tablets with granulated or ungranulated disintegrants as well those without disintegrants were also made. Different formulations showed different degrees of sensitivity to changes in tablet tensile strength and disintegratability post-wet granulation. Tablet tensile strength decreased for tablets with granulated disintegrant XPVP or CCS, but to a smaller extent for SSG. While tablets with granulated XPVP or CCS had increased disintegration time, the increment was lesser than for SSG, suggesting that wet granulation impacted a swelling disintegrant more. The findings showed that tablets with wet-granulated disintegrant had altered the disintegrant's functionality. These findings could provide better insights into changes in the disintegrant's functionality after wet granulation.


Asunto(s)
Fosfatos de Calcio , Carboximetilcelulosa de Sodio , Excipientes , Povidona , Solubilidad , Almidón , Comprimidos , Resistencia a la Tracción , Agua , Carboximetilcelulosa de Sodio/química , Povidona/química , Almidón/química , Almidón/análogos & derivados , Excipientes/química , Agua/química , Fosfatos de Calcio/química , Composición de Medicamentos/métodos , Liberación de Fármacos , Química Farmacéutica/métodos
17.
J Phys Chem Lett ; 15(30): 7620-7627, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39029245

RESUMEN

We examined the effects of trimethylamine N-oxide (TMAO) and urea (known osmolytes) on the liquid-liquid phase separation (LLPS) of fused in sarcoma (FUS) and three FUS-LLPS states: LLPS states at atmospheric pressure with low- and high-salt concentrations and a re-entrant LLPS state above 2 kbar. Temperature- and pressure-scan turbidity measurements revealed that TMAO and urea contributed to stabilizing and destabilizing LLPS, respectively. These results can be attributed to the excluded volume effect of TMAO (preferential hydration) and preferential interaction of urea with proteins. Additionally, TMAO counteracted the effects of equimolar urea on LLPS, a phenomenon not previously reported. The concept of the m-value for osmolyte-induced protein folding and unfolding can be applied to the osmolyte's effects on LLPS. In conclusion, biomolecular LLPS can be modulated by preferential hydration and the interaction of small osmolytes with proteins, thereby facilitating LLPS formation, even in extreme environments characterized by high-salt, high-urea, and high-pressure conditions.


Asunto(s)
Metilaminas , Urea , Metilaminas/química , Urea/química , Agua/química , Pliegue de Proteína , Proteínas/química , Temperatura , Separación de Fases
18.
Phys Chem Chem Phys ; 26(30): 20280-20295, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39041228

RESUMEN

This study investigates the factors modulating the reactivity of 5'-deoxyadenosyl (5'dAdo˙) radical, a potent hydrogen atom abstractor that forms in the active sites of radical SAM enzymes and that otherwise undergoes a rapid self-decay in aqueous solution. Here, we compare hydrogen atom abstraction (HAA) reactions between native substrates of radical SAM enzymes and 5'dAdo˙ in aqueous solution and in two enzymatic microenvironments. With that we reveal that HAA efficiency of 5'dAdo˙ is due to (i) the in situ formation of 5'dAdo˙ in a pre-ordered complex with a substrate, which attenuates the unfavorable effect of substrate:5'dAdo˙ complex formation, and (ii) the prevention of the conformational changes associated with self-decay by a tight active-site cavity. The enzymatic cavity, however, does not have a strong effect on the HAA activity of 5'dAdo˙. Thus, we performed an analysis of in-water HAA performed by 5'dAdo˙ based on a three-component thermodynamic model incorporating the diagonal effect of the free energy of reaction, and the off-diagonal effect of asynchronicity and frustration. To this aim, we took advantage of the straightforward relationship between the off-diagonal thermodynamic effects and the electronic-structure descriptor - the redistribution of charge between the reactants during the reaction. It allows to access HAA-competent redox and acidobasic properties of 5'dAdo˙ that are otherwise unavailable due to its instability upon one-electron reduction and protonation. The results show that all reactions feature a favourable thermodynamic driving force and tunneling, the latter of which lowers systematically barriers by ∼2 kcal mol-1. In addition, most of the reactions experience a favourable off-diagonal thermodynamic contribution. In HAA reactions, 5'dAdo˙ acts as a weak oxidant as well as a base, also 5'dAdo˙-promoted HAA reactions proceed with a quite low degree of asynchronicity of proton and electron transfer. Finally, the study elucidates the crucial and dual role of asynchronicity. It directly lowers the barrier as a part of the off-diagonal thermodynamic contribution, but also indirectly increases the non-thermodynamic part of the barrier by presumably controlling the adiabatic coupling between proton and electron transfer. The latter signals that the reaction proceeds as a hydrogen atom transfer rather than a proton-coupled electron transfer.


Asunto(s)
Termodinámica , Radicales Libres/química , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Desoxiadenosinas/química , Hidrógeno/química , Dominio Catalítico , Agua/química
19.
Phys Chem Chem Phys ; 26(30): 20440-20449, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39021115

RESUMEN

The synergy between hyaluronic acid (HA) and lipid molecules plays a crucial role in synovial fluids, cell coatings, etc. Diseased cells in cancer and arthritis show changes in HA concentration and chain size, impacting the viscoelastic and mechanical properties of the cells. Although the solution behavior of HA is known in experiments, a molecular-level understanding of the role of HA in the dynamics at the interface of HA-water and the cellular boundary is lacking. Here, we perform atomistic molecular dynamics simulation of short HA chains in an explicit water solvent in the presence of a DPPC bilayer, relevant in pathological cases. We identify a stable interface between HA-water and the bilayer where the water molecules are in contact with the bilayer and the HA chains are located away without any direct contact. Both translation and rotation of the interfacial waters in contact with the lipid bilayer and translation of the HA chains exhibit subdiffusive behavior. The diffusive behavior sets in slightly away from the bilayer, where the diffusion coefficients of water and HA decrease monotonically with increase in HA concentration. On the contrary, the dependence on HA chain size is only marginal due to enhanced chain flexibility as their size increases.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina , Ácido Hialurónico , Membrana Dobles de Lípidos , Simulación de Dinámica Molecular , Agua , Ácido Hialurónico/química , Membrana Dobles de Lípidos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Agua/química , Difusión , Suspensiones/química
20.
J Agric Food Chem ; 72(30): 16988-16997, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39024566

RESUMEN

Reducing salt intake without affecting the saltiness perception remains a great challenge for the food industry. Herein, the demulsification of water droplets and air bubbles was controlled to modulate the release of sodium from oleogel-stabilized water-in-oil emulsions (OGEs) stabilized by monoglyceride crystals. The effect of monoglycerides with carbon chain length (glycerol monolaurate-GML, glyceryl monostearate-GMS, and glycerol monopalmitate-GMP) and homogenization methods (hand-shaking or high-speed blender) on sodium release and saltiness was investigated by in vitro and in vivo oral processing tests. Milky-white stable emulsions were formed with both water droplets and air bubbles dispersing in the oil phase, regardless of the selected homogenization methods. Air bubbles were more unstable than water droplets during oral digestion. GML OGEs with more and larger air bubbles and the lowest hardness exhibited the highest sodium release rate and the strongest saltiness, independent of homogenization methods. The balance between air bubbles and water droplets in the GMS and GMP OGEs caused slower sodium release and lower saltiness. Overall, the presence of air bubbles in NaCl-loaded W/O oleogel-based emulsions was shown to have important implications for tailoring their sodium release and saltiness.


Asunto(s)
Emulsiones , Compuestos Orgánicos , Agua , Emulsiones/química , Compuestos Orgánicos/química , Agua/química , Humanos , Cloruro de Sodio/química , Monoglicéridos/química , Gusto , Aceites/química , Aire , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA