Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 903
Filtrar
1.
Int J Biol Macromol ; 273(Pt 2): 133107, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38897524

RESUMEN

The corruption of refrigerated marine fish results in global economic losses exceeding 25 billion euros annually. However, conventional preservatives present challenges, including singular functionality, potential toxicity, and high cost. In response, we developed multifunctional, safe, cost-effective, and environmentally friendly carbon dots derived from radish residues (R-CDs) by using the one-pot hydrothermal method. The surface of R-CDs is enriched with hydroxyl groups, conferring broad-spectrum antioxidant and antibacterial characteristics. R-CDs exhibited a notable 72.92 % inhibition rate on lipid peroxidation, surpassing the effectiveness of vitamin C (46 %). Additionally, R-CDs demonstrated impressive scavenging rates of 93.8 % for 2,2-diphenyl-1-picrylhydrazyl free radicals and 99.36 % for 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid-free radicals. In combating spoilage bacteria such as Aeromonas sobria and Hafnia alvei, R-CDs disrupted cell structures and influenced intracellular substance content. Importantly, co-cultivation with R-CDs showed no significant cytotoxicity. Further incorporating R-CDs into films using starch and chitosan (S/CS/R-CDs films) for efficient and convenient use in salmon fillets preservation. S/CS/R-CDs films effectively inhibited the growth of spoilage bacteria, lipid oxidation, and protein decomposition in salmon fillets, thereby extending shelf life by 4 days. This combination of antioxidant and antibacterial properties in R-CDs, along with the functional films, presents a promising approach for enhancing salmon fillet preservation.


Asunto(s)
Antibacterianos , Antioxidantes , Carbono , Quitosano , Embalaje de Alimentos , Raphanus , Salmón , Almidón , Animales , Antibacterianos/farmacología , Antibacterianos/química , Antioxidantes/farmacología , Antioxidantes/química , Embalaje de Alimentos/métodos , Carbono/química , Raphanus/química , Quitosano/química , Quitosano/farmacología , Almidón/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Puntos Cuánticos/química , Peroxidación de Lípido/efectos de los fármacos
2.
Carbohydr Polym ; 341: 122321, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38876723

RESUMEN

Starch-based biofilms are biodegradable, but their application is limited by lower mechanical strength and absence of antimicrobial properties. In this context, the present study attempted to unleash the potential of nanotechnology for synthesizing nano-starch (NS) and tannic acid-coated nano-starch (T-NS) for augmenting the tensile strength and antimicrobial properties of starch-based biofilms. Moreover, this study reports one of the first such attempts to improve the commercial viability of starch extracted from the corms of Amorphophallus paeoniifolius. In this study, NS and T-NS samples were first synthesized by the physical and chemical modification of the native starch (S) molecules. The NS and T-NS samples showed significantly smaller granule size, lower moisture content, and swelling power. Further, amendments with NS and T-NS samples (25 % and 50 %) to the native starch molecules were performed to obtain biofilm samples. The NSB (NS amended) and T-NSB (T-NS amended) biofilms showed comparatively higher tensile strength than SB films (100 % starch-based). The T-NSB showed greater antimicrobial activity against gram-positive and gram-negative bacteria. All the biofilms showed almost complete biodegradation in soil (in 10 days). Therefore, it can be concluded that additives like NS and T-NS can improve starch-based biofilms' mechanical strength and antimicrobial properties with considerable biodegradability.


Asunto(s)
Antibacterianos , Biopelículas , Almidón , Taninos , Resistencia a la Tracción , Almidón/química , Taninos/química , Taninos/farmacología , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Nanopartículas/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Polifenoles
3.
Carbohydr Polym ; 340: 122319, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38858013

RESUMEN

The survival rate of mesenchymal stem cells (MSC), a crucial factor in tissue engineering, is highly dependent on glucose supply. The purpose of this paper is to study the potential of starch foams as glucose suppliers. It is investigated through in vitro hydrolysis by amyloglucosidase in conditions that respect physiological constraints (37 °C and pH 7.4), including a duration of 21 days, and no stirring. Nine extruded starch foams with amylose contents ranging from 0 to 74 %, with various cell wall thicknesses (50 to 300 µm), and different crystallinities (0-30 %) were hydrolysed. These kinetics were fitted by a model which shows that the maximum rate of hydrolysis varies from 7 to 100 %, and which allows the rate of hydrolysis at 21 days to be calculated precisely. The results reveal the major role of amylose in glucose delivery kinetics, and the secondary roles of crystallinity and cell wall thickness of the foams. Additional hydrolysis of starch films revealed that thickness positively influences the amylose chain reorganisation during hydrolysis, which, in slows down and limits glucose delivery. A simple glucose delivery kinetics analysis procedure is proposed to select samples for testing as MSC glucose suppliers.


Asunto(s)
Amilosa , Materiales Biocompatibles , Glucosa , Células Madre Mesenquimatosas , Almidón , Hidrólisis , Glucosa/química , Almidón/química , Materiales Biocompatibles/química , Amilosa/química , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Cinética , Glucano 1,4-alfa-Glucosidasa/metabolismo , Glucano 1,4-alfa-Glucosidasa/química
4.
Int J Biol Macromol ; 272(Pt 1): 132843, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38830489

RESUMEN

The study aimed to inhibit the stimulating impact of garlic oil (GO) on the stomach and attain high release in the intestine during digestion. So, wheat porous starch (WPS) was modified with octenyl succinic acid (OSA) and malic acid (MA) to obtain esterified WPS, OWPS and MWPS, respectively. The differences in physicochemical, encapsulation, and digestive properties of two GO microcapsules, WPI/OWPS/GO and WPI/MWPS/GO microcapsules produced by using OWPS and MWPS as variant carrier materials and whey protein isolate (WPI) as the same coating agent, were compared. The results found that OWPS had greater amphiphilicity, while MWPS had better hydrophobicity and anti-digestive ability than WPS. Encapsulation efficiency of WPI/OWPS/GO (94.67 %) was significantly greater than WPI/MWPS/GO (91.44 %). The digestion inhibition and low GO release (approximately 23 %) of WPI/OWPS/GO and WPI/MWPS/GO microcapsules in the gastric phase resulted from the protective effect of WPI combined with the good adsorption and lipophilicity of OWPS and MWPS. Especially, WPI/OWPS/GO microcapsule was relatively stable in the gastric phase and had sufficient GO release (67.24 %) in the intestinal phase, which was significantly higher than WPI/MWPS/GO microcapsule (56.03 %), benefiting from the adsorption and digestive properties of OWPS, and resulting in a total cumulative GO release rate of 90.86 %.


Asunto(s)
Digestión , Almidón , Triticum , Proteína de Suero de Leche , Proteína de Suero de Leche/química , Almidón/química , Triticum/química , Porosidad , Cápsulas , Fenómenos Químicos , Aceites de Plantas/química , Interacciones Hidrofóbicas e Hidrofílicas , Composición de Medicamentos , Ajo/química
5.
J Food Sci ; 89(6): 3306-3317, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38752388

RESUMEN

The increasing concerns about health have led to a growing demand for high-quality fried foods. The potential uses of Ligustrum robustum (Rxob.) Blume, a traditional tea in China, as natural additives to enhance the quality of starchy food during frying was studied. Results indicated that L. robustum polyphenols extract (LREs) could improve the quality of fried starchy food, according to the tests of color, moisture content, oil content, texture property, and volatile flavor. The in vitro digestion results demonstrated that LRE reduced the final glucose content from 11.35 ± 0.17 to 10.80 ± 0.70 mmol/L and increased the phenolic content of fried starch foods from 1.23 ± 0.04 to 3.76 ± 0.14 mg/g. The appearance and polarizing microscopy results showed that LRE promoted large starch bulges on the surface of fried starchy foods. Meanwhile, X-ray diffraction results showed that LRE increased the intensity of characteristic diffraction peak of fried starch with a range of 21.8%-28%, and Fourier transform infrared results showed that LRE reduced the damage to short-range order structure of starch caused by the frying process. In addition, LRE increased the aggregation of starch granules according to the SEM observation and decreased the enthalpy of starch gelatinization based on the differential scanning calorimetry results. The present results suggest that LREs have the potential to be utilized as a natural additive for regulating the quality of fried starchy food in food industries. PRACTICAL APPLICATION: The enhancement of L. robustum polyphenols on the quality of starchy food during frying was found, and its mechanisms were also explored. This work indicated that L. robustum might be used as a novel economic natural additive for producing high-quality fried foods.


Asunto(s)
Culinaria , Calor , Ligustrum , Polifenoles , Almidón , Polifenoles/análisis , Almidón/química , Almidón/análisis , Ligustrum/química , Culinaria/métodos , Extractos Vegetales/química , Gusto , Digestión , Calidad de los Alimentos
6.
Plant Foods Hum Nutr ; 79(2): 285-291, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38761283

RESUMEN

In this study, biodegradable active films were prepared from potato starch and polyvinyl alcohol at different proportions, mixed with acetone extract of Hibiscus sabdariffa L. (HS) and using glycerol as a plasticizer. Functional properties, antimicrobial, and antioxidant capacity were evaluated. Potato starch films with a proportion of polyvinyl alcohol up to 50% and HS extract had significant antioxidant capacity and antibacterial effect against most of the analyzed strains. Adding polyvinyl alcohol (PVOH) and HS extract improved the mechanical performance and reduced water vapor permeability of the materials. The active biobased films with HS extract presented good physicochemical, antimicrobial, and antioxidant properties. These materials are considered as suitable for food packaging, and the active compounds in the roselle extract are a natural antibacterial option for the food area. The materials based entirely on biodegradable products are an excellent alternative when developing and marketing biobased materials, minimizing the environmental impact of food packaging.


Asunto(s)
Antioxidantes , Embalaje de Alimentos , Hibiscus , Extractos Vegetales , Alcohol Polivinílico , Hibiscus/química , Embalaje de Alimentos/métodos , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Alcohol Polivinílico/química , Solanum tuberosum/química , Almidón/química , Antibacterianos/farmacología , Permeabilidad , Vapor , Antiinfecciosos/farmacología
7.
Int J Biol Macromol ; 272(Pt 1): 132656, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38810848

RESUMEN

Our previous experiments found that rapeseed protein (RP) has applicability in low-moisture textured proteins. The amount of RP added is limited to <20 %, but the addition of 20 % RP still brings some negative effects. Therefore, in order to improve the quality of 20%RP textured protein, this experiment added different proportions of sodium tripolyphosphate (STPP) to improve the quality of the product, and studied the physical-chemical properties and molecular structure changes of the product to explore the possible modification mechanism. The STPP not only improved the expansion characteristics of extrudates, but also increased the brightness of the extrudates, the rehydration rate. In addition, STPP increased the specific mechanical energy during extrusion, decreased the material mass flow rate. Furthermore, STPP decreased the starch digestibility, increased the content of slow-digesting starch and resistant starch. STPP increased the degree of denaturation of extrudate proteins, the proportion of ß-sheets in the secondary structure of proteins, as well as the intermolecular hydrogen bonding interactions. The gelatinization degradation degree of starch molecules also decreased with the addition of STPP. STPP also increased the protein-starch interactions and enhanced the thermal stability of the extrudate. All these indicate that STPP can improve the physical-chemical properties of extrudate.


Asunto(s)
Proteínas de Plantas , Polifosfatos , Proteínas de Soja , Proteínas de Soja/química , Proteínas de Plantas/química , Polifosfatos/química , Brassica rapa/química , Fenómenos Químicos , Almidón/química , Agua/química , Enlace de Hidrógeno
8.
Eur J Pharm Biopharm ; 200: 114328, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763329

RESUMEN

Aggressive colon cancer treatment poses significant challenges. This study investigates the potential of innovative carbohydrate-based nanoparticles for targeted Capecitabine (CTB) delivery. CTB nanoparticles were synthesized by conjugating CTB with potato starch and chitosan using ultrasonication, hydrolysis, and ionotropic gelation. Characterization included drug loading, rheology, Surface-Enhanced Raman Spectroscopy (SERS), Fourier-Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), and Thermogravimetric Analysis (TGA). In vitro and in vivo antitumor activity was evaluated using HT-29 cells and N, N-dimethylhydrazine-induced Balb/c mice, respectively. Cellular assays assessed angiogenesis, migration, proliferation, and apoptosis. Nanoparticles exhibited a mean size of 245 nm, positive zeta potential (+30 mV), high loading efficacy (76 %), and sustained drug release (92 % over 100 h). CTB-loaded nanoparticles displayed superior colon histology, reduced tumour scores, and inhibited VEGD and CD31 expression compared to free CTB. Cellular assays confirmed significant antitumor effects, including reduced tube formation, migration, and proliferation, and increased apoptosis. This study demonstrates the promise of CTB-loaded potato starch-chitosan nanoparticles for aggressive colon cancer treatment. These findings highlight the potential of these nanoparticles for further evaluation in diverse cancer models.


Asunto(s)
Capecitabina , Quitosano , Neoplasias del Colon , Ratones Endogámicos BALB C , Nanopartículas , Solanum tuberosum , Almidón , Animales , Quitosano/química , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Almidón/química , Solanum tuberosum/química , Capecitabina/administración & dosificación , Capecitabina/farmacología , Humanos , Ratones , Nanopartículas/química , Células HT29 , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/química , Liberación de Fármacos , Portadores de Fármacos/química , Apoptosis/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Proliferación Celular/efectos de los fármacos , Masculino
9.
Int J Biol Macromol ; 271(Pt 2): 132444, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38797300

RESUMEN

This study investigated the interaction mechanism between corn starch (CS) and lingonberry polyphenols (LBP) during starch gelatinization, focusing on their effects on starch structure and physicochemical properties. Moreover, it explored the effect of this interaction on starch digestion and glucose transport. The results indicated that LBP interacted non-covalently with CS during starch gelatinization, disrupted the short-range ordered structure of starch, decreased gelatinization enthalpy of starch, and formed a dense network structure. Furthermore, the incorporation of LBP remarkably reduced the digestibility of CS. In particular, the addition of 10 % LBP decreased the terminal digestibility (C∞) from 77.87 % to 60.43 % and increased the amount of resistant starch (RS) by 21.63 %. LBP was found to inhibit α-amylase and α-glucosidase in a mixed manner. Additionally, LBP inhibited glucose transport in Caco-2 cells following starch digestion. When 10 % LBP was added, there was a 34.17 % decrease in glucose transport compared with starch digestion without LBP. This study helps establish the foundation for the development of LBP-containing starch or starch-based healthy foods and provides new insights into the mechanism by which LBP lowers blood glucose.


Asunto(s)
Digestión , Glucosa , Polifenoles , Almidón , Polifenoles/farmacología , Polifenoles/química , Almidón/química , Almidón/metabolismo , Humanos , Glucosa/metabolismo , Células CACO-2 , Digestión/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Vaccinium vitis-Idaea/química , Zea mays/química , alfa-Amilasas/metabolismo , alfa-Glucosidasas/metabolismo
10.
Food Chem ; 454: 139750, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810457

RESUMEN

Hydrophilic and hydrophobic modified nanomicelles might be more conducive to passage of the gastrointestinal barrier than walnut peptide (WP). In this study, a novel double modified starch polymer, SB-CST-DCA, was synthesized by grafting sulfabetaine (SB) and deoxycholic acid (DCA) onto corn starch (CST) molecules through etherification and esterification. The modification mechanism was discussed to determine its chemical structure, morphological properties, and thermal stability. Peptide-loaded nanomicelles (SB-CST-DCA-WP) were prepared using WP as the core material. The encapsulation efficiency and peptide loading amount reached 76.90 ± 1.52% and 18.27 ± 0.53%, respectively, with good stability and pH-responsive release behavior observed to effectively control WP release and enhance its antioxidant activity. The composite exhibited safety, non-toxicity, and good blood compatibility at concentrations below 125 µg/mL. Duodenum was identified as the main absorption site with an absorption ratio of 41.16 ± 0.36%.


Asunto(s)
Preparaciones de Acción Retardada , Portadores de Fármacos , Juglans , Micelas , Péptidos , Almidón , Almidón/química , Juglans/química , Péptidos/química , Preparaciones de Acción Retardada/química , Portadores de Fármacos/química , Humanos , Nanopartículas/química , Interacciones Hidrofóbicas e Hidrofílicas , Composición de Medicamentos , Proteínas de Plantas/química , Animales
11.
Int J Biol Macromol ; 270(Pt 1): 132210, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729473

RESUMEN

Curcumin (Cur), a bioactive compound extracted from plants, has attracted widespread attention due to its multiple pharmacological activities. However, the low bioavailability due to the inherent limitations in water solubility, chemical stability, and permeability poses great challenges for realizing its clinical potentials. In the current study, octenyl succinic anhydride-modified starch (OSA-S), a renewable and biodegradable biopolymer, was employed to fabricate Cur amorphous composite nanoparticles (Cur/OSA-S NPs) through a solvent-free pH-driven method with the aim to enhance Cur's bioavailability by improving its solubility and stability. Cur/OSA-S NPs, with mean sizes of about 128.9 ± 8.6 nm, encapsulation efficiencies of about 90.0 %, and the drug loading capacities around 51.0 ± 0.2 %, were successfully prepared. Cur was found to be dispersed within the composite nanoparticles in amorphous state as confirmed by the XRD and DSC characterizations. In addition, Cur/OSA-S NPs offers excellent storage, thermal and light stability, excellent re-dispersibility, and approximately 92 times better solubility than the original Cur. Furthermore, studies of dissolution and the parallel artificial membrane permeability assay (PAMPA) confirmed enhanced dissolution rates and in vitro permeabilities of Cur/OSA-S NPs. Cancer cell viability and uptake experiments revealed that Cur/OSA-S NPs possessed more potent inhibitory effects on cancer cell proliferation compared to the raw Cur. The results obtained from the current study demonstrated the effectiveness of OSA-S for manufacturing Cur amorphous composite nanoparticles with enhanced solubility, stability, and permeability, which might be valuable for further development of Cur based products for treatment of various diseases.


Asunto(s)
Disponibilidad Biológica , Curcumina , Nanocompuestos , Solubilidad , Almidón , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacología , Almidón/química , Almidón/análogos & derivados , Nanocompuestos/química , Humanos , Tecnología Química Verde , Portadores de Fármacos/química , Permeabilidad
12.
Int J Biol Macromol ; 270(Pt 2): 132524, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777017

RESUMEN

The interaction mode between persimmon leaf polyphenols (PLP) and corn starch with different amylose content and its effect on starch digestibility was studied. Results of iodine binding test, TGA, and DSC revealed that PLP interacted with starch and reduced the iodine binding capacity and thermal stability of starch. High amylopectin corn starch (HAPS) interacted with PLP mainly via hydrogen bonds, since the FT-IR of HAPS-PLP complex showed higher intensity at 3400 cm-1 and an obvious shift of 21 cm-1 to shorter wavelength, and the chemical shifts of protons in 1H NMR and the shift of C-6 peak in 13C NMR of HAPS moved to low field with the addition of PLP. Results of 1H NMR also showed the preferential formation of hydrogen bonds between PLP and OH-3 of HAPS. Different from HAPS, PLP formed V-type inclusion complex with high amylose corn starch (HAS) because XRD of HAS-PLP complex showed characteristic feature peaks of V-type inclusion complex and C-1 signal in 13C NMR of PLP-complexed HAS shifted to low field. Interaction with PLP reduced starch digestibility and HAS-PLP complex resulted in more resistant starch production than HAPS-PLP complex. To complex PLP with starch might be a potential way to prepare functional starch with slower digestion.


Asunto(s)
Diospyros , Hojas de la Planta , Polifenoles , Almidón , Polifenoles/química , Almidón/química , Hojas de la Planta/química , Diospyros/química , Amilosa/química , Amilopectina/química , Digestión , Zea mays/química , Enlace de Hidrógeno
13.
Sci Rep ; 14(1): 11161, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750054

RESUMEN

Biodegradable plastics are those subjected easily to a degradation process, in which they can be decomposed after disposal in the environment through microbial activity. 30 bioplastic film formulations based only on chitosan film were used in the current investigation as a positive control together with chitosan film recovered from chitin-waste of locally obtained Aristeus antennatus. Additionally, castor oil was used as a plasticizer. While the yield of chitosan was 18% with 7.65% moisture content and 32.27% ash in the shells, the isolated chitin had a degree of deacetylation (DD) of 86%. The synthesized bioplastic films were characterized via numerous criteria. Firstly, the swelling capacity of these biofilms recorded relatively high percentages compared to polypropylene as synthetic plastic. Noticeably, the FTIR profiles, besides DSC, TGA, and XRD, confirmed the acceptable characteristics of these biofilms. In addition, their SEM illustrated the homogeneity and continuity with a few straps of the chitosan film and showed the homogeneous mixes of chitosan and castor oil with 5 and 20%. Moreover, data detected the antibacterial activity of different bioplastic formulas against some common bacterial pathogens (Enterococcus feacalis, Kelbsiella pnumina, Bacillus subtilis, and Pseudomonas aeruginosa). Amazingly, our bioplastic films have conducted potent antimicrobial activities. So, they may be promising in such a direction. Further, the biodegradability efficacy of bioplastic films formed was proved in numerous environments for several weeks of incubation. However, all bioplastic films decreased in their weights and changed in their colors, while polypropylene, was very constant all the time. The current findings suggest that our biofilms may be promising for many applications, especially in the field of food package protecting the food, and preventing microbial contamination, consequently, it may help in extending the shelf life of products.


Asunto(s)
Plásticos Biodegradables , Aceite de Ricino , Quitosano , Plastificantes , Almidón , Quitosano/química , Quitosano/farmacología , Aceite de Ricino/química , Plásticos Biodegradables/química , Plásticos Biodegradables/farmacología , Plastificantes/química , Almidón/química , Animales , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Mariposas Nocturnas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
14.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731414

RESUMEN

Consumers are concerned about employing green processing technologies and natural ingredients in different manufacturing sectors to achieve a "clean label" standard for products and minimize the hazardous impact of chemical ingredients on human health and the environment. In this study, we investigated the effects of gelatinized starch dispersions (GSDs) prepared from six plant sources (indica and japonica rice, wheat, corn, potatoes, and sweet potatoes) on the formulation and stability of oil-in-water (O/W) emulsions. The effect of gelatinization temperature and time conditions of 85-90 °C for 20 min on the interfacial tension of the two phases was observed. Emulsification was performed using a primary homogenization condition of 10,000 rpm for 5 min, followed by high-pressure homogenization at 100 MPa for five cycles. The effects of higher oil weight fractions (15-25% w/w) and storage stability at different temperatures for four weeks were also evaluated. The interfacial tension of all starch GSDs with soybean oil decreased compared with the interfacial tension between soybean oil and water as a control. The largest interfacial tension reduction was observed for the GSD from indica rice. Microstructural analysis indicated that the GSDs stabilized the O/W emulsion by coating oil droplets. Emulsions formulated using a GSD from indica rice were stable during four weeks of storage with a volume mean diameter (d4,3) of ~1 µm, minimal viscosity change, and a negative ζ-potential.


Asunto(s)
Emulsiones , Aceite de Soja , Almidón , Agua , Emulsiones/química , Almidón/química , Agua/química , Aceite de Soja/química , Oryza/química , Gelatina/química , Temperatura , Tensión Superficial , Tamaño de la Partícula
15.
Carbohydr Polym ; 337: 122118, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710546

RESUMEN

Chrysin and rutin are natural polyphenols with multifaceted biological activities but their applications face challenges in bioavailability. Encapsulation using starch nanoparticles (SNPs) presents a promising approach to overcome the limitations. In this study, chrysin and rutin were encapsulated into self-assembled SNPs derived from quinoa (Q), maize (M), and waxy maize (WM) starches using enzyme-hydrolysis. Encapsulation efficiencies ranged from 74.3 % to 79.1 %, with QSNPs showing superior performance. Simulated in vitro digestion revealed sustained release and higher antioxidant activity in QSNPs compared to MSNPs and WMSNPs. Variations in encapsulation properties among SNPs from different sources were attributed to the differences in the structural properties of the starches. The encapsulated SNPs exhibited excellent stability, retaining over 90 % of chrysin and 85 % of rutin after 15 days of storage. These findings underscore the potential of SNP encapsulation to enhance the functionalities of chrysin and rutin, facilitating the development of fortified functional foods with enhanced bioavailability and health benefits.


Asunto(s)
Antioxidantes , Chenopodium quinoa , Flavonoides , Nanopartículas , Rutina , Almidón , Zea mays , Flavonoides/química , Rutina/química , Zea mays/química , Nanopartículas/química , Chenopodium quinoa/química , Almidón/química , Antioxidantes/química , Antioxidantes/farmacología , Disponibilidad Biológica , Hidrólisis
16.
Food Res Int ; 186: 114381, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729735

RESUMEN

Lipid has crucial applications in improving the quality of starchy products during heat processing. Herein, the influence of lipid modification and thermal treatment on the physicochemical properties and starch digestibility of cooked rice prepared with varied addition manipulations was investigated. Rice bran oil (RO) and medium chain triglyceride oil (MO) manipulations were performed either before (BC) or after cooking (AC). GC-MS was applied to determine the fatty acid profiles. Nutritional quality was analyzed by quantifying total phenolics, atherogenic, and thrombogenic indices. All complexes exhibited higher surface firmness, a soft core, and less adhesive. FTIR spectrum demonstrated that the guest component affected some of the dense structural attributes of V-amylose. The kinetic constant was in the range between 0.47 and 0.86 min-1 wherein before mode presented a higher value. The lowest glucose release was observed in the RO_BC sample, whereas the highest complexing index was observed in the RO_AC sample, indicating that the dense molecular configuration of complexes that could resist enzymatic digestion was more critical than the quantity of complex formation. Despite the damage caused by mass and heat transfer, physical barrier, intact granule forms, and strengthened dense structure were the central contributors affecting the digestion characteristics of lipid-starch complexes.


Asunto(s)
Culinaria , Digestión , Oryza , Aceite de Salvado de Arroz , Almidón , Triglicéridos , Oryza/química , Almidón/química , Aceite de Salvado de Arroz/química , Triglicéridos/química , Calor , Ácidos Grasos/análisis , Ácidos Grasos/química , Aceites de Plantas/química , Espectroscopía Infrarroja por Transformada de Fourier , Valor Nutritivo , Amilosa/química , Cromatografía de Gases y Espectrometría de Masas
17.
Food Chem ; 452: 139424, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754167

RESUMEN

This study explores the influence of incorporating L-cysteine (L-Cys), chitosan (CTS), and citric acid (CA) on the enzymatic modification of potato starch (EPS) films to enhance anti-browning properties. Four types of EPS composite films were evaluated for preserving fresh-cut potato slices at low temperatures to inhibit browning. Their thermal, physiochemical, mechanical, and digestibility properties were assessed. Results indicate that the addition of CTS, CA, and L-Cys improved the anti-browning activity of the EPS films by increasing film thickness and reducing water vapor permeability (WVP), oxygen transmission rate (OTR), ultraviolet (UV) transmittance, and tensile strength (TS). Furthermore, these additives improved the film's microstructure, resulting in reinforced intermolecular interactions, increased elongation at break, heightened crystallinity, enhanced thermal stability, and favorable gastrointestinal digestibility. Overall, EPS/CTS/L-Cys/CA composite films show promise as edible packaging materials with effective anti-browning properties.


Asunto(s)
Quitosano , Ácido Cítrico , Cisteína , Solanum tuberosum , Almidón , Solanum tuberosum/química , Quitosano/química , Almidón/química , Ácido Cítrico/química , Cisteína/química , Resistencia a la Tracción , Embalaje de Alimentos/instrumentación , Permeabilidad
18.
Int J Biol Macromol ; 268(Pt 1): 131464, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38702248

RESUMEN

Global concerns over environmental damage caused by non-biodegradable single-use packaging have sparked interest in developing biomaterials. The food packaging industry is a major contributor to non-degradable plastic waste. This study investigates the impact of incorporating different concentrations of polyvinyl alcohol (PVA) and yerba mate extract as a natural antioxidant into carboxymethyl cassava starch films to possibly use as active degradable packaging to enhance food shelf life. Films with starch and PVA blends (SP) at different ratios (SP radios of 100:0, 90:10, 80:20 and 70:30) with and without yerba mate extract (Y) were successfully produced through extrusion and thermoforming. The incorporation of up to 20 wt% PVA improved starch extrusion processing and enhanced film transparency. PVA played a crucial role in improving the hydrophobicity, tensile strength and flexibility of the starch films but led to a slight deceleration in their degradation in compost. In contrast, yerba mate extract contributed to better compost degradation of the blend films. Additionally, it provided antioxidant activity, particularly in hydrophilic and lipophilic food simulants, suggesting its potential to extend the shelf life of food products. Starch-PVA blend films with yerba mate extract emerged as a promising alternative for mechanically resistant and active food packaging.


Asunto(s)
Antioxidantes , Embalaje de Alimentos , Manihot , Extractos Vegetales , Alcohol Polivinílico , Almidón , Embalaje de Alimentos/métodos , Alcohol Polivinílico/química , Almidón/química , Almidón/análogos & derivados , Antioxidantes/química , Manihot/química , Extractos Vegetales/química , Ilex paraguariensis/química , Resistencia a la Tracción , Interacciones Hidrofóbicas e Hidrofílicas , Fenómenos Mecánicos
19.
Int J Biol Macromol ; 268(Pt 2): 131940, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692554

RESUMEN

Composite edible films were developed by casting method using sunnhemp protein isolate (SHPI) and potato starch (PS) at various proportions (100:0, 90:10, 80:20; 70:30, 60:40, and 50:50) containing glycerol as a plasticizer and clove oil. All the edible films were evaluated for thickness, moisture content, solubility, swelling ratio, water activity. Further characterization of edible films was done on the basis of mechanical, optical, thermal and structural attributes along with morphology. Among all the films, composite film containing 50 % SHPI, 50 % PS and 1 % clove oil were having better characteristics. The solubility and WVP decreased, while the tensile strength and elongation at break of composite film increased with the inclusion of potato starch and clove oil. Intermolecular interactions in the composite film matrix were confirmed by FTIR and XRD analysis. SEM images confirmed the structural compactness and integrity of all the developed films. The amino acid composition of edible films indicated presence of most of the essential amino acids. The present finding of this research work shows that the utilization of sunnhemp protein in the development of biocomposite edible films represents an alternative opportunity of sustainable edible food packaging.


Asunto(s)
Aminoácidos , Aceite de Clavo , Películas Comestibles , Solanum tuberosum , Solubilidad , Almidón , Almidón/química , Solanum tuberosum/química , Aceite de Clavo/química , Aminoácidos/química , Aminoácidos/análisis , Embalaje de Alimentos/métodos , Proteínas de Plantas/química , Resistencia a la Tracción , Biopolímeros/química , Agua/química
20.
Int J Pharm ; 657: 124190, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38701910

RESUMEN

Lubricants are essential for most tablet formulations as they assist powder flow, prevent adhesion to tableting tools and facilitate tablet ejection. Magnesium stearate (MgSt) is an effective lubricant but may compromise tablet strength and disintegratability. In the design of orodispersible tablets, tablet strength and disintegratability are critical attributes of the dosage form. Hence, this study aimed to conduct an in-depth comparative study of MgSt with alternative lubricants, namely sodium lauryl sulphate (SLS), stearic acid (SA) and hydrogenated castor oil (HCO), for their effects on the tableting process as well as tablet properties. Powder blends were prepared with lactose, sodium starch glycolate or crospovidone as the disintegrant, and a lubricant at different concentrations. Angle of repose was determined for the mixtures. Comparative evaluation was carried out based on the ejection force, tensile strength, liquid penetration and disintegratability of the tablets produced. As the lubricant concentration increased, powder flow and tablet ejection improved. The lubrication efficiency generally decreased as follows: MgSt > HCO > SA > SLS. Despite its superior lubrication efficacy, MgSt is the only lubricant of four evaluated that reduced tablet tensile strength. Tablet disintegration time was strongly determined by tensile strength and liquid penetration, which were in turn affected by the lubricant type and concentration. All the above factors should be taken into consideration when deciding the type and concentration of lubricant for an orodispersible tablet formulation.


Asunto(s)
Excipientes , Lubricantes , Ácidos Esteáricos , Comprimidos , Resistencia a la Tracción , Lubricantes/química , Ácidos Esteáricos/química , Excipientes/química , Composición de Medicamentos/métodos , Polvos/química , Dodecil Sulfato de Sodio/química , Aceite de Ricino/química , Povidona/química , Almidón/química , Almidón/análogos & derivados , Lactosa/química , Administración Oral , Solubilidad , Química Farmacéutica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA