Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.393
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5535, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951545

RESUMEN

The conversion of a soluble protein into polymeric amyloid structures is a process that is poorly understood. Here, we describe a fully redox-regulated amyloid system in which cysteine oxidation of the tumor suppressor protein p16INK4a leads to rapid amyloid formation. We identify a partially-structured disulfide-bonded dimeric intermediate species that subsequently assembles into fibrils. The stable amyloid structures disassemble when the disulfide bond is reduced. p16INK4a is frequently mutated in cancers and is considered highly vulnerable to single-point mutations. We find that multiple cancer-related mutations show increased amyloid formation propensity whereas mutations stabilizing the fold prevent transition into amyloid. The complex transition into amyloids and their structural stability is therefore strictly governed by redox reactions and a single regulatory disulfide bond.


Asunto(s)
Amiloide , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Cisteína , Oxidación-Reducción , Amiloide/metabolismo , Amiloide/química , Humanos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Cisteína/metabolismo , Cisteína/química , Disulfuros/metabolismo , Disulfuros/química , Compuestos de Sulfhidrilo/metabolismo , Compuestos de Sulfhidrilo/química , Mutación , Polimerizacion
2.
Nat Commun ; 15(1): 5686, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971830

RESUMEN

The assembly and disassembly of biomolecular condensates are crucial for the subcellular compartmentalization of biomolecules in the control of cellular reactions. Recently, a correlation has been discovered between the phase transition of condensates and their maturation (aggregation) process in diseases. Therefore, modulating the phase of condensates to unravel the roles of condensation has become a matter of interest. Here, we create a peptide-based phase modulator, JSF1, which forms droplets in the dark and transforms into amyloid-like fibrils upon photoinitiation, as evidenced by their distinctive nanomechanical and dynamic properties. JSF1 is found to effectively enhance the condensation of purified fused in sarcoma (FUS) protein and, upon light exposure, induce its fibrilization. We also use JSF1 to modulate the biophysical states of FUS condensates in live cells and elucidate the relationship between FUS phase transition and FUS proteinopathy, thereby shedding light on the effect of protein phase transition on cellular function and malfunction.


Asunto(s)
Péptidos , Transición de Fase , Proteína FUS de Unión a ARN , Proteína FUS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/genética , Humanos , Péptidos/química , Péptidos/metabolismo , Amiloide/metabolismo , Amiloide/química , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Luz
3.
J Nippon Med Sch ; 91(3): 261-269, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38972738

RESUMEN

BACKGROUND: Although immunohistochemical techniques and proteomic analysis are widely used for typing diagnosis of amyloidosis, the diagnostic utility of immunohistochemical evaluation is not well understood. METHODS: We used immunohistochemical techniques to characterize staining patterns of in-house rabbit polyclonal anti-κ, anti-λ, anti-transthyretin antibodies, and commercial anti-amyloid A and anti-ß2-microglobulin antibodies in 40 autopsy cases. RESULTS: In thirty cases (75%), the subtype was determined by using the criterion that amyloid is strongly and diffusely positive for one antibody while negative for other antibodies. We then performed proteomic analysis of all 40 cases. In 39 cases, we identified only one amyloid protein and confirmed the immunohistochemically determined subtypes of the abovementioned 30 cases. In seven other cases, we could retrospectively determine subtypes with immunohistochemistry by using information from proteomic analysis, which increased the immunohistochemistry diagnosis rate to 92.5% (37/40). In one case, we identified double subtypes, both immunohistochemically and with proteomic analysis. In the remaining three cases, proteomic analysis was essential for typing diagnosis. CONCLUSIONS: The present findings suggest that combined immunohistochemistry and proteomic analysis is more useful than immunohistochemistry alone. Our findings highlight the importance of carefully interpreting immunohistochemistry for anti-TTR and light chain and offer insights that can guide amyloid typing through immunohistochemistry.


Asunto(s)
Amiloidosis , Inmunohistoquímica , Proteómica , Espectrometría de Masas en Tándem , Humanos , Inmunohistoquímica/métodos , Espectrometría de Masas en Tándem/métodos , Proteómica/métodos , Amiloidosis/diagnóstico , Amiloidosis/metabolismo , Amiloidosis/patología , Cromatografía Liquida/métodos , Femenino , Anciano de 80 o más Años , Masculino , Anciano , Persona de Mediana Edad , Autopsia , Amiloide/metabolismo , Amiloide/análisis , Estudios Retrospectivos , Microglobulina beta-2/análisis , Microglobulina beta-2/metabolismo , Proteína Amiloide A Sérica/análisis , Adulto
4.
Commun Biol ; 7(1): 776, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937578

RESUMEN

Aggregation of the human islet amyloid polypeptide (hIAPP) contributes to the development and progression of Type 2 Diabetes (T2D). hIAPP aggregates within a few hours at few micromolar concentration in vitro but exists at millimolar concentrations in vivo. Natively occurring inhibitors of hIAPP aggregation might therefore provide a model for drug design against amyloid formation associated with T2D. Here, we describe the combined ability of low pH, zinc, and insulin to inhibit hIAPP fibrillation. Insulin dose-dependently slows hIAPP aggregation near neutral pH but had less effect on the aggregation kinetics at acidic pH. We determine that insulin alters hIAPP aggregation in two manners. First, insulin diverts the aggregation pathway to large nonfibrillar aggregates with ThT-positive molecular structure, rather than to amyloid fibrils. Second, soluble insulin suppresses hIAPP dimer formation, which is an important early aggregation event. Further, we observe that zinc significantly modulates the inhibition of hIAPP aggregation by insulin. We hypothesize that this effect arose from controlling the oligomeric state of insulin and show that hIAPP interacts more strongly with monomeric than oligomeric insulin.


Asunto(s)
Insulina , Polipéptido Amiloide de los Islotes Pancreáticos , Agregado de Proteínas , Zinc , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Concentración de Iones de Hidrógeno , Humanos , Zinc/farmacología , Zinc/metabolismo , Zinc/química , Insulina/metabolismo , Agregado de Proteínas/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Cinética , Amiloide/metabolismo , Amiloide/química , Agregación Patológica de Proteínas/metabolismo
5.
Chem Commun (Camb) ; 60(53): 6717-6727, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38835221

RESUMEN

Fibril formation is a key feature in neurodegenerative diseases like Alzheimer's, Parkinson's, and systemic amyloidosis. Polyphenols, found in plant-based foods, show promise in inhibiting fibril formation and disrupting disease progression. The ability of polyphenols to break the amyloid fibrils of many disease-linked proteins has been tested in numerous studies. Polyphenols have their distinctive mechanism of action. They behave differently on various events in the aggregation pathway. Their action also differs for different proteins. Some polyphenols only inhibit the formation of fibrils whereas others break the preformed fibrils. Some break the fibrils into smaller species, and some change them to other morphologies. This article delves into the intricate molecular mechanisms underlying the inhibitory effects of polyphenols on fibrillogenesis, shedding light on their interactions with amyloidogenic proteins and the disruption of fibril assembly pathways. However, addressing the challenges associated with solubility, stability, and bioavailability of polyphenols is crucial. The current strategies involve nanotechnology to improve the solubility and bioavailability, thus showing the potential to enhance the efficacy of polyphenols as therapeutics. Advancements in structural biology, computational modeling, and biophysics have provided insights into polyphenol-fibril interactions, offering hope for novel therapies for neurodegenerative diseases and amyloidosis.


Asunto(s)
Amiloide , Polifenoles , Polifenoles/química , Polifenoles/farmacología , Humanos , Amiloide/metabolismo , Amiloide/antagonistas & inhibidores , Amiloide/química , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Amiloidosis/tratamiento farmacológico , Amiloidosis/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(25): e2322572121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38875148

RESUMEN

Shear forces affect self-assembly processes ranging from crystallization to fiber formation. Here, the effect of mild agitation on amyloid fibril formation was explored for four peptides and investigated in detail for A[Formula: see text]42, which is associated with Alzheimer's disease. To gain mechanistic insights into the effect of mild agitation, nonseeded and seeded aggregation reactions were set up at various peptide concentrations with and without an inhibitor. First, an effect on fibril fragmentation was excluded by comparing the monomer-concentration dependence of aggregation kinetics under idle and agitated conditions. Second, using a secondary nucleation inhibitor, Brichos, the agitation effect on primary nucleation was decoupled from secondary nucleation. Third, an effect on secondary nucleation was established in the absence of inhibitor. Fourth, an effect on elongation was excluded by comparing the seeding potency of fibrils formed under idle or agitated conditions. We find that both primary and secondary nucleation steps are accelerated by gentle agitation. The increased shear forces facilitate both the detachment of newly formed aggregates from catalytic surfaces and the rate at which molecules are transported in the bulk solution to encounter nucleation sites on the fibril and other surfaces. Ultrastructural evidence obtained with cryogenic transmission electron microscopy and free-flow electrophoresis in microfluidics devices imply that agitation speeds up the detachment of nucleated species from the fibril surface. Our findings shed light on the aggregation mechanism and the role of detachment for efficient secondary nucleation. The results inform on how to modulate the relative importance of different microscopic steps in drug discovery and investigations.


Asunto(s)
Amiloide , Amiloide/metabolismo , Amiloide/química , Cinética , Humanos , Resistencia al Corte , Agregado de Proteínas , Péptidos/química , Péptidos/metabolismo , Enfermedad de Alzheimer/metabolismo
7.
Nat Commun ; 15(1): 5121, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879609

RESUMEN

Systemic AL amyloidosis is one of the most frequently diagnosed forms of systemic amyloidosis. It arises from mutational changes in immunoglobulin light chains. To explore whether these mutations may affect the structure of the formed fibrils, we determine and compare the fibril structures from several patients with cardiac AL amyloidosis. All patients are affected by light chains that contain an IGLV3-19 gene segment, and the deposited fibrils differ by the mutations within this common germ line background. Using cryo-electron microscopy, we here find different fibril structures in each patient. These data establish that the mutations of amyloidogenic light chains contribute to defining the fibril architecture and hence the structure of the pathogenic agent.


Asunto(s)
Microscopía por Crioelectrón , Cadenas Ligeras de Inmunoglobulina , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas , Mutación , Humanos , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/genética , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/patología , Cadenas Ligeras de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/metabolismo , Cadenas Ligeras de Inmunoglobulina/química , Amiloide/metabolismo , Amiloide/genética , Amiloide/ultraestructura , Masculino , Femenino , Persona de Mediana Edad
8.
ACS Appl Mater Interfaces ; 16(24): 30929-30957, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38832934

RESUMEN

Bioengineered composite hydrogel platforms made of a supramolecular coassembly have recently garnered significant attention as promising biomaterial-based healthcare therapeutics. The mechanical durability of amyloids, in conjunction with the structured charged framework rendered by biologically abundant key ECM component glycosaminoglycan, enables us to design minimalistic customized biomaterial suited for stimuli responsive therapy. In this study, by harnessing the heparin sulfate-binding aptitude of amyloid fibrils, we have constructed a pH-responsive extracellular matrix (ECM) mimicking hydrogel matrix. This effective biocompatible platform comprising heparin sulfate-amyloid coassembled hydrogel embedded with polyphenol functionalized silver nanoparticles not only provide a native skin ECM-like conductive environment but also provide wound-microenvironment responsive on-demand superior antibacterial efficacy for effective diabetic wound healing. Interestingly, both the cytocompatibility and antibacterial properties of this bioinspired matrix can be fine-tuned by controlling the mutual ratio of heparin sulfate-amyloid and incubated silver nanoparticle components, respectively. The designed biomaterial platform exhibits notable effectiveness in the treatment of chronic hyperglycemic wounds infected with multidrug-resistant bacteria, because of the integration of pH-responsive release characteristics of the incubated functionalized AgNP and the antibacterial amyloid fibrils. In addition to this, the aforementioned assemblage shows exceptional hemocompatibility with significant antibiofilm and antioxidant characteristics. Histological evidence of the incised skin tissue sections indicates that the fabricated composite hydrogel is also effective in controlling pro-inflammatory cytokines such as IL6 and TNFα expressions at the wound vicinity with significant upregulation of angiogenesis markers like CD31 and α-SMA.


Asunto(s)
Amiloide , Antibacterianos , Matriz Extracelular , Heparina , Hidrogeles , Nanopartículas del Metal , Plata , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Heparina/química , Heparina/farmacología , Plata/química , Plata/farmacología , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Nanopartículas del Metal/química , Amiloide/química , Amiloide/metabolismo , Animales , Humanos , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
9.
Heart Fail Clin ; 20(3): 249-260, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38844296

RESUMEN

Amyloidosis is a heterogenous group of disorders, caused by the deposition of insoluble fibrils derived from misfolded proteins in the extracellular space of various organs. These proteins have an unstable structure that causes them to misfold, aggregate, and deposit as amyloid fibrils with the pathognomonic histologic property of green birefringence when viewed under cross-polarized light after staining with Congo red. Amyloid fibrils are insoluble and degradation-resistant; resistance to catabolism results in progressive tissue amyloid accumulation. The outcome of this process is organ disfunction independently from the type of deposited protein, however there can be organ that are specifically targeted from certain proteins.


Asunto(s)
Amiloide , Amiloidosis , Humanos , Amiloidosis/metabolismo , Amiloidosis/patología , Amiloide/metabolismo
10.
ACS Nano ; 18(24): 15815-15830, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38833572

RESUMEN

Amyloid-like fibrils are garnering keen interest in biotechnology as supramolecular nanofunctional units to be used as biomimetic platforms to control cell behavior. Recent insights into fibril functionality have highlighted their importance in tissue structure, mechanical properties, and improved cell adhesion, emphasizing the need for scalable and high-kinetics fibril synthesis. In this study, we present the instantaneous and bulk formation of amyloid-like nanofibrils from human platelet lysate (PL) using the ionic liquid cholinium tosylate as a fibrillating agent. The instant fibrillation of PL proteins upon supramolecular protein-ionic liquid interactions was confirmed from the protein conformational transition toward cross-ß-sheet-rich structures. These nanofibrils were utilized as building blocks for the formation of thin and flexible free-standing membranes via solvent casting to support cell self-aggregation. These PL-derived fibril membranes reveal a nanotopographically rough surface and high stability over 14 days under cell culture conditions. The culture of mesenchymal stem cells or tumor cells on the top of the membrane demonstrated that cells are able to adhere and self-organize in a three-dimensional (3D) spheroid-like microtissue while tightly folding the fibril membrane. Results suggest that nanofibril membrane incorporation in cell aggregates can improve cell viability and metabolic activity, recreating native tissues' organization. Altogether, these PL-derived nanofibril membranes are suitable bioactive platforms to generate 3D cell-guided microtissues, which can be explored as bottom-up strategies to faithfully emulate native tissues in a fully human microenvironment.


Asunto(s)
Plaquetas , Nanofibras , Humanos , Plaquetas/metabolismo , Plaquetas/química , Nanofibras/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Agregación Celular/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Amiloide/química , Amiloide/metabolismo , Membranas Artificiales
11.
PLoS One ; 19(6): e0304891, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38843135

RESUMEN

ATTR amyloidosis is caused by deposition of large, insoluble aggregates (amyloid fibrils) of cross-ß-sheet TTR protein molecules on the intercellular surfaces of tissues. The process of amyloid formation from monomeric TTR protein molecules to amyloid deposits has not been fully characterized and is therefore modeled in this paper. Two models are considered: 1) TTR monomers in the blood spontaneously fold into a ß-sheet conformation, aggregate into short proto-fibrils that then circulate in the blood until they find a complementary tissue where the proto-fibrils accumulate to form the large, insoluble amyloid fibrils found in affected tissues. 2) TTR monomers in the native or ß-sheet conformation circulate in the blood until they find a tissue binding site and deposit in the tissue or tissues forming amyloid deposits in situ. These models only differ on where the selection for ß-sheet complementarity occurs, in the blood where wt-wt, wt-v, and v-v interactions determine selectivity, or on the tissue surface where tissue-wt and tissure-v interactions also determine selectivity. Statistical modeling in both cases thus involves selectivity in fibril aggregation and tissue binding. Because binding of protein molecules into fibrils and binding of fibrils to tissues occurs through multiple weak non-covalent bonds, strong complementarity between ß-sheet molecules and between fibrils and tissues is required to explain the insolubility and tissue selectivity of ATTR amyloidosis. Observation of differing tissue selectivity and thence disease phenotypes from either pure wildtype TTR protein or a mix of wildtype and variant molecules in amyloid fibrils evidences the requirement for fibril-tissue complementarity. Understanding the process that forms fibrils and binds fibrils to tissues may lead to new possibilities for interrupting the process and preventing or curing ATTR amyloidosis.


Asunto(s)
Amiloide , Prealbúmina , Prealbúmina/metabolismo , Prealbúmina/química , Humanos , Amiloide/metabolismo , Amiloide/química , Neuropatías Amiloides Familiares/metabolismo , Neuropatías Amiloides Familiares/patología , Amiloidosis/metabolismo , Modelos Moleculares , Conformación Proteica en Lámina beta
12.
J Phys Chem B ; 128(25): 5995-6013, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38875472

RESUMEN

Under the influence of various conditions, misfolding of soluble proteins occurs, leading to the formation of toxic insoluble amyloids. The formation and deposition of such amyloids within the body are associated with detrimental biological consequences such as the onset of several amyloid-related diseases. Previously, we established a strategy for the rational design of peptide inhibitors against amyloid formation based on the amyloidogenic-prone region of the protein. In the current study, we have designed and identified an Asp-containing rationally designed hexapeptide (SqP4) as an excellent inhibitor of hen egg-white lysozyme (HEWL) amyloid progression in vitro. First, SqP4 showed strong affinity toward the native monomeric HEWL leading to the stabilization of the native form and restriction in the unfolding process of monomeric HEWL. Second, SqP4 was found to arrest the amyloidogenic misfolded structure of HEWL in a nonfibrillar monomer-like stage. We also observed the differential effect of the protonation state of the charged amino acid (Asp) within the peptide inhibitor on the amyloid formation of HEWL and explored the reason behind the observations. The findings of this study can be implemented in future strategies for the development of potent therapeutics against other amyloid-related diseases.


Asunto(s)
Muramidasa , Protones , Muramidasa/química , Muramidasa/metabolismo , Animales , Amiloide/química , Amiloide/antagonistas & inhibidores , Amiloide/metabolismo , Pollos , Péptidos/química , Péptidos/farmacología , Péptidos/síntesis química , Pliegue de Proteína
13.
Sci Rep ; 14(1): 13746, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877049

RESUMEN

Apolipoprotein E (ApoE) is involved in cholesterol transport among cells and also plays an important role in amyloid formation, co-depositing with amyloid fibrils in various types of amyloidosis. Although the in vivo amyloidogenicity of ApoE has not been previously demonstrated, this study provides evidence of ApoE amyloidogenicity in leopard geckos (Eublepharis macularius), belonging to the class Reptilia. Histologically, amyloid deposits were localized within cholesterol granulomas and exhibited positive Congo red staining, with yellow to green birefringence under polarized light. On mass spectrometry-based proteomic analysis, ApoE was detected as a dominant component of amyloid; of the full length of the 274 amino acid residues, peptides derived from Leu185-Arg230 were frequently detected with non-tryptic truncations. Immunohistochemistry with anti-leopard gecko ApoE antibody showed positive reactions of amyloid deposits. These results show that ApoE is an amyloid precursor protein within the cholesterol granulomas of leopard geckos. Although further investigations are needed, the C-terminal region of ApoE involved in amyloid formation is a lipid-binding region, and there should be a relationship between amyloidogenesis and the development of cholesterol granulomas in leopard geckos. This study provides novel insights into the pathogenesis of ApoE-related diseases.


Asunto(s)
Amiloide , Apolipoproteínas E , Colesterol , Lagartos , Animales , Lagartos/metabolismo , Colesterol/metabolismo , Apolipoproteínas E/metabolismo , Amiloide/metabolismo , Granuloma/metabolismo , Granuloma/patología , Proteómica/métodos
14.
Ultrastruct Pathol ; 48(4): 297-303, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38769836

RESUMEN

In this clinical case report, we present a rare subtype of amyloidosis, apolipoprotein CII (apo CII), which was diagnosed through a renal biopsy and subsequently confirmed by identifying the p.K41T mutation via germline DNA sequencing. Upon reviewing the literature, five patients exhibiting identical mutation were identified via renal biopsy, while an additional patient was diagnosed through biopsies of the fat pad and bone marrow. Notably, our patient is the youngest recorded case. We pioneered the application of immunofluorescence and immunogold electron microscopy techniques for apo CII evaluation. Our report provides a detailed description of this case, supplemented by an extensive review encompassing apo CII, documented instances of apo CII amyloidosis with renal or systemic involvement, and potential underlying mechanisms.


Asunto(s)
Amiloidosis , Humanos , Amiloidosis/patología , Masculino , Riñón/patología , Riñón/ultraestructura , Enfermedades Renales/patología , Amiloide , Femenino , Persona de Mediana Edad , Apolipoproteína C-II
15.
Biochim Biophys Acta Biomembr ; 1866(6): 184339, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38763270

RESUMEN

Huntington's Disease (HD) is caused by an abnormal expansion of the polyglutamine (polyQ) domain within the first exon of the huntingtin protein (htt). This expansion promotes disease-related htt aggregation into amyloid fibrils and the formation of proteinaceous inclusion bodies within neurons. Fibril formation is a complex heterogenous process involving an array of aggregate species such as oligomers, protofibrils, and fibrils. In HD, structural abnormalities of membranes of several organelles develop. In particular, the accumulation of htt fibrils near the endoplasmic reticulum (ER) impinges upon the membrane, resulting in ER damage, altered dynamics, and leakage of Ca2+. Here, the aggregation of htt at a bilayer interface assembled from ER-derived liposomes was investigated, and fibril formation directly on these membranes was enhanced. Based on these observations, simplified model systems were used to investigate mechanisms associated with htt aggregation on ER membranes. As the ER-derived liposome fractions contained residual Ca2+, the role of divalent cations was also investigated. In the absence of lipids, divalent cations had minimal impact on htt structure and aggregation. However, the presence of Ca2+ or Mg2+ played a key role in promoting fibril formation on lipid membranes despite reduced htt insertion into and association with lipid interfaces, suggesting that the ability of divalent cations to promote fibril formation on membranes is mediated by induced changes to the lipid membrane physicochemical properties. With enhanced concentrations of intracellular calcium being a hallmark of HD, the ability of divalent cations to influence htt aggregation at lipid membranes may play a role in aggregation events that lead to organelle abnormalities associated with disease.


Asunto(s)
Amiloide , Calcio , Cationes Bivalentes , Retículo Endoplásmico , Proteína Huntingtina , Enfermedad de Huntington , Liposomas , Retículo Endoplásmico/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína Huntingtina/química , Humanos , Cationes Bivalentes/metabolismo , Calcio/metabolismo , Amiloide/metabolismo , Amiloide/química , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/genética , Liposomas/química , Liposomas/metabolismo , Magnesio/metabolismo , Magnesio/química , Péptidos
16.
Prog Mol Biol Transl Sci ; 206: 55-83, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38811089

RESUMEN

Protein aggregation is a complex process with several stages that lead to the formation of complex structures and shapes with a broad variability in stability and toxicity. The aggregation process is affected by various factors and environmental conditions that disrupt the protein's original state, including internal factors like mutations, expression levels, and polypeptide chain truncation, as well as external factors, such as dense molecular surroundings, post-translation modifications, and interactions with other proteins, nucleic acids, small molecules, metal ions, chaperones, and lipid membranes. During the aggregation process, the biological activity of an aggregating protein may be reduced or eliminated, whereas the resulting aggregates may have the potential to be immunogenic, or they may have other undesirable properties. Finding the cause(s) of protein aggregation and controlling it to an acceptable level is among the most crucial topics of research in academia and biopharmaceutical companies. This chapter aims to review intrinsic pathways of protein aggregation and potential extrinsic variables that influence this process.


Asunto(s)
Amiloide , Amiloide/metabolismo , Humanos , Animales , Agregado de Proteínas
17.
Prog Mol Biol Transl Sci ; 206: 111-141, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38811079

RESUMEN

Protein oligomers, widely found in nature, have significant physiological and pathological functions. They are classified into three groups based on their function and toxicity. Significant advancements are being achieved in the development of functional oligomers, with a focus on various applications and their engineering. The antimicrobial peptides oligomers play roles in death of bacterial and cancer cells. The predominant pathogenic species in neurodegenerative disorders, as shown by recent results, are amyloid oligomers, which are the main subject of this chapter. They are generated throughout the aggregation process, serving as both intermediates in the subsequent aggregation pathways and ultimate products. Some of them may possess potent cytotoxic properties and through diverse mechanisms cause cellular impairment, and ultimately, the death of cells and disease progression. Information regarding their structure, formation mechanism, and toxicity is limited due to their inherent instability and structural variability. This chapter aims to provide a concise overview of the current knowledge regarding amyloid oligomers.


Asunto(s)
Amiloide , Multimerización de Proteína , Humanos , Animales , Amiloide/metabolismo , Amiloide/química
18.
Methods Enzymol ; 697: 269-291, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38816126

RESUMEN

The design of small peptides that assemble into catalytically active intermolecular structures has proven to be a successful strategy towards developing minimalistic catalysts that exhibit some of the unique functional features of enzymes. Among these, catalytic amyloids have emerged as a fruitful source to unravel many different activities. These assemblies can potentially have broad applications that range from biotechnology to prebiotic chemistry. Although many peptides that assemble into catalytic amyloids have been developed in recent years, the elucidation of convergent mechanistic aspects of the catalysis and the structure/function relationship is still a challenge. Novel catalytic activities are necessary to better address these issues and expand the current repertoire of applicability. In this chapter, we described a methodology to produce catalytic amyloids that are specifically active towards the hydrolysis of phosphoanhydride bonds of nucleotides. The design of potentially active amyloid-prone peptide sequences is explored using as template the active site of enzymes with nucleotidyltransferase activity. The procedures include an approach for sequence design, in vitro aggregation assays, morphological characterization of the amyloid state and a comprehensive methodology to measure activity in vitro using nucleoside and deoxynucleosides triphosphates as model substrates. The proposed strategy can also be implemented to explore different types of activities for the design of future catalytic amyloids.


Asunto(s)
Amiloide , Nucleótidos , Hidrólisis , Amiloide/química , Amiloide/metabolismo , Nucleótidos/química , Nucleótidos/metabolismo , Dominio Catalítico , Secuencia de Aminoácidos , Catálisis , Biocatálisis
19.
Methods Enzymol ; 697: 15-33, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38816121

RESUMEN

Once considered a thermodynamic minimum of the protein fold or as simply by-products of a misfolding process, amyloids are increasingly showing remarkable potential for promoting enzyme-like catalysis. Recent studies have demonstrated a diverse range of catalytic behaviors that amyloids can promote way beyond the hydrolytic behaviors originally reported. We and others have demonstrated the strong propensity of catalytic amyloids to facilitate redox reactions both in the presence and in the absence of metal cofactors. Here, we present a detailed protocol for measuring the oxidative ability of supramolecular peptide assemblies.


Asunto(s)
Amiloide , Oxidación-Reducción , Amiloide/química , Amiloide/metabolismo , Humanos , Catálisis , Péptidos/química , Péptidos/metabolismo , Pliegue de Proteína
20.
Methods Enzymol ; 697: 499-526, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38816134

RESUMEN

Enzymes play a crucial role in biochemical reactions, but their inherent structural instability limits their performance in industrial processes. In contrast, amyloid structures, known for their exceptional stability, are emerging as promising candidates for synthetic catalysis. This article explores the development of metal-decorated nanozymes formed by short peptides, inspired by prion-like domains. We detail the rational design of synthetic short Tyrosine-rich peptide sequences, focusing on their self-assembly into stable amyloid structures and their metallization with biologically relevant divalent metal cations, such as Cu2+, Ni2+, Co2+ and Zn2+. The provided experimental framework offers a step-by-step guide for researchers interested in exploring the catalytic potential of metal-decorated peptides. By bridging the gap between amyloid structures and catalytic function, these hybrid molecules open new avenues for developing novel metalloenzymes with potential applications in diverse chemical reactions.


Asunto(s)
Priones , Priones/química , Catálisis , Péptidos/química , Amiloide/química , Cationes Bivalentes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA