Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.206
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 15174, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956161

RESUMEN

Coronary artery bypass surgery can result in endothelial dysfunction due to ischemia/reperfusion (IR) injury. Previous studies have demonstrated that DuraGraft helps maintain endothelial integrity of saphenous vein grafts during ischemic conditions. In this study, we investigated the potential of DuraGraft to mitigate endothelial dysfunction in arterial grafts after IR injury using an aortic transplantation model. Lewis rats (n = 7-9/group) were divided in three groups. Aortic arches from the control group were prepared and rings were immediately placed in organ baths, while the aortic arches of IR and IR + DuraGraft rats were preserved in saline or DuraGraft, respectively, for 1 h before being transplanted heterotopically. After 1 h after reperfusion, the grafts were explanted, rings were prepared, and mounted in organ baths. Our results demonstrated that the maximum endothelium-dependent vasorelaxation to acetylcholine was significantly impaired in the IR group compared to the control group, but DuraGraft improved it (control: 89 ± 2%; IR: 24 ± 1%; IR + DuraGraft: 48 ± 1%, p < 0.05). Immunohistochemical analysis revealed decreased intercellular adhesion molecule-1, 4-hydroxy-2-nonenal, caspase-3 and caspase-8 expression, while endothelial cell adhesion molecule-1 immunoreactivity was increased in the IR + DuraGraft grafts compared to the IR-group. DuraGraft mitigates endothelial dysfunction following IR injury in a rat bypass model. Its protective effect may be attributed, at least in part, to its ability to reduce the inflammatory response, oxidative stress, and apoptosis.


Asunto(s)
Endotelio Vascular , Ratas Endogámicas Lew , Daño por Reperfusión , Animales , Ratas , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Daño por Reperfusión/metabolismo , Masculino , Puente de Arteria Coronaria/métodos , Puente de Arteria Coronaria/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Modelos Animales de Enfermedad , Aldehídos/metabolismo , Aldehídos/farmacología , Caspasa 3/metabolismo , Vasodilatación/efectos de los fármacos , Apoptosis/efectos de los fármacos , Acetilcolina/farmacología
2.
Turk J Ophthalmol ; 54(3): 133-139, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38836622

RESUMEN

Objectives: To examine changes in tear oxidative stress levels and tear film functions in patients with blepharoptosis and dermatochalasis following conjunctiva-Müller muscle resection (CMMR) and blepharoplasty surgeries. Materials and Methods: This prospective study included 32 healthy controls and 62 patients with blepharoptosis or dermatochalasis. CMMR surgery was performed in 20 eyes and upper blepharoplasty was performed in 42 eyes. Tear oxidative stress markers (8-hydroxy-2'-deoxyguanosine [8-OHdG] and 4-hydroxy-2-nonenal [4-HNE]) were quantified by enzyme-linked immunosorbent assay and tear film functions were evaluated preoperatively and at 1 and 6 months postoperatively. The same assessments were performed in the control group at the same time points. Results: Preoperative tear 8-OHdG and 4-HNE levels were lower in healthy controls (52.8±13.5 ng/mL and 27.8±6.4 ng/mL, respectively) compared to patients with dermatochalasis (86.1±37.2 ng/mL and 29.8±11.1 ng/mL, respectively) and blepharoptosis (90.4±39.3 ng/mL and 43.1±4.2 ng/mL, respectively) (p<0.001). 8-OHdG levels were increased at 1 month after CMMR, while both markers were decreased 1 month postoperatively in the blepharoplasty group (p=0.034). Schirmer 1 and OSDI scores did not change throughout the visits in both patient groups, but a temporary decrease in tear break-up time (TBUT) was observed after CMMR (p=0.017). Conclusion: Dermatochalasis and blepharoptosis were associated with higher tear oxidative stress levels. CMMR surgery caused a temporary decrease in TBUT scores and an increase in oxidative stress in the first postoperative month.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina , Blefaroplastia , Blefaroptosis , Conjuntiva , Músculos Oculomotores , Estrés Oxidativo , Lágrimas , Humanos , Estrés Oxidativo/fisiología , Blefaroptosis/cirugía , Blefaroptosis/metabolismo , Femenino , Masculino , Estudios Prospectivos , Lágrimas/metabolismo , Blefaroplastia/métodos , Persona de Mediana Edad , Conjuntiva/metabolismo , Conjuntiva/cirugía , Músculos Oculomotores/cirugía , Músculos Oculomotores/metabolismo , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Adulto , Biomarcadores/metabolismo , Ensayo de Inmunoadsorción Enzimática , Anciano , Aldehídos/metabolismo
3.
Planta Med ; 90(7-08): 554-560, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843795

RESUMEN

A selective Oxone-induced oxidation of oleocanthal and oleacein, the two main secoiridoids of olive oil, to their bis-oxidized products is described. This protocol is based on a Baeyer-Villiger mechanism and the concentration of Oxone in the final solution. The bis-oxidation of the aldehydic compounds could be extended for the synthesis of various semisynthetic analogs. The obtained acids exhibit strong antioxidant activity, being efficient free radical scavengers.


Asunto(s)
Aldehídos , Aceite de Oliva , Oxidación-Reducción , Aldehídos/química , Aceite de Oliva/química , Antioxidantes/química , Antioxidantes/farmacología , Fenoles/química , Furanos/química , Monoterpenos Ciclopentánicos/química
4.
Mikrochim Acta ; 191(7): 372, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38839678

RESUMEN

A highly sensitive micelle-induced sensory has been developed for detection of long-chain aldehydes as potential biomarkers of respiratory cancers. The micelle-like sensor was fabricated through the partial self-assembly of CTAB and S2 surfactants, containing a fluorescent hydrazine-functionalized dye (Naph-NH2). In principle, long-chain aldehydes with amphiphilic character act as the induced-fit surfactants to form well-entrapped micellar particles, as well as react with Naph-NH2 to form hydrazone derivatives resulting in fluorescent enhancement. The limit of detection (LOD) of micellar Naph-NH2/CTAB/S2 platform was calculated to be ∼  64.09-80.98 µM for detection of long-chain aldehydes, which showed fluorescent imaging in lung cancer cells (A549). This micellar sensory probe demonstrated practical applicability for long-chain aldehyde sensing in human blood samples with an accepted percent recovery of ~ 94.02-102.4%. Beyond Naph-NH2/CTAB/S2 sensor, the milcellar hybrid sensor was successfully developed by incorporating a micelle-like platform with supramolecular gel regarding to carboxylate-based gelators (Gel1), which showed a tenfold improvement in sensitivity. Expectedly, the determination of long-chain aldehydes through these sensing platforms holds significant promise for point-of-care cancer diagnosis and therapy.


Asunto(s)
Aldehídos , Colorantes Fluorescentes , Hidrogeles , Límite de Detección , Micelas , Humanos , Aldehídos/química , Colorantes Fluorescentes/química , Hidrogeles/química , Células A549 , Hidrazinas/química , Cetrimonio/química , Tensoactivos/química
5.
Nat Commun ; 15(1): 5181, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890290

RESUMEN

Peptide aldehydes are crucial biomolecules essential to various biological systems, driving a continuous demand for efficient synthesis methods. Herein, we develop a metal-free, facile, and biocompatible strategy for direct electrochemical synthesis of unnatural peptide aldehydes. This electro-oxidative approach enabled a step- and atom-economical ring-opening via C‒N bond cleavage, allowing for homoproline-specific peptide diversification and expansion of substrate scope to include amides, esters, and cyclic amines of various sizes. The remarkable efficacy of the electro-synthetic protocol set the stage for the efficient modification and assembly of linear and macrocyclic peptides using a concise synthetic sequence with racemization-free conditions. Moreover, the combination of experiments and density functional theory (DFT) calculations indicates that different N-acyl groups play a decisive role in the reaction activity.


Asunto(s)
Aldehídos , Aminas , Técnicas Electroquímicas , Péptidos , Aldehídos/química , Aminas/química , Péptidos/química , Péptidos/síntesis química , Técnicas Electroquímicas/métodos , Oxidación-Reducción , Carbono/química , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Teoría Funcional de la Densidad
6.
Cell Commun Signal ; 22(1): 309, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835076

RESUMEN

BACKGROUND: Neuroinflammation is widely acknowledged as a characteristic feature of almost all neurological disorders and specifically in depression- and anxiety-like disorders. In recent years, there has been significant attention on natural compounds with potent anti-inflammatory effects due to their potential in mitigating neuroinflammation and neuroplasticity. METHODS: In the present study, we aimed to evaluate the neuroprotective effects of oleacein (OC), a rare secoiridoid derivative found in extra virgin olive oil. Our goal was to explore the BDNF/TrkB neurotrophic activity of OC and subsequently assess its potential for modulating neuroinflammatory response using human neuroblastoma cells (SH-SY5Y cells) and an in vivo model of depression induced by lipopolysaccharide (LPS)-mediated inflammation. RESULTS: In SH-SY5Y cells, OC exhibited a significant dose-dependent increase in BDNF expression. This enhancement was absent when cells were co-treated with inhibitors of BDNF's receptor TrkB, as well as downstream molecules PI3K and MEK. Whole-transcriptomics analysis revealed that OC upregulated cell cycle-related genes under normal conditions, while downregulating inflammation-associated genes in LPS-induced conditions. Furthermore, surface plasmon resonance (SPR) assays demonstrated that OC exhibited a stronger and more stable binding affinity to TrkB compared to the positive control, 7,8-dihydroxyflavone. Importantly, bioluminescence imaging revealed that a single oral dose of OC significantly increased BDNF expression in the brains of Bdnf-IRES-AkaLuc mice. Furthermore, oral administration of OC at a dosage of 10 mg/kg body weight for 10 days significantly reduced immobility time in the tail suspension test compared to the LPS-treated group. RT-qPCR analysis revealed that OC significantly decreased the expression of pro-inflammatory cytokines Tnfα, Il6, and Il1ß, while simultaneously enhancing Bdnf expression, as well as both pro and mature BDNF protein levels in mice hippocampus. These changes were comparable to those induced by the positive control antidepressant drug fluoxetine. Additionally, microarray analysis of mouse brains confirmed that OC could counteract LPS-induced inflammatory biological events. CONCLUSION: Altogether, our study represents the first report on the potential antineuroinflammatory and antidepressant properties of OC via modulation of BDNF/TrkB neurotrophic activity. This finding underscores the potential of OC as a natural therapeutic agent for depression- and anxiety-related disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Lipopolisacáridos , Receptor trkB , Animales , Humanos , Receptor trkB/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Lipopolisacáridos/farmacología , Ratones , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Línea Celular Tumoral , Monoterpenos Ciclopentánicos/farmacología , Masculino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratones Endogámicos C57BL , Aceite de Oliva/farmacología , Aceite de Oliva/química , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Inflamación/patología , Aldehídos , Glicoproteínas de Membrana , Fenoles
7.
Medicina (Kaunas) ; 60(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38929564

RESUMEN

The prevalence of skin aging and the request for effective treatments have driven dermatological research towards natural solutions. This study investigates the anti-aging efficacy of two bioactive natural polyphenols, Oleocanthal and Oleacein, in a skincare formulation. A single-blind, randomized clinical trial involved 70 participants, using a comprehensive exclusion criterion to ensure participant safety and study integrity. Participants applied the Oleocanthal and Oleacein 1% serum formulation twice daily for 30 days. The efficacy was objectively assessed using the VISIA® Skin Analysis System at baseline, after 15 days, and after 30 days. Results indicated significant wrinkle reduction in most groups. For women aged 45-79 years, the mean change was -33.91% (95% CI: -46.75% to -21.07%). For men aged 20-44 years, it was -51.93% (95% CI: -76.54% to -27.33%), and for men aged 45-79 years, it was -46.56% (95% CI: -58.32% to -34.81%). For women aged 20-44 years, the change was -25.68% (95% CI: -63.91% to 12.54%), not statistically significant. These findings highlight the potential of EVOO-derived polyphenols in anti-aging skincare, particularly for older adults. This research paves the way for further exploration into natural compounds in dermatology, particularly for aging skin management.


Asunto(s)
Aldehídos , Monoterpenos Ciclopentánicos , Fenoles , Envejecimiento de la Piel , Humanos , Persona de Mediana Edad , Femenino , Masculino , Anciano , Adulto , Envejecimiento de la Piel/efectos de los fármacos , Método Simple Ciego , Fenoles/uso terapéutico , Fenoles/farmacología
8.
Cells ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38727274

RESUMEN

α-Synuclein (α-syn) can form oligomers, protofibrils, and fibrils, which are associated with the pathogenesis of Parkinson's disease and other synucleinopathies. Both the lipid peroxidation product 4-oxo-2-nonenal (ONE) and agitation can induce aggregation of α-syn and phosphorylated α-syn. Thus, clarification of the characteristics of different α-syn species could help to select suitable aggregates for diagnosis and elucidate the pathogenesis of diseases. Here, we characterized ONE-induced wild-type (WT) α-syn aggregates (OW), ONE-induced phosphorylated α-syn (p-α-syn) aggregates (OP), agitation-induced α-syn preformed fibrils (PFF), and agitation-induced p-α-syn preformed fibrils (pPFF). Thioflavin T (ThT) dying demonstrated that OW and OP had fewer fibrils than the PFF and pPFF. Transmission electron microscopy revealed that the lengths of PFF and pPFF were similar, but the diameters differed. OW and OP had more compact structures than PFF and pPFF. Aggregation of p-α-syn was significantly faster than WT α-syn. Furthermore, OW and OP were more sodium dodecyl sulfate-stable and proteinase K-resistant, suggesting greater stability and compactness, while aggregates of PFF and pPFF were more sensitive to proteinase K treatment. Both ONE- and agitation-induced aggregates were cytotoxic when added exogenously to SH-SY5Y cells with increasing incubation times, but the agitation-induced aggregates caused cell toxicity in a shorter time and more p-α-syn inclusions. Similarly, p-proteins were more cytotoxic than non-p-proteins. Finally, all four aggregates were used as standard antigens to establish sandwich enzyme-linked immunosorbent assay (ELISA). The results showed that the recognition efficiency of OW and OP was more sensitive than that of PFF and pPFF. The OW- and OP-specific ELISA for detection of p-α-syn and α-syn in plasma samples of Thy1-α-syn transgenic mice showed that the content of aggregates could reflect the extent of disease. ONE and agitation induced the formation of α-syn aggregates with distinct biophysical properties and biomedical applications.


Asunto(s)
Aldehídos , Agregado de Proteínas , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Aldehídos/metabolismo , Fosforilación , Humanos , Animales , Ratones , Línea Celular Tumoral , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fenómenos Biofísicos
9.
Proc Natl Acad Sci U S A ; 121(21): e2317616121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38743627

RESUMEN

The therapeutic targeting of ferroptosis requires full understanding of the molecular mechanism of this regulated cell death pathway. While lipid-derived electrophiles (LDEs), including 4-hydroxy-2-nonenal (4-HNE), are important biomarkers of ferroptosis, a functional role for these highly reactive species in ferroptotic cell death execution has not been established. Here, through mechanistic characterization of LDE-detoxification impairment, we demonstrate that LDEs mediate altered protein function during ferroptosis. Applying live cell fluorescence imaging, we first identified that export of glutathione-LDE-adducts through multidrug resistance-associated protein (MRP) channels is inhibited following exposure to a panel of ferroptosis inducers (FINs) with different modes of action (type I-IV FINs erastin, RSL3, FIN56, and FINO2). This channel inhibition was recreated by both initiation of lipid peroxidation and treatment with 4-HNE. Importantly, treatment with radical-trapping antioxidants prevented impaired LDE-adduct export when working with both FINs and lipid peroxidation initiators but not 4-HNE, pinpointing LDEs as the cause of this inhibited MRP activity observed during ferroptosis. Our findings, when combined with reports of widespread LDE alkylation of key proteins following ferroptosis induction, including MRP1, set a precedent for LDEs as critical mediators of ferroptotic cell damage. Lipid hydroperoxide breakdown to form truncated phospholipids and LDEs may fully explain membrane permeabilization and modified protein function downstream of lipid peroxidation, offering a unified explanation of the molecular cell death mechanism of ferroptosis.


Asunto(s)
Aldehídos , Ferroptosis , Peroxidación de Lípido , Ferroptosis/efectos de los fármacos , Humanos , Peroxidación de Lípido/efectos de los fármacos , Aldehídos/farmacología , Aldehídos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Glutatión/metabolismo
10.
Int J Mol Sci ; 25(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732269

RESUMEN

New antimicrobial molecules effective against Pseudomonas aeruginosa, known as an antibiotic-resistant "high-priority pathogen", are urgently required because of its ability to develop biofilms related to healthcare-acquired infections. In this study, for the first time, the anti-biofilm and anti-virulence activities of a polyphenolic extract of extra-virgin olive oil as well as purified oleocanthal and oleacein, toward P. aeruginosa clinical isolates were investigated. The main result of our study was the anti-virulence activity of the mixture of oleacein and oleocanthal toward multidrug-resistant and intermediately resistant strains of P. aeruginosa isolated from patients with ventilator-associated pneumonia or surgical site infection. Specifically, the mixture of oleacein (2.5 mM)/oleocanthal (2.5 mM) significantly inhibited biofilm formation, alginate and pyocyanin production, and motility in both P. aeruginosa strains (p < 0.05); scanning electron microscopy analysis further evidenced its ability to inhibit bacterial cell adhesion as well as the production of the extracellular matrix. In conclusion, our results suggest the potential application of the oleacein/oleocanthal mixture in the management of healthcare-associated P. aeruginosa infections, particularly in the era of increasing antimicrobial resistance.


Asunto(s)
Aldehídos , Antibacterianos , Biopelículas , Monoterpenos Ciclopentánicos , Aceite de Oliva , Fenoles , Pseudomonas aeruginosa , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Pseudomonas aeruginosa/efectos de los fármacos , Aceite de Oliva/química , Aceite de Oliva/farmacología , Fenoles/farmacología , Fenoles/química , Aldehídos/farmacología , Aldehídos/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Adhesión Bacteriana/efectos de los fármacos
11.
Nutrients ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732549

RESUMEN

Oleocanthal (OC) is a monophenol of extra-virgin olive oil (EVOO) endowed with antibiotic, cardioprotective and anticancer effects, among others, mainly in view of its antioxidant and anti-inflammatory properties. OC has been largely investigated in terms of its anticancer activity, in Alzheimer disease and in collagen-induced arthritis; however, the possibility that it can also affect muscle biology has been totally overlooked so far. This study is the first to describe that OC modulates alterations induced in C2C12 myotubes by stimuli known to induce muscle wasting in vivo, namely TNF-α, or in the medium conditioned by the C26 cachexia-inducing tumor (CM-C26). C2C12 myotubes were exposed to CM-C26 or TNF-α in the presence or absence of OC for 24 and 48 h and analyzed by immunofluorescence and Western blotting. In combination with TNF-α or CM-C26, OC was revealed to be able to restore both the myotube's original size and morphology and normal levels of both atrogin-1 and MuRF1. OC seems unable to impinge on the autophagic-lysosomal proteolytic system or protein synthesis. Modulations towards normal levels of the expression of molecules involved in myogenesis, such as Pax7, myogenin and MyHC, were also observed in the myotube cultures exposed to OC and TNF-α or CM-C26. In conclusion, the data presented here show that OC exerts a protective action in C2C12 myotubes exposed to TNF-α or CM-C26, with mechanisms likely involving the downregulation of ubiquitin-proteasome-dependent proteolysis and the partial relief of myogenic differentiation impairment.


Asunto(s)
Catecoles , Monoterpenos Ciclopentánicos , Fibras Musculares Esqueléticas , Proteínas Musculares , Atrofia Muscular , Factor de Necrosis Tumoral alfa , Animales , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Atrofia Muscular/prevención & control , Atrofia Muscular/metabolismo , Proteínas Musculares/metabolismo , Monoterpenos Ciclopentánicos/farmacología , Catecoles/farmacología , Línea Celular , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Desarrollo de Músculos/efectos de los fármacos , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/metabolismo , Autofagia/efectos de los fármacos , Fenoles/farmacología , Caquexia/prevención & control , Medios de Cultivo Condicionados/farmacología , Aldehídos
12.
Nutrients ; 16(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732529

RESUMEN

The Mediterranean diet, renowned for its health benefits, especially in reducing cardiovascular risks and protecting against diseases like diabetes and cancer, emphasizes virgin olive oil as a key contributor to these advantages. Despite being a minor fraction, the phenolic compounds in olive oil significantly contribute to its bioactive effects. This review examines the bioactive properties of hydroxytyrosol and related molecules, including naturally occurring compounds (-)-oleocanthal and (-)-oleacein, as well as semisynthetic derivatives like hydroxytyrosyl esters and alkyl ethers. (-)-Oleocanthal and (-)-oleacein show promising anti-tumor and anti-inflammatory properties, which are particularly underexplored in the case of (-)-oleacein. Additionally, hydroxytyrosyl esters exhibit similar effectiveness to hydroxytyrosol, while certain alkyl ethers surpass their precursor's properties. Remarkably, the emerging research field of the effects of phenolic molecules related to virgin olive oil on cell autophagy presents significant opportunities for underscoring the anti-cancer and neuroprotective properties of these molecules. Furthermore, promising clinical data from studies on hydroxytyrosol, (-)-oleacein, and (-)-oleocanthal urge further investigation and support the initiation of clinical trials with semisynthetic hydroxytyrosol derivatives. This review provides valuable insights into the potential applications of olive oil-derived phenolics in preventing and managing diseases associated with cancer, angiogenesis, and atherosclerosis.


Asunto(s)
Inhibidores de la Angiogénesis , Aceite de Oliva , Fenoles , Alcohol Feniletílico , Aceite de Oliva/química , Humanos , Fenoles/farmacología , Inhibidores de la Angiogénesis/farmacología , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Dieta Mediterránea , Aterosclerosis/prevención & control , Aterosclerosis/tratamiento farmacológico , Monoterpenos Ciclopentánicos , Neoplasias/prevención & control , Neoplasias/tratamiento farmacológico , Catecoles/farmacología , Aldehídos/farmacología , Animales , Antineoplásicos/farmacología , Antiinflamatorios/farmacología
13.
Sci Rep ; 14(1): 10905, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740939

RESUMEN

Cancer-derived cell lines are useful tools for studying cellular metabolism and xenobiotic toxicity, but they are not suitable for modeling the biological effects of food contaminants or natural biomolecules on healthy colonic epithelial cells in a normal genetic context. The toxicological properties of such compounds may rely on their oxidative properties. Therefore, it appears to be necessary to develop a dual-cell model in a normal genetic context that allows to define the importance of oxidative stress in the observed toxicity. Given that the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is considered to be the master regulator of antioxidant defenses, our aim was to develop a cellular model comparing normal and Nrf2-depleted isogenic cells to qualify oxidative stress-related toxicity. We generated these cells by using the CRISPR/Cas9 technique. Whole-genome sequencing enabled us to confirm that our cell lines were free of cancer-related mutations. We used 4-hydroxy-2-nonenal (HNE), a lipid peroxidation product closely related to oxidative stress, as a model molecule. Here we report significant differences between the two cell lines in glutathione levels, gene regulation, and cell viability after HNE treatment. The results support the ability of our dual-cell model to study the role of oxidative stress in xenobiotic toxicity.


Asunto(s)
Células Epiteliales , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Estrés Oxidativo/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Animales , Ratones , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Aldehídos/metabolismo , Glutatión/metabolismo , Supervivencia Celular/efectos de los fármacos , Línea Celular , Sistemas CRISPR-Cas , Peroxidación de Lípido/efectos de los fármacos
14.
Molecules ; 29(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611821

RESUMEN

This study aimed to investigate the volatile flavor compounds and tastes of six kinds of sauced pork from the southwest and eastern coastal areas of China using gas chromatography-ion mobility spectroscopy (GC-IMS) combined with an electronic nose (E-nose) and electronic tongue (E-tongue). The results showed that the combined use of the E-nose and E-tongue could effectively identify different kinds of sauced pork. A total of 52 volatile flavor compounds were identified, with aldehydes being the main flavor compounds in sauced pork. The relative odor activity value (ROAV) showed that seven key volatile compounds, including 2-methylbutanal, 2-ethyl-3, 5-dimethylpyrazine, 3-octanone, ethyl 3-methylbutanoate, dimethyl disulfide, 2,3-butanedione, and heptane, contributed the most to the flavor of sauced pork (ROAV ≥1). Multivariate data analysis showed that 13 volatile compounds with the variable importance in projection (VIP) values > 1 could be used as flavor markers to distinguish six kinds of sauced pork. Pearson correlation analysis revealed a significant link between the E-nose sensor and alcohols, aldehydes, terpenes, esters, and hetero-cycle compounds. The results of the current study provide insights into the volatile flavor compounds and tastes of sauced pork. Additionally, intelligent sensory technologies can be a promising tool for discriminating different types of sauced pork.


Asunto(s)
Carne de Cerdo , Carne Roja , Porcinos , Animales , Nariz Electrónica , China , Análisis Espectral , Aldehídos , Cromatografía de Gases
15.
Pestic Biochem Physiol ; 200: 105835, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582597

RESUMEN

Octanal was found to be able to reduce green mold incidence in citrus fruit by a defense response mechanism. However, the underlying mechanism remains largely unclear. Herein, the metabolomics, RNA-seq and biochemical analyses were integrated to explore the effect of octanal on disease resistance in harvested citrus fruit. Results showed that octanal fumigation at 40 µL L-1 was effective in controlling citrus green mold. Metabolomics analysis showed that octanal mainly led to the accumulation of some plant hormones including methyl jasmonate, abscisic acid, indole-3-butyric acid, indoleacetic acid (IAA), salicylic acid, and gibberellic acid and many phenylpropanoid metabolites including cinnamyl alcohol, hesperidin, dihydrokaempferol, vanillin, quercetin-3-O-malonylglucoside, curcumin, naringin, chrysin, coniferin, calycosin-7-O-ß-D-glucoside, trans-cinnamaldehyde, and 4',5,7-trihydroxy-3,6-dimethoxyflavone. Particularly, IAA and hesperidin were dramatically accumulated in the peel, which might be the contributors to the resistance response. Additionally, transcriptome analysis showed that octanal greatly activated the biosynthesis and metabolism of aromatic amino acids. This was further verified by the accumulation of some metabolites (shikimic acid, tryptophan, tyrosine, phenylalanine, IAA, total phenolics, flavonoids and lignin), increase in some enzyme activities (phenylalanine ammonia-lyase, tyrosine ammonia-lyase, 4-coumarate CoA ligase, cinnamic acid 4-hydroxylase, polyphenol oxidase, and peroxidase), up-regulation of some genes (tryptophan pyruvate aminotransferase, aldehyde dehydrogenase, shikimate kinase and shikimate dehydrogenase) expressions and molecular docking results. Thus, these results indicate that octanal is an efficient strategy for the control of postharvest green mold by triggering the defense response in citrus fruit.


Asunto(s)
Aldehídos , Citrus , Hesperidina , Citrus/química , Citrus/genética , Citrus/metabolismo , Aminoácidos Aromáticos/metabolismo , Resistencia a la Enfermedad , Hesperidina/análisis , Hesperidina/metabolismo , Hesperidina/farmacología , Triptófano/metabolismo , Simulación del Acoplamiento Molecular , Frutas
16.
Front Biosci (Landmark Ed) ; 29(4): 153, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38682198

RESUMEN

Oxidative stress often affects the structure and metabolism of lipids, which in the case of polyunsaturated free fatty acids (PUFAs) leads to a self-catalysed chain reaction of lipid peroxidation (LPO). The LPO of PUFAs leads to the formation of various aldehydes, such as malondialdehyde, 4-hydroxynonenal (4-HNE), 4-hydroxyhexenal, and 4-oxo-2-nonenal. Among the reactive aldehydes, 4-HNE is the major bioactive product of LPO, which has a high affinity for binding to proteins. This review briefly discusses the available information on the applicability of assessment options for 4-HNE and its protein adducts determined by immunosorbent assay (the 4-HNE-ELISA) in patients with various diseases known to be associated with oxidative stress, LPO, and 4-HNE. Despite the differences in the protocols applied and the antibodies used, all studies confirmed the usefulness of the 4-HNE-ELISA for research purposes. Since different protocols and the antibodies used could give different values when applied to the same samples, the 4-HNE-ELISA should be combined with other complementary analytical methods to allow comparisons between the values obtained in patients and in healthy individuals. Despite large variations, the studies reviewed in this paper have mostly shown significantly increased levels of 4-HNE-protein adducts in the samples obtained from patients when compared to healthy individuals. As with any other biomarker studied in patients, it is preferred to perform not only a single-time analysis but measurements at multiple time points to monitor the dynamics of the occurrence of oxidative stress and the systemic response to the disease causing it. This is especially important for acute diseases, as individual levels of 4-HNE-protein adducts in blood can fluctuate more than threefold within a few days depending on the state of health, as was shown for the COVID-19 patients.


Asunto(s)
Aldehídos , Ensayo de Inmunoadsorción Enzimática , Peroxidación de Lípido , Humanos , Aldehídos/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangre , Ensayo de Inmunoadsorción Enzimática/métodos , Estrés Oxidativo
17.
ACS Synth Biol ; 13(4): 1100-1104, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38587465

RESUMEN

A proline-based artificial enzyme is prepared by grafting the l-proline moieties onto the surface of bovine serum albumin (BSA) protein through atom transfer radical polymerization (ATRP). The artificial enzyme, the BSA-PolyProline conjugate, prefers to catalyze the formation of unsaturated ketones rather than ß-hydroxy ketones in the reaction between acetone and aldehydes, which is difficult to achieve in free-proline catalysis. The altered reaction selectivity is ascribed to the locally concentrated l-proline moieties surrounding the BSA molecule, indicating a microenvironmental effect-induced switching of the reaction mechanism. Taking advantage of this selectivity, we used this artificial enzyme in conjunction with a natural enzyme, old yellow enzyme 1 (OYE1), to demonstrate a simple synthesis of different aliphatic ketones from acetone and aldehydes via tandem catalysis.


Asunto(s)
Acetona , Cetonas , Prolina , Aldehídos , Catálisis , Estereoisomerismo
18.
Acta Biomater ; 181: 188-201, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38642788

RESUMEN

In this study, we developed polydopamine (PDA)-functionalized alginate dialdehyde-gelatine (ADA-GEL) scaffolds for subchondral bone regeneration. These polymeric scaffolds were then coated with ß-Lactoglobulin (ß-LG) at concentrations of 1 mg/ml and 2 mg/ml. Morphological analysis indicated a homogeneous coating of the ß-LG layer on the surface of network-like scaffolds. The ß-LG-coated scaffolds exhibited improved swelling capacity as a function of the ß-LG concentration. Compared to ADA-GEL/PDA scaffolds, the ß-LG-coated scaffolds demonstrated delayed degradation and enhanced biomineralization. Here, a lower concentration of ß-LG showed long-lasting stability and superior biomimetic hydroxyapatite mineralization. According to the theoretical findings, the single-state, representing the low concentration of ß-LG, exhibited a homogeneous distribution on the surface of the PDA, while the dimer-state (high concentration) displayed a high likelihood of uncontrolled interactions. ß-LG-coated ADA-GEL/PDA scaffolds with a lower concentration of ß-LG provided a biocompatible substrate that supported adhesion, proliferation, and alkaline phosphatase (ALP) secretion of sheep bone marrow mesenchymal stem cells, as well as increased expression of osteopontin (SPP1) and collagen type 1 (COL1A1) in human osteoblasts. These findings indicate the potential of protein-coated scaffolds for subchondral bone tissue regeneration. STATEMENT OF SIGNIFICANCE: This study addresses a crucial aspect of osteochondral defect repair, emphasizing the pivotal role of subchondral bone regeneration. The development of polydopamine-functionalized alginate dialdehyde-gelatine (ADA-GEL) scaffolds, coated with ß-Lactoglobulin (ß-LG), represents a novel approach to potentially enhance subchondral bone repair. ß-LG, a milk protein rich in essential amino acids and bioactive peptides, is investigated for its potential to promote subchondral bone regeneration. This research explores computationally and experimentally the influence of protein concentration on the ordered or irregular deposition, unravelling the interplay between coating structure, scaffold properties, and in-vitro performance. This work contributes to advancing ordered protein coating strategies for subchondral bone regeneration, providing a biocompatible solution with potential implications for supporting subsequent cartilage repair.


Asunto(s)
Alginatos , Regeneración Ósea , Materiales Biocompatibles Revestidos , Gelatina , Indoles , Lactoglobulinas , Polímeros , Andamios del Tejido , Alginatos/química , Alginatos/farmacología , Indoles/química , Indoles/farmacología , Andamios del Tejido/química , Animales , Polímeros/química , Polímeros/farmacología , Regeneración Ósea/efectos de los fármacos , Gelatina/química , Ovinos , Lactoglobulinas/química , Lactoglobulinas/farmacología , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Aldehídos/química , Proliferación Celular/efectos de los fármacos
19.
ACS Sens ; 9(5): 2585-2595, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38642060

RESUMEN

Achieving ultrasensitive and rapid detection of 3-methylbutyraldehyde is crucial for monitoring chemical intermediate leakage in pharmaceutical and chemical industries as well as diagnosing ventilator-associated pneumonia by monitoring exhaled gas. However, developing a sensitive and rapid method for detecting 3-methylbutyraldehyde poses challenges. Herein, a wireless chemiresistive gas sensor based on a mesoporous ZnO-SnO2 heterostructure is fabricated to enable the ultrasensitive and rapid detection of 3-methylbutyraldehyde for the first time. The mesoporous ZnO-SnO2 heterostructure exhibits a uniform spherical shape (∼79 nm in diameter), a high specific surface area (54.8 m2 g-1), a small crystal size (∼4 nm), and a large pore size (6.7 nm). The gas sensor demonstrates high response (18.98@20 ppm), short response/recovery times (13/13 s), and a low detection limit (0.48 ppm) toward 3-methylbutyraldehyde. Furthermore, a real-time monitoring system is developed utilizing microelectromechanical systems gas sensors. The modification of amorphous ZnO on the mesoporous SnO2 pore wall can effectively increase the chemisorbed oxygen content and the thickness of the electron depletion layer at the gas-solid interface, which facilitates the interface redox reaction and enhances the sensing performance. This work presents an initial example of semiconductor metal oxide gas sensors for efficient detection of 3-methylbutyraldehyde that holds great potential for ensuring safety during chemical production and disease diagnosis.


Asunto(s)
Compuestos de Estaño , Óxido de Zinc , Óxido de Zinc/química , Compuestos de Estaño/química , Porosidad , Límite de Detección , Aldehídos/química , Gases/química , Gases/análisis , Tecnología Inalámbrica
20.
PLoS One ; 19(4): e0302932, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38669265

RESUMEN

INTRODUCTION: Recent studies have shown that epithelial-stromal interactions could play a role in the development of colorectal cancer. Here, we investigated the role of fibroblasts in the transformation of normal colonocytes induced by 4-HNE. METHODS: Normal Co colonocytes and nF fibroblasts from the same mouse colon were exposed, in monoculture (m) or coculture (c), to 4-HNE (5 µM) twice weekly for 3 weeks. Gene expression was then analysed and the ability of Co colonocytes to grow in anchorage-independent conditions was tested in soft agar. Fibroblasts previously treated or not with 4-HNE were also seeded in culture inserts positioned above the agar layers to allow paracrine exchanges with colonocytes. RESULTS: First, 60% of the genes studied were modulated by coculture in Co colonocytes, with notably increased expression of BMP receptors. Furthermore, while 4-HNE increased the ability of monoculture-treated Co colonocytes to form colonies, this effect was not observed in coculture-treated Co colonocytes. Adding a selective BMPR1 inhibitor during the treatment phase abolished the protective effect of coculture. Conversely, addition of a BMP4 agonist to the medium of monoculture-treated Co colonocytes prevented phenotypic transformation by 4-HNE. Second, the presence of nF(m)-HNE fibroblasts during the soft agar assay increased the number and size of Co(m) colonocyte colonies, regardless of whether these cells had been previously treated with 4-HNE in monoculture. For soft agar assays performed with nF(c) and Co(c) cells initially treated in coculture, only the reassociation between Co(c)-HNE and nF(c)-HNE resulted in a small increase in the number of colonies. CONCLUSIONS: During the exposure phase, the epithelial-mesenchymal interaction protected colonocytes from 4-HNE-induced phenotypic transformation via activation of the BMP pathway. This intercellular dialogue also limited the ability of fibroblasts to subsequently promote colonocyte-anchorage-independent growth. In contrast, fibroblasts pre-exposed to 4-HNE in monoculture strongly increased the ability of Co(m) colonocytes to form colonies.


Asunto(s)
Aldehídos , Proteína Morfogenética Ósea 4 , Técnicas de Cocultivo , Colon , Transición Epitelial-Mesenquimal , Fibroblastos , Animales , Colon/citología , Colon/efectos de los fármacos , Colon/metabolismo , Ratones , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Proteína Morfogenética Ósea 4/metabolismo , Aldehídos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fenotipo , Transformación Celular Neoplásica/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA