Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.717
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731825

RESUMEN

Aminopyrazoles represent interesting structures in medicinal chemistry, and several derivatives showed biological activity in different therapeutic areas. Previously reported 5-aminopyrazolyl acylhydrazones and amides showed relevant antioxidant and anti-inflammatory activities. To further extend the structure-activity relationships in this class of derivatives, a novel series of pyrazolyl acylhydrazones and amides was designed and prepared through a divergent approach. The novel compounds shared the phenylamino pyrazole nucleus that was differently decorated at positions 1, 3, and 4. The antiproliferative, antiaggregating, and antioxidant properties of the obtained derivatives 10-22 were evaluated in in vitro assays. Derivative 11a showed relevant antitumor properties against selected tumor cell lines (namely, HeLa, MCF7, SKOV3, and SKMEL28) with micromolar IC50 values. In the platelet assay, selected pyrazoles showed higher antioxidant and ROS formation inhibition activity than the reference drugs acetylsalicylic acid and N-acetylcysteine. Furthermore, in vitro radical scavenging screening confirmed the good antioxidant properties of acylhydrazone molecules. Overall, the collected data allowed us to extend the structure-activity relationships of the previously reported compounds and confirmed the pharmaceutical attractiveness of this class of aminopyrazole derivatives.


Asunto(s)
Amidas , Antineoplásicos , Antioxidantes , Proliferación Celular , Hidrazonas , Pirazoles , Humanos , Pirazoles/química , Pirazoles/farmacología , Hidrazonas/química , Hidrazonas/farmacología , Hidrazonas/síntesis química , Antioxidantes/farmacología , Antioxidantes/química , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Amidas/química , Amidas/farmacología , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Células MCF-7 , Células HeLa
2.
Molecules ; 29(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38731629

RESUMEN

This work presents the design, synthesis and biological activity of novel N-substituted benzimidazole carboxamides bearing either a variable number of methoxy and/or hydroxy groups. The targeted carboxamides were designed to investigate the influence of the number of methoxy and/or hydroxy groups, the type of substituent placed on the N atom of the benzimidazole core and the type of substituent placed on the benzimidazole core on biological activity. The most promising derivatives with pronounced antiproliferative activity proved to be N-methyl-substituted derivatives with hydroxyl and methoxy groups at the phenyl ring and cyano groups on the benzimidazole nuclei with selective activity against the MCF-7 cell line (IC50 = 3.1 µM). In addition, the cyano-substituted derivatives 10 and 11 showed strong antiproliferative activity against the tested cells (IC50 = 1.2-5.3 µM). Several tested compounds showed significantly improved antioxidative activity in all three methods compared to standard BHT. In addition, the antioxidative activity of 9, 10, 32 and 36 in the cells generally confirmed their antioxidant ability demonstrated in vitro. However, their antiproliferative activity was not related to their ability to inhibit oxidative stress nor to their ability to induce it. Compound 8 with two hydroxy and one methoxy group on the phenyl ring showed the strongest antibacterial activity against the Gram-positive strain E. faecalis (MIC = 8 µM).


Asunto(s)
Antineoplásicos , Antioxidantes , Bencimidazoles , Proliferación Celular , Diseño de Fármacos , Bencimidazoles/química , Bencimidazoles/farmacología , Bencimidazoles/síntesis química , Humanos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Células MCF-7 , Antioxidantes/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Relación Estructura-Actividad , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Amidas/química , Amidas/farmacología , Amidas/síntesis química , Estructura Molecular , Pruebas de Sensibilidad Microbiana , Estrés Oxidativo/efectos de los fármacos
3.
J Med Life ; 17(1): 87-98, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38737655

RESUMEN

This study aimed to identify novel Glyoxalase-I (Glo-I) inhibitors with potential anticancer properties, focusing on anthraquinone amide-based derivatives. We synthesized a series of these derivatives and conducted in silico docking studies to predict their binding interactions with Glo-I. In vitro assessments were performed to evaluate the anti-Glo-I activity of the synthesized compounds. A comprehensive structure-activity relationship (SAR) analysis identified key features responsible for specific binding affinities of anthraquinone amide-based derivatives to Glo-I. Additionally, a 100 ns molecular dynamics simulation assessed the stability of the most potent compound compared to a co-crystallized ligand. Compound MQ3 demonstrated a remarkable inhibitory effect against Glo-I, with an IC50 concentration of 1.45 µM. The inhibitory potency of MQ3 may be attributed to the catechol ring, amide functional group, and anthraquinone moiety, collectively contributing to a strong binding affinity with Glo-I. Anthraquinone amide-based derivatives exhibit substantial potential as Glo-I inhibitors with prospective anticancer activity. The exceptional inhibitory efficacy of compound MQ3 indicates its potential as an effective anticancer agent. These findings underscore the significance of anthraquinone amide-based derivatives as a novel class of compounds for cancer therapy, supporting further research and advancements in targeting the Glo-I enzyme to combat cancer.


Asunto(s)
Amidas , Antraquinonas , Inhibidores Enzimáticos , Lactoilglutatión Liasa , Simulación del Acoplamiento Molecular , Antraquinonas/farmacología , Antraquinonas/química , Humanos , Amidas/química , Amidas/farmacología , Lactoilglutatión Liasa/antagonistas & inhibidores , Lactoilglutatión Liasa/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , Simulación de Dinámica Molecular , Antineoplásicos/farmacología , Antineoplásicos/química
4.
Sci Rep ; 14(1): 12314, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811617

RESUMEN

Epithelial tissue forms and maintains a critical barrier function in the body. A novel culture design aimed at promoting uniform maturation of epithelial cells using liquid materials is described. Culturing Madin-Darby canine kidney (MDCK) cells at the liquid-liquid interface yielded reduced migration and stimulated active cell growth. Similar to solid-liquid interfaces, cells cultured on a fibronectin-coated liquid-liquid interface exhibited active migration and growth, ultimately reaching a confluent state. These cells exhibited reduced stress fiber formation and adopted a cobblestone-like shape, which led to their even distribution in the culture vessel. To inhibit stress fiber formation and apoptosis, the exposure of cells on liquid-liquid interfaces to Y27632, a specific inhibitor of the Rho-associated protein kinase (ROCK), facilitated tight junction formation (frequency of ZO-2-positive cells, FZ = 0.73). In Y27632-exposed cells on the liquid-liquid interface, the value obtained by subtracting the standard deviation of the ratio of nucleus densities in each region that compartmentalized a culture vessel from 1, denoted as HLN, was 0.93 ± 0.01, indicated even cell distribution in the culture vessel at t = 72 h. The behavior of epithelial cells on liquid-liquid interfaces contributes to the promotion of their uniform maturation.


Asunto(s)
Movimiento Celular , Células Epiteliales , Perros , Células Epiteliales/citología , Células Epiteliales/metabolismo , Animales , Células de Riñón Canino Madin Darby , Uniones Estrechas/metabolismo , Proliferación Celular , Técnicas de Cultivo de Célula/métodos , Amidas/farmacología , Piridinas/farmacología , Apoptosis , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Fibras de Estrés/metabolismo , Diferenciación Celular
5.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732008

RESUMEN

Neuropathy affects 7-10% of the general population and is caused by a lesion or disease of the somatosensory system. The limitations of current therapies highlight the necessity of a new innovative approach to treating neuropathic pain (NP) based on the close correlation between oxidative stress, inflammatory process, and antioxidant action. The advantageous outcomes of a novel combination composed of Hop extract, Propolis, Ginkgo Biloba, Vitamin B, and palmitoylethanolamide (PEA) used as a treatment was evaluated in this study. To assess the absorption and biodistribution of the combination, its bioavailability was first examined in a 3D intestinal barrier model that replicated intestinal absorption. Further, a 3D nerve tissue model was developed to study the biological impacts of the combination during the essential pathways involved in NP. Our findings show that the combination could cross the intestinal barrier and reach the peripheral nervous system, where it modulates the oxidative stress, inflammation levels, and myelination mechanism (increased NRG, MPZ, ERB, and p75 levels) under Schwann cells damaging. This study proves the effectiveness of Ginkgo Biloba, Propolis, Hop extract, Vitamin B, and PEA in avoiding nerve damage and suggests a potential alternative nutraceutical treatment for NP and neuropathies.


Asunto(s)
Amidas , Suplementos Dietéticos , Etanolaminas , Neuralgia , Ácidos Palmíticos , Plantas Medicinales , Etanolaminas/farmacología , Ácidos Palmíticos/farmacología , Ácidos Palmíticos/administración & dosificación , Animales , Neuralgia/tratamiento farmacológico , Amidas/farmacología , Amidas/química , Plantas Medicinales/química , Polifenoles/farmacología , Polifenoles/química , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ratas , Masculino , Antioxidantes/farmacología , Ginkgo biloba/química , Humanos
6.
J Vis Exp ; (207)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38767371

RESUMEN

The mammary gland is a fundamental structure of the breast and plays an essential role in reproduction. Human mammary epithelial cells (HMECs), which are the origin cells of breast cancer and other breast-related inflammatory diseases, have garnered considerable attention. However, isolating and culturing primary HMECs in vitro for research purposes has been challenging due to their highly differentiated, keratinized nature and their short lifespan. Therefore, developing a simple and efficient method to isolate and culture HMECs is of great scientific value for the study of breast biology and breast-related diseases. In this study, we successfully isolated primary HMECs from small amounts of mammary tissue by digestion with a mixture of enzymes combined with an initial culture in 5% fetal bovine serum-DMEM containing the Rho-associated kinase (ROCK) inhibitor Y-27632, followed by culture expansion in serum-free keratinocyte medium. This approach selectively promotes the growth of epithelial cells, resulting in an optimized cell yield. The simplicity and convenience of this method make it suitable for both laboratory and clinical research, which should provide valuable insights into these important areas of study.


Asunto(s)
Técnicas de Cultivo de Célula , Células Epiteliales , Glándulas Mamarias Humanas , Humanos , Células Epiteliales/citología , Femenino , Glándulas Mamarias Humanas/citología , Técnicas de Cultivo de Célula/métodos , Amidas/farmacología , Piridinas/farmacología , Técnicas Citológicas/métodos , Quinasas Asociadas a rho/antagonistas & inhibidores
7.
Eur J Med Chem ; 272: 116466, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704938

RESUMEN

P-glycoprotein (Pgp) modulators are promising agents for overcoming multidrug resistance (MDR) in cancer chemotherapy. In this study, via structural optimization of our lead compound S54 (nonsubstrate allosteric inhibitor of Pgp), 29 novel pyxinol amide derivatives bearing an aliphatic heterocycle were designed, synthesized, and screened for MDR reversal activity in KBV cells. Unlike S54, these active derivatives were shown to transport substrates of Pgp. The most potent derivative 4c exhibited promising MDR reversal activity (IC50 of paclitaxel = 8.80 ± 0.56 nM, reversal fold = 211.8), which was slightly better than that of third-generation Pgp modulator tariquidar (IC50 of paclitaxel = 9.02 ± 0.35 nM, reversal fold = 206.6). Moreover, the cytotoxicity of this derivative was 8-fold lower than that of tariquidar in human normal HK-2 cells. Furthermore, 4c blocked the efflux function of Pgp and displayed high selectivity for Pgp but had no effect on its expression and distribution. Molecular docking revealed that 4c bound preferentially to the drug-binding domain of Pgp. Overall, 4c is a promising lead compound for developing Pgp modulators.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Amidas , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Simulación del Acoplamiento Molecular , Humanos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Amidas/química , Amidas/farmacología , Amidas/síntesis química , Relación Estructura-Actividad , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Resistencia a Antineoplásicos/efectos de los fármacos , Estructura Molecular , Relación Dosis-Respuesta a Droga , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos
8.
J Agric Food Chem ; 72(21): 12100-12118, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38748649

RESUMEN

This study aimed to investigate the chemical components and potential health benefits of the fruits of Cannabis sativa L. Fourteen new phenylpropanamides designated as cannabisin I-XIV (1-14) and 40 known analogs were isolated and characterized via nuclear magnetic resonance spectroscopy, high-resolution electrospray ionization mass spectrometry, and electronic circular dichroism. In vitro bioassay using H2O2-induced PC12 cell damage models demonstrated that hempseeds extract and compounds 1, 3, 15, 26, 30, 36, 41, and 48 exhibited neuroprotective properties. 3,3'-Demethylgrossamide (30) displayed encouraging protection activity, which was further investigated to relieve the oxidative stress and apoptosis of PC12 cells treated with H2O2. The isolation and characterization of these neuroprotective phenylpropanamides from the fruits of C. sativa provide insights into its health-promoting properties as a healthy food and herbal medicine for preventing and treating neurodegenerative diseases, especially Alzheimer's disease.


Asunto(s)
Cannabis , Frutas , Fármacos Neuroprotectores , Extractos Vegetales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Ratas , Células PC12 , Animales , Frutas/química , Cannabis/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Amidas/química , Amidas/farmacología , Peróxido de Hidrógeno , Humanos
9.
J Agric Food Chem ; 72(20): 11531-11548, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38700894

RESUMEN

Although recent evidence indicated significant phenol and alkylamide interaction in aqueous solutions, the gastrointestinal digestion influence of the combination remains unclear. This study aims to investigate phenol and alkylamide interaction during in vitro digestion, focusing on bioaccessibility and bioactivity, including α-glucosidase inhibition and cellular antioxidant activity. Additionally, the structural mechanism of phenol and alkylamide interaction during in vitro digestion was explored. The results indicated that the presence of phenols and alkylamides significantly increased or decreased their respective bioaccessibility, depending on the Zanthoxylum varieties. Furthermore, although antagonistic phenol/alkylamide interaction was evident during α-glucosidase inhibition, cellular oxidative stress alleviation, and antioxidant gene transcription upregulation, this effect weakened gradually as digestion progressed. Glycoside bond cleavage and the methylation of phenols as well as alkylamide isomerization and addition were observed during digestion, modifying the hydrogen bonding sites and interaction behavior. This study provided insights into the phenol/alkylamide interaction in the gastrointestinal tract.


Asunto(s)
Amidas , Antioxidantes , Digestión , Inhibidores de Glicósido Hidrolasas , Extractos Vegetales , Zanthoxylum , alfa-Glucosidasas , Zanthoxylum/química , Zanthoxylum/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/química , alfa-Glucosidasas/genética , Humanos , Amidas/química , Amidas/metabolismo , Amidas/farmacología , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Fenoles/química , Fenoles/metabolismo , Modelos Biológicos , Fenol/metabolismo , Fenol/química
10.
Sci Rep ; 14(1): 10393, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710741

RESUMEN

The transforming growth factor (TGF)-ß3 is a well-known inducer for tenogenic differentiation, signaling via the Smad2/3 pathway. Furthermore, other factors like extracellular matrix or mechanical force can induce tenogenic differentiation and possibly alter the response to TGF-ß3 by signaling via the Rho/ROCK pathway. The aim of this study was to investigate the interplay of Rho/ROCK and TGF-ß3/Smad signaling in tenogenic differentiation, with the Smad2/3 molecule hypothesized as a possible interface. Cultured as monolayers or on collagen I matrices, mesenchymal stromal cells (MSC) were treated with the ROCK inhibitor Y-27632 (10 µM), TGF-ß3 (10 ng/ml) or both combined. Control cells were cultured accordingly, without Y-27632 and/or without TGF-ß3. At different time points, MSC were analyzed by real-time RT-PCR, immunofluorescence, and Western blot. Cultivation of MSC on collagen matrices and ROCK inhibition supported tenogenic differentiation and fostered the effect of TGF-ß3. The phosphorylation of the linker region of Smad2 was reduced by cultivation on collagen matrices, but not by ROCK inhibition. The latter, however, led to increased phosphorylation of the linker region of Smad3. In conclusion, collagen matrices and the Rho/ROCK signaling pathway influence the TGF-ß3/Smad2/3 pathway by regulating different phosphorylation sites of the Smad linker region.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Transducción de Señal , Proteína Smad2 , Proteína smad3 , Factor de Crecimiento Transformador beta3 , Quinasas Asociadas a rho , Quinasas Asociadas a rho/metabolismo , Fosforilación , Diferenciación Celular/efectos de los fármacos , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Factor de Crecimiento Transformador beta3/metabolismo , Células Cultivadas , Piridinas/farmacología , Amidas/farmacología , Proteínas de Unión al GTP rho/metabolismo
11.
Bioorg Chem ; 147: 107415, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701597

RESUMEN

The tobacco mosaic virus coat protein (TMV-CP) is indispensable for the virus's replication, movement and transmission, as well as for the host plant's immune system to recognize it. It constitutes the outermost layer of the virus particle, and serves as an essential component of the virus structure. TMV-CP is essential for initiating and extending viral assembly, playing a crucial role in the self-assembly process of Tobacco Mosaic Virus (TMV). This research employed TMV-CP as a primary target for virtual screening, from which a library of 43,417 compounds was sourced and SH-05 was chosen as the lead compound. Consequently, a series of α-amide phosphate derivatives were designed and synthesized, exhibiting remarkable anti-TMV efficacy. The synthesized compounds were found to be beneficial in treating TMV, with compound 3g displaying a slightly better curative effect than Ningnanmycin (NNM) (EC50 = 304.54 µg/mL) at an EC50 of 291.9 µg/mL. Additionally, 3g exhibited comparable inactivation activity (EC50 = 63.2 µg/mL) to NNM (EC50 = 67.5 µg/mL) and similar protective activity (EC50 = 228.9 µg/mL) to NNM (EC50 = 219.7 µg/mL). Microscale thermal analysis revealed that the binding of 3g (Kd = 4.5 ± 1.9 µM) to TMV-CP showed the same level with NNM (Kd = 5.5 ± 2.6 µM). Results from transmission electron microscopy indicated that 3g could disrupt the structure of TMV virus particles. The toxicity prediction indicated that 3g was low toxicity. Molecular docking showed that 3g interacted with TMV-CP through hydrogen bond, attractive charge interaction and π-Cation interaction. This research provided a novel α-amide phosphate structure target TMV-CP, which may help the discovery of new anti-TMV agents in the future.


Asunto(s)
Antivirales , Proteínas de la Cápside , Fosfatos , Virus del Mosaico del Tabaco , Virus del Mosaico del Tabaco/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Fosfatos/química , Fosfatos/farmacología , Relación Estructura-Actividad , Estructura Molecular , Proteínas de la Cápside/antagonistas & inhibidores , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Diseño de Fármacos , Pruebas de Sensibilidad Microbiana , Amidas/química , Amidas/farmacología , Amidas/síntesis química , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular
12.
Pol Merkur Lekarski ; 52(2): 178-188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38642353

RESUMEN

OBJECTIVE: Aim: To evaluate the cytotoxic activity of newly synthesized a series of novel HDAC inhibitors comprising sulfonamide as zinc binding group and Isatin derivatives as cap group joined by mono amide linker as required to act as HDAC inhibitors. PATIENTS AND METHODS: Materials and Methods: The utilization of sulfonamide as zinc binding group joined by N-alkylation reaction with ethyl-bromo hexanoate as linker group that joined by amide reaction with Isatin derivatives as cap groups which known to possess antitumor activity in the designed of new histone deacetylase inhibitors and using the docking and MTT assay to evaluate the compounds. RESULTS: Results: Four compounds have been synthesized and characterized successfully by ART-FTIR, NMR and ESI-Ms. the compounds were synthesized and characterized by successfully by ART-FTIR, NMR and ESI- Ms. Assessed for their cytotoxic activity against human colon adenocarcinoma MCF-7 (IC50, I=105.15, II=60.00, III=54.11, IV=56.57, vorinostat=28.41) and hepatoblastoma HepG2 (IC50, I=63.91, II=135.18, III=118.85, IV=51.46, vorinostat=37.50). Most of them exhibited potent HDAC inhibitory activity and significant cytotoxicity. CONCLUSION: Conclusions: The synthesized compounds (I, II, III and IV) showed cytotoxicity toward MCF-7 and HepG2 cancer cell lines and their docking analysis provided a preliminary indication that they are viable [HDAC6] candidates.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias del Colon , Isatina , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Vorinostat/farmacología , Isatina/farmacología , Línea Celular Tumoral , Amidas/farmacología , Diseño de Fármacos , Antineoplásicos/farmacología , Sulfonamidas/farmacología , Zinc/metabolismo , Zinc/farmacología , Proliferación Celular , Estructura Molecular
13.
Bioorg Med Chem Lett ; 105: 129741, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599296

RESUMEN

ZJ-101, a structurally simplified analog of marine natural product superstolide A, was previously designed and synthesized in our laboratory. In the present study four new analogs of ZJ-101 were designed and synthesized to investigate the structure-activity relationship of the acetamide moiety of the molecule. The biological evaluation showed that the amide moiety is important for the molecule's anticancer activity. Replacing the amide with other functional groups such as a sulfonamide group, a carbamate group, and a urea group resulted in the decrease in anticancer activity.


Asunto(s)
Amidas , Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Humanos , Amidas/química , Amidas/farmacología , Amidas/síntesis química , Línea Celular Tumoral , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Macrólidos/química , Macrólidos/farmacología , Macrólidos/síntesis química , Relación Dosis-Respuesta a Droga
14.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674101

RESUMEN

Betulonic acid (B(O)A) is a pentacyclic lupane-type triterpenoid that widely exists in plants. There are scientific reports indicating anticancer activity of B(O)A, as well as the amides and esters of this triterpenoid. In the first step of the study, the synthesis of novel amide derivatives of B(O)A containing an acetylenic moiety was developed. Subsequently, the medium-soluble compounds (EB171 and EB173) and the parent compound, i.e., B(O)A, were investigated for potential cytotoxic activity against breast cancer (MCF-7 and MDA-MB-231) and melanoma (C32, COLO 829 and A375) cell lines, as well as normal human fibroblasts. Screening analysis using the WST-1 test was applied. Moreover, the lipophilicity and ADME parameters of the obtained derivatives were determined using experimental and in silico methods. The toxicity assay using zebrafish embryos and larvae was also performed. The study showed that the compound EB171 exhibited a significant cytotoxic effect on cancer cell lines: MCF-7, A-375 and COLO 829, while it did not affect the survival of normal cells. Moreover, studies on embryos and larvae showed no toxicity of EB171 in an animal model. Compared to EB171, the compound EB173 had a weaker effect on all tested cancer cell lines and produced less desirable effects against normal cells. The results of the WST-1 assay obtained for B(O)A revealed its strong cytotoxic activity on the examined cancer cell lines, but also on normal cells. In conclusion, this article describes new derivatives of betulonic acid-from synthesis to biological properties. The results allowed to indicate a promising direction for the functionalization of B(O)A to obtain derivatives with selective anticancer activity and low toxicity.


Asunto(s)
Amidas , Antineoplásicos , Ácido Betulínico , Ácido Oleanólico , Pez Cebra , Humanos , Animales , Amidas/química , Amidas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacología , Ácido Oleanólico/química , Ácido Oleanólico/síntesis química , Ácido Oleanólico/farmacocinética , Línea Celular Tumoral , Simulación por Computador , Células MCF-7 , Supervivencia Celular/efectos de los fármacos
15.
Chem Commun (Camb) ; 60(26): 3563-3566, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38465405

RESUMEN

CPN-116 is a peptidic agonist that activates human neuromedin U receptor type 2 (NMUR2) but suffers from chemical instability due to inherent backbone isomerization on the Dap residue. To address this, a Leu-Dap-type (Z)-chloroalkene dipeptide isostere was synthesized diastereoselectively as a surrogate of the Leu-Dap peptide bond to develop a (Z)-chloroalkene analogue of CPN-116. The synthesized CPN-116 analogue is stable in 1.0 M phosphate buffer (pH 7.4) without backbone isomerization and can activate NMUR2 with similar potency to CPN-116 at nM concentrations (EC50 = 1.0 nM).


Asunto(s)
Neuropéptidos , Humanos , Neuropéptidos/química , Amidas/farmacología , Péptidos , Receptores de Neurotransmisores/agonistas
16.
Adv Sci (Weinh) ; 11(19): e2309261, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38481034

RESUMEN

Androgen receptor (AR) antagonists are widely used for the treatment of prostate cancer (PCa), but their therapeutic efficacy is usually compromised by the rapid emergence of drug resistance. However, the lack of the detailed interaction between AR and its antagonists poses a major obstacle to the design of novel AR antagonists. Here, funnel metadynamics is employed to elucidate the inherent regulation mechanisms of three AR antagonists (hydroxyflutamide, enzalutamide, and darolutamide) on AR. For the first time it is observed that the binding of antagonists significantly disturbed the C-terminus of AR helix-11, thereby disrupting the specific internal hydrophobic contacts of AR-LBD and correspondingly the communication between AR ligand binding pocket (AR-LBP), activation function 2 (AF2), and binding function 3 (BF3). The subsequent bioassays verified the necessity of the hydrophobic contacts for AR function. Furthermore, it is found that darolutamide, a newly approved AR antagonist capable of fighting almost all reported drug resistant AR mutants, can induce antagonistic binding structure. Subsequently, docking-based virtual screening toward the dominant binding conformation of AR for darolutamide is conducted, and three novel AR antagonists with favorable binding affinity and strong capability to combat drug resistance are identified by in vitro bioassays. This work provides a novel rational strategy for the development of anti-resistant AR antagonists.


Asunto(s)
Antagonistas de Receptores Androgénicos , Benzamidas , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/química , Humanos , Benzamidas/farmacología , Feniltiohidantoína/farmacología , Feniltiohidantoína/análogos & derivados , Masculino , Receptores Androgénicos/metabolismo , Receptores Androgénicos/química , Receptores Androgénicos/genética , Nitrilos/farmacología , Simulación de Dinámica Molecular , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Pirazoles/farmacología , Pirazoles/química , Simulación del Acoplamiento Molecular/métodos , Amidas/farmacología , Amidas/química , Flutamida/análogos & derivados
17.
Chem Biodivers ; 21(5): e202400090, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38486477

RESUMEN

Streptomide (1), a new amide analogue, streptomynone (2), a new quinolinone, and ten known compounds including three aliphatic acids (3-5), two amides (6-7), four cyclic dipeptides (8-11), and an adenosine (12) were isolated from the fermentation broth of Streptomyces sp. YIM S01983 isolated from a sediment sample collected in Bendong Village, Huadong Town, Chuxiong, China. Their structures were determined by analysis of the 1D/2D-NMR and HR-ESI-MS spectra. Compound 12 presented weak antimicrobial activities against Candida albicans and Aligenes faecalis (MIC=64 µg/mL). Compounds 7 and 12 showed weak cytotoxic activity against MHCC97H.


Asunto(s)
Amidas , Candida albicans , Pruebas de Sensibilidad Microbiana , Quinolonas , Streptomyces , Streptomyces/química , Streptomyces/metabolismo , Amidas/química , Amidas/farmacología , Amidas/aislamiento & purificación , Candida albicans/efectos de los fármacos , Quinolonas/química , Quinolonas/farmacología , Quinolonas/aislamiento & purificación , Humanos , Línea Celular Tumoral , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Enterococcus faecalis/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales
18.
Bioorg Chem ; 144: 107116, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237391

RESUMEN

Four undescribed coumarin derivatives, ficusalt A (1) and ficusalt B (2), a pair of racemic coumarins, (±) ficudimer A (3a/3b), along with ten known amides, were isolated from the roots of Ficus hirta. Their structures were elucidated by several spectroscopic data analyses, including HRESIMS, NMR, and X-ray single-crystal diffraction. The cytotoxic activities of all compounds against HeLa, HepG2, MCF-7, and H460 cell lines were detected using the MTT assay. Among these, 5 showed the highest activity against HeLa cells. Subsequently, the apoptotic, anti-invasive, and anti-migration effects of 5 on HeLa cells were determined by flow cytometer, transwell invasion assay, and wound-healing assay, respectively. The result suggested that 5 distinctly induced the apoptosis in HeLa cells and inhibited their invasion and migration. Further studies on anticancer mechanisms were conducted using Western blotting. As a result, 5 increased the cleavage of PARP and the expression of pro-apoptotic protein Bax. Moreover, 5 notably upregulated the phosphorylation of p38 and JNK, whereas inhibited the expression of p-ERK and p-AKT. Our results demonstrated that 5 could be a potential leading compound for further application in the treatment of cervical cancer.


Asunto(s)
Antineoplásicos , Ficus , Femenino , Humanos , Células HeLa , Ficus/química , Amidas/farmacología , Cumarinas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis
19.
Molecules ; 29(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38202821

RESUMEN

This review covers the last 25 years of the literature on analogs of suberoylanilide hydroxamic acid (SAHA, known also as vorinostat) acting as an HDAC inhibitor. In particular, the topic has been focused on the synthesis and biological activity of compounds where the phenyl group (the surface recognition moiety, CAP) of SAHA has been replaced by an azaheterocycle through a direct bond with amide nitrogen atom, and the methylene chain in the linker region is of variable length. Most of the compounds displayed good to excellent inhibitory activity against HDACs and in many cases showed antiproliferative activity against human cancer cell lines.


Asunto(s)
Amidas , Histona Desacetilasas , Humanos , Vorinostat/farmacología , Amidas/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Línea Celular
20.
Int Immunopharmacol ; 128: 111434, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176346

RESUMEN

Kidney is the target organ of serious cadmium injury. Kidney damage caused by cadmium exposure is greatly influenced by the inflammatory response and mitochondrial damage. T cell immunoglobulin domain and mucin domain 3 (Tim-3) is an essential protein that functions as a negative immunological checkpoint to regulate inflammatory responses. Mice were given cadmium treatments at various dosages (0, 1.5, 3, 4.5 mg/kg) and times (0, 3, 5, 7 days) to assess the effects of cadmium on kidney damage. We found that the optimal way to induce kidney injury in mice was to inject 4.5 mg/kg of cadmium intraperitoneally for five days. It is interesting that giving mice 4.5 mg/kg of cadmium intravenously for seven days drastically lowered their survival rate. After cadmium exposure, Tim-3 knockout mice exhibited higher blood concentrations of urea nitrogen and creatinine compared to control mice. Tim-3 impacted the expression of oxidative stress-associated genes such as UDP glucuronosyltransferase family 1 member A9 (Ugt1a9), oxidative stress-induced growth inhibitor 2 (Osgin2), and S100 calcium binding protein A8 (S100a8), according to RNA-seq and real-time RT-PCR data. Tim-3 deficiency also resulted in activated nuclear factor-kappa B (NF-κB) signaling pathway. The NF-κB inhibitor 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1) significantly alleviated cell apoptosis, oxidative stress response, and renal tubule inflammation in Tim-3 knockout mice exposed to cadmium. Furthermore, cadmium caused obvious B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax) translocation from cytoplasm to mitochondria, which can be inhibited by TPCA-1. In conclusion, Tim-3 prevented mitochondrial damage and NF-κB signaling activation, hence providing protection against cadmium nephrotoxicity.


Asunto(s)
Cadmio , Receptor 2 Celular del Virus de la Hepatitis A , Enfermedades Renales , Riñón , FN-kappa B , Animales , Ratones , Amidas/farmacología , Amidas/uso terapéutico , Apoptosis , Cadmio/toxicidad , Receptor 2 Celular del Virus de la Hepatitis A/genética , Riñón/efectos de los fármacos , Enfermedades Renales/inducido químicamente , Enfermedades Renales/genética , Ratones Noqueados , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Transducción de Señal , Tiofenos/farmacología , Tiofenos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA